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Fast sparsely synchronized brain rhythms in a scale-free neural network
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We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential
attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for
a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely
synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values
of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large
value and investigate the population states by increasing D. For small D, full synchronization with the same
population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D

partial synchronization with fp > 〈fi〉 (〈fi〉: ensemble-averaged MFR) appears due to intermittent discharge of
individual neurons; in particular, the case of fp > 4〈fi〉 is referred to as sparse synchronization. For the case of
partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes
a critical value D∗ (which is determined by employing an order parameter), a transition to unsynchronization
occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D < D∗, population
synchronization emerges in the whole population because the spatial correlation length between the neuronal
pairs covers the whole system. Furthermore, the degree of population synchronization is also measured in
terms of two types of realistic statistical-mechanical measures. Only for the partial and sparse synchronization
do contributions of individual neuronal dynamics to population synchronization change depending on their
degrees, unlike in the case of full synchronization. Consequently, dynamics of individual neurons reveal the
inhomogeneous network structure for the case of partial and sparse synchronization, which is in contrast to the
case of statistically homogeneous random graphs and small-world networks. Finally, we investigate the effect
of network architecture on sparse synchronization for fixed values of J and D in the following three cases:
(1) variation in the degree of symmetric attachment, (2) asymmetric preferential attachment of new nodes with
different in- and out-degrees, and (3) preferential attachment between pre-existing nodes (without addition of new
nodes). In these three cases, both relation between network topology (e.g., average path length and betweenness
centralization) and sparse synchronization and contributions of individual dynamics to the sparse synchronization
are discussed.
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I. INTRODUCTION

Recently, brain rhythms in health and disease have attracted
much attention [1,2]. Particularly, we are concerned with fast
sparsely synchronized brain rhythms which are related to
diverse cognitive functions (e.g., sensory perception, feature
integration, selective attention, and memory formation) [3].
At the population level, synchronous small-amplitude fast
oscillations [e.g., gamma rhythm (30–100 Hz) during awake
behaving states and rapid eye movement sleep and sharp-wave
ripple (100–200 Hz) during quiet sleep and awake immobility]
have been observed in local field potential recordings, while
at the cellular level individual neuronal recordings have been
found to exhibit stochastic and intermittent spike discharges
like Geiger counters [4–10]. Thus, single-cell firing activity
differs distinctly from the population oscillatory behavior. We
note that these sparsely synchronized rhythms are in contrast to
fully synchronized rhythms where individual neurons fire reg-
ularly at the population frequency like the clocks. Brunel et al.
developed a framework appropriate for the description of fast
sparse synchronization [11–16]. Under the condition of strong
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external noise, suprathreshold spiking neurons discharge irreg-
ular firings as Geiger counters, and then the population state
becomes unsynchronized. However, as the inhibitory recurrent
feedback becomes sufficiently strong, this asynchronous state
may be destabilized, and then a synchronous population state
with stochastic and intermittent individual discharges emerges.
Thus, under the balance between strong external excitation and
strong recurrent inhibition, fast sparse synchronization was
found to occur in both random networks [11–14] and globally
coupled networks [15,16].

In brain networks, architecture of synaptic connections has
been found to have complex topology (e.g., small-worldness
and scale-freeness) which is neither regular nor completely
random [17–25]. In our recent work [26], as a complex
network we employed the Watts-Strogatz model for small-
world networks which interpolates between regular lattice with
high clustering and random graph with short path length via
rewiring [27–29]. The Watts-Strogatz model may be regarded
as a cluster-friendly extension of the random network by recon-
ciling the six degrees of separation (small-worldness) [30,31]
with the circle of friends (clustering). We investigated the
effect of small-world connectivity on the emergence of
fast sparsely synchronized rhythms by varying the rewiring
probability from short-range to long-range connections [26].
When passing a small critical value of the rewiring parameter,

1539-3755/2015/92(2)/022717(25) 022717-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.022717


SANG-YOON KIM AND WOOCHANG LIM PHYSICAL REVIEW E 92, 022717 (2015)

fast sparsely synchronized population rhythms were found
to emerge in small-world networks with predominantly local
connections and rare long-range connections. We note that
these small-world networks as well as random graphs are
statistically homogeneous because their degree distributions
show bell-shaped ones. However, brain networks have been
found to show power-law degree distributions (i.e., scale-free
property) in the rat hippocampal networks [32–35] and the
human cortical functional network [36]. Moreover, robustness
against simulated lesions of mammalian cortical anatomical
networks [37–42] has also been found to be most similar to
that of a scale-free network (SFN) [43]. This type of SFNs
are inhomogeneous ones with a few “hubs” (superconnected
nodes), in contrast to statistically homogeneous networks such
as random graphs and small-world networks [44,45]. Many
recent works on various subjects of neurodynamics have been
done in SFNs with a few percentages of hub neurons with an
exceptionally large number of connections [46–49].

The main purpose of our study is to extend previous
works on sparse synchronization in statistically homogeneous
networks [11–16,26] to the case of inhomogeneous SFNs
with a few superconnected hubs. We first consider a directed
version of the Barabási-Albert SFN model with symmetric
preferential attachment with the same in- and out-degrees
(l(in)

α = l(out)
α ≡ lα) [44,45] and study the emergence of sparsely

synchronized rhythms by varying J (synaptic inhibition
strength) and D (noise intensity) for a fixed attachment degree
lα in an inhibitory population of fast-spiking (FS) Izhikevich
interneurons [50–53]. Fast sparsely synchronized rhythms are
found to appear for large values of J and D. For a sufficiently
large fixed value of J , we make an intensive investigation
of the population states by increasing D. For small D, full
synchronization with the same population-rhythm frequency
fp and mean firing rate (MFR) fi of individual neurons
occurs. For this case, all the individual neurons exhibit the
same behavior, independently of inhomogeneous network
structure. As D passes a lower threshold Dth,l , a transition
to partial synchronization with fp > 〈fi〉 (〈fi〉: ensemble-
averaged MFR) appears due to intermittent discharge of
individual neurons. With an increase from Dth,l , the difference
between fp and 〈fi〉 increases, and sparse synchronization
with fp > 4〈fi〉 emerges when passing a higher threshold
Dth,h. For the case of partial and sparse synchronization, MFRs
of individual neurons vary depending on their degrees. As D

is further increased and eventually passes a critical value D∗,
a transition to unsynchronization occurs due to the destructive
role of noise to spoil the pacing between sparse spikes. The
critical value D∗ for the transition to unsynchronization is
determined by employing a realistic “thermodynamic” order
parameter, based on the instantaneous population spike rates
(IPSR) [54]. It is also shown that for D < D∗, population
synchronization emerges in the whole population because the
spatial correlation length between the neuronal pairs covers
the whole system. Furthermore, the degree of the population
synchronization is also measured in terms of two types of
realistic “statistical-mechanical” measures, based on (1) the
occupation and the pacing degrees of the spikes and (2) the
correlations between the IPSR and the instantaneous individual
spike rates [54,55]. Only for the partial and sparse synchro-
nization do contributions of individual neurons to population

synchronization change depending on their degrees, unlike
in the case of full synchronization. Consequently, individ-
ual neuronal dynamics reveal the inhomogeneous network
structure for the case of partial and sparse synchronization,
which is in contrast to the case of statistically homogeneous
random graphs and small-world networks. As a next step,
we also investigate the effect of network architecture on
sparse synchronization for fixed values of J and D in the
following three cases: (1) variation in the degree of symmetric
attachment, (2) asymmetric preferential attachment of new
nodes with different in- and out-degrees, and (3) preferential
attachment between pre-existing nodes (without addition of
new nodes). As the degree lα of symmetric preferential
attachment in the first case of network architecture is increased,
both the average path length Lp and the betweenness central-
ization Cb decrease, which results in increased efficiency of
communication between nodes. Consequently, the degree of
sparse synchronization becomes higher. On the other hand,
with increasing lα the axon “wire length” of the network also
increases. At an optimal degree l∗α , there is a trade-off between
the population synchronization and the wiring economy and,
consequently, an optimal fast sparsely synchronized rhythm
is found to emerge at a minimal wiring cost in an economic
SFN. As the second case of network architecture, we consider
an asymmetric preferential attachment of new nodes with
different in- and out-degrees (l(in)

α �= l(out)
α ). For this asymmetric

case, we also measure Lp and Cb by varying the “asymme-
try” parameter �lα denoting the deviation from the above
symmetric case and examine how sparse synchronization
varies. As the magnitude |�lα| of asymmetry parameter is
increased, both Lp and Cb increase, which leads to decrease
in efficiency of communication between nodes. As a result,
the degree of sparse synchronization decreases. For both cases
of the positive and the negative asymmetries with the same
magnitude (e.g., �lα = 15 and −15), their values of Lp and
Cb are nearly the same because both the inward and the
outward edges are equally involved in computation of Lp and
Cb. However, their synchronization degrees begin to differ
because of their distinctly different in-degree distributions
affecting individual MFRs. In addition to the above process
where preferential attachment is made to newly added nodes
with probability α, as the third case of network architecture we
also consider another process where preferential attachment
between pre-existing nodes (without addition of new nodes) is
made with probability β (α + β = 1) [45,56–58]. By varying
β, we also measure Lp and Cb and investigate the effect of
this β process on sparse synchronization. As β is increased,
communication between pre-existing nodes becomes more
efficient due to a decrease in both Lp and Cb, and hence
the degree of sparse synchronization increases. For these three
cases of network architecture, dynamics of individual neurons
reveal the inhomogeneous structure of the SFN and hence
their contributions to sparse synchronization vary depending
on their degrees, in contrast to the case of statistically
homogeneous random graphs and small-world networks.

This paper is organized as follows. In Sec. II, we describe
a directed SFN of inhibitory FS Izhikevich interneurons.
In Sec. III, we first investigate the emergence of sparsely
synchronized rhythms in a directed Barabási-Albert SFN, and
then the effect of network architecture (such as the degree
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of symmetric attachment, the asymmetric attachment, and the
preferential attachment between pre-existing nodes) on fast
sparse synchronization is also studied. Finally, a summary is
given in Sec. IV.

II. SCALE-FREE NETWORK OF INHIBITORY FS
IZHIKEVICH INTERNEURONS

We consider an SFN of N inhibitory interneurons equidis-
tantly placed on a one-dimensional ring of radius N/2π .
Here we employ a directed variant of the Barabási-Albert
SFN model, composed of two independent α and β processes
which are performed with probabilities α and β (α + β =
1), respectively [44,45,56–58]. The diagrams for these two
processes generating an SFN are shown in Fig. 1. The α

process corresponds to a directed version of the Barabási-
Albert SFN model (i.e., growth and preferential directed
attachment) [44,45]. For the α process (occurring with the
probability α), at each discrete time t a new node is added,
and it has l(in)

α incoming (afferent) edges and l(out)
α outgoing

(efferent) edges through preferential attachments with l(in)
α

(pre-existing) source nodes and l(out)
α (pre-existing) target

nodes, as shown in Fig. 1(a). The (pre-existing) source and
target nodes i (which are connected to the new node) are
preferentially chosen depending on their out-degrees d

(out)
i

and in-degrees d
(in)
i according to the attachment probabilities

�source[d (out)
i ] and �target[d

(in)
i ], respectively:

�source
[
d

(out)
i

] = d
(out)
i∑Nt−1

j=1 d
(out)
j

and

�target
[
d

(in)
i

] = d
(in)
i∑Nt−1

j=1 d
(in)
j

, (1)

where Nt−1 is the number of nodes at the time step t − 1.
The cases of l(in)

α = l(out)
α (≡lα) and l(in)

α �= l(out)
α will be referred

to as symmetric and asymmetric preferential attachments,
respectively. For the β process (occurring with the probability
β), there is no addition of new nodes (i.e., no growth), and
symmetric preferential attachments with the same in- and
out-degrees [l(in)

β = l
(out)
β (≡lβ)] are made between lβ pairs

of (pre-existing) source and target nodes which are also
preferentially chosen according to the attachment probabilities
�source[d (out)

i ] and �target[d
(in)
i ] of Eq. (1), respectively, such

that self-connections (i.e., loops) and duplicate connections

FIG. 1. Diagrams of two processes generating a directed SFN. (a)
Diagram of the α process of adding a new node (denoted by a gray
circle) with preferential attachment of l(in)

α inward and l(out)
α outward

edges. (b) Diagram of the β process of the preferential attachment
between lβ pairs of (pre-existing) source and target nodes without
adding a new node. The open circles with labels “S” and “T ” represent
the (pre-existing) source and target nodes, respectively.

(i.e., multiple edges) are excluded [see Fig. 1(b)] [45,56–58].
Through the β process, degrees of pre-existing nodes are more
intensified. For generation of an SFN with N nodes, we start
with the initial network at t = 0, composed of N0 = 50 nodes
where node 1 is connected bidirectionally to all the other
nodes, but the remaining nodes (except node 1) are sparsely
and randomly connected with a low probability p = 0.1. Then
the α and β processes are repeated until the total number of
nodes becomes N . For our initial network, node 1 will be
grown as the hub with the highest degree. However, the results
(given in Sec. III) are independent of the initial networks.

As an element in our neural system, we choose the FS
Izhikevich interneuron model which is not only biologically
plausible but also computationally efficient [50–53]. The
population dynamics in our SFN are governed by the following
set of ordinary differential equations:

C
dvi

dt
= k(vi − vr )(vi − vt ) − ui + IDC +Dξi − Isyn,i , (2)

dui

dt
= a{U (vi) − ui}, i = 1, . . . ,N, (3)

with the auxiliary after-spike resetting:

if vi � vp, then vi ← c and ui ← ui + d, (4)

where

U (v) =
{

0 for v < vb

b(v − vb)3 for v � vb
, (5)

Isyn,i = gsyn,i(vi − Vsyn); gsyn,i = J

d
(in)
i

N∑
j=1( �=i)

wij sj (t), (6)

sj (t) =
Fj∑

f =1

E
(
t − t

(j )
f − τl

)
;

E(t) = 1

τd − τr

(e−t/τd − e−t/τr )	(t). (7)

Here the state of the ith neuron at a time t is characterized by
two state variables: the membrane potential vi and the recovery
current ui . In Eq. (2), C is the membrane capacitance, vr is
the resting membrane potential, and vt is the instantaneous
threshold potential. After the potential reaches its apex (i.e.,
spike cutoff value) vp, the membrane potential and the
recovery variable are reset according to Eq. (4). The units
of the capacitance C, the potential v, the current u, and the
time t are pF, mV, pA, and ms, respectively.

Unlike Hodgkin-Huxley-type conductance-based models,
the Izhikevich model matches neuronal dynamics by tuning the
parameters instead of matching neuronal electrophysiology.
The parameters k and b are associated with the neuron’s
rheobase and input resistance, a is the recovery time constant,
c is the after-spike reset value of v, and d is the total amount
of outward minus inward currents during the spike and
affecting the after-spike behavior (i.e., after-spike jump value
of u). Tuning these parameters, the Izhikevich neuron model
may produce 20 of the most prominent neurocomputational
features of cortical neurons [50–53]. Here we use the
parameter values for the FS interneurons (which do not
fire postinhibitory rebound spikes) in the layer 5 rat
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visual cortex [52]; C = 20,vr = −55,vt = −40,vp =
25,vb = −55,k = 1,a = 0.2,b = 0.025,c = −45,d = 0.

Each Izhikevich interneuron is stimulated by using the
common DC current IDC (measured in units of pA) and an in-
dependent Gaussian white noise ξi [see the third and the fourth
terms in Eq. (2)] satisfying 〈ξi(t)〉 = 0 and 〈ξi(t)ξj (t ′)〉 =
δij δ(t − t ′), where 〈· · · 〉 denotes the ensemble average. The
noise ξ is a parametric one that randomly perturbs the strength
of the applied current IDC, and its intensity is controlled by
using the parameter D (measured in units of pA ms1/2). In
the absence of noise (i.e., D = 0), the Izhikevich interneuron
exhibits a jump from a resting state to a spiking state via
subcritical Hopf bifurcation for IDC,h = 73.7 by absorbing an
unstable limit cycle born via a fold limit cycle bifurcation
for IDC,l = 72.8. Hence, the Izhikevich interneuron shows
type-II excitability because it begins to fire with a nonzero
frequency [59,60]. As IDC is increased from IDC,h, the mean
firing rate f increases monotonically. Throughout this paper,
we consider a suprathreshold case of IDC = 1500, where the
membrane potential v oscillates very fast with f = 633 Hz;
for more details, refer to Fig. 1 in Ref. [26].

The last term in Eq. (2) represents the synaptic coupling of
the network. Isyn,i of Eq. (6) represents a synaptic current
injected into the ith neuron; gsyn,i represents the synaptic
conductance of the ith neuron. The synaptic connectivity is
given by the connection weight matrix W (={wij }) where
wij = 1 if the neuron j is presynaptic to the neuron i;
otherwise, wij = 0. Here the synaptic connection is modeled
by using the directed SFN (explained in the above). Then the
in-degree of the ith neuron, d

(in)
i (i.e., the number of synaptic

inputs to the neuron i) is given by d
(in)
i = ∑N

j=1(�=i) wij . The
fraction of open synaptic ion channels at time t is denoted by
s(t). The time course of sj (t) of the j th neuron is given by a
sum of delayed double-exponential functions E[t − t

(j )
f − τl]

[see Eq. (7)], where τl is the synaptic delay and t
(j )
f and Fj

are the f th spike and the total number of spikes of the j th
neuron at time t , respectively. Here E(t) [which corresponds
to contribution of a presynaptic spike occurring at time 0 to
s(t) in the absence of synaptic delay] is controlled by the
two synaptic time constants: synaptic rise time τr and decay
time τd , and 	(t) is the Heaviside step function: 	(t) = 1 for
t � 0 and 0 for t < 0. For the inhibitory GABAergic synapse
(involving the GABAA receptors), τl = 1 ms, τr = 0.5 ms,
and τd = 5 ms [13]. The coupling strength is controlled by
the parameter J (measured in units of μS), and Vsyn is the
synaptic reversal potential. Here we use Vsyn = −80 mV for
the inhibitory synapse.

Numerical integration of Eqs. (2) and (3) is done using the
Heun method [61] (with the time step �t = 0.01 ms). For
each realization of the stochastic process, we choose a random
initial point [vi(0),ui(0)] for the ith (i = 1, . . . ,N) neuron
with uniform probability in the range of vi(0) ∈ (−50, − 45)
and ui(0) ∈ (10,15).

III. EMERGENCE OF FAST SPARSELY SYNCHRONIZED
RHYTHMS IN SCALE-FREE NETWORKS

In this section, we study emergence of sparsely syn-
chronized rhythms with stochastic and intermittent neuronal

discharges by varying J (synaptic inhibition strength) and D

(noise intensity) in SFNs with a few superconnected hubs. Fast
sparsely synchronized rhythms are thus found to appear for
large values of J and D by employing both a thermodynamic
order parameter and a spatial correlation function between neu-
ronal pairs. The degree of population synchronization is also
characterized in terms of two statistical-mechanical spiking
and correlation measures. For this sparse synchronization, con-
tributions of individual neurons to population synchronization
vary depending on their degrees, and hence individual neuronal
dynamics reveal the inhomogeneous network structure, in con-
trast to the case of statistically homogeneous random graphs
and small-world networks. Furthermore, we also investigate
the effect of network architecture on sparse synchronization
for fixed J and D by varying lα (i.e., degree of symmetric
preferential attachment) and �lα (i.e., asymmetry parameter
representing the deviation from the symmetric case) in the α

process of adding new nodes and the probability β for the
β process of preferential attachment between (pre-existing)
nodes (without addition of new nodes).

We first study a directed version of the Barabási-Albert
SFN model with symmetric preferential attachment of l(in)

α =
l(out)
α ≡ lα = 25, composed of N inhibitory FS Izhikevich

interneurons equidistantly placed on a one-dimensional ring of
radius N/2π [44,45,56]. The in-degree d

(in)
i and the out-degree

d
(out)
i of individual neurons i show power-law distributions

with the same exponent γ = 3.0 [44,45], and the average
number of synaptic inputs per neuron M (in)

syn (=〈d (in)
i 〉; 〈· · · 〉

denotes an ensemble average over all neurons) is 50, which is
nearly the same as that in the small-world network of Ref. [26].
By changing J and D, we investigate occurrence of popula-
tion synchronized states. In computational neuroscience, an
ensemble-averaged global potential VG,

VG(t) = 1

N

N∑
i=1

vi(t), (8)

is often used for describing emergence of population synchro-
nization. However, to directly obtain VG in real experiments
is very difficult. To overcome this difficulty, instead of VG, we
use an experimentally obtainable IPSR which is often used as
a collective quantity showing population behaviors [3,11–16].
The IPSR is obtained from the raster plot of neural spikes
which is a collection of spike trains of individual neurons. Such
raster plots of spikes, where population spike synchronization
may be well visualized, are fundamental data in experimental
neuroscience. For the synchronous case, “stripes” (composed
of spikes and representing population synchronization) are
found to be formed in the raster plot. Hence, for a synchronous
case, an oscillating IPSR appears, while for an unsynchronized
case the IPSR is nearly stationary. To obtain a smooth IPSR, we
employ the kernel density estimation (kernel smoother) [62].
Each spike in the raster plot is convoluted (or blurred) with
a kernel function Kh(t) to obtain a smooth estimate of IPSR,
R(t):

R(t) = 1

N

N∑
i=1

ni∑
s=1

Kh

[
t − t (i)

s

]
, (9)

022717-4



FAST SPARSELY SYNCHRONIZED BRAIN RHYTHMS IN A . . . PHYSICAL REVIEW E 92, 022717 (2015)

where t (i)
s is the sth spiking time of the ith neuron, ni is the total

number of spikes for the ith neuron, and we use a Gaussian
kernel function of band width h:

Kh(t) = 1√
2πh

e−t2/2h2
, − ∞ < t < ∞. (10)

We first consider the case of D = 0. For sufficiently small
J , individual interneurons fire too fast to be synchronized.
However, as J is increased from zero, MFRs fi of individual
interneurons decrease, and eventually, when J passes a critical
value J ∗(�14), a transition to full synchronization with
the same population-rhythm frequency fp and MFR fi of
individual neurons occurs. Figures 2(a1) and 2(a2) show the
raster plot of spikes and the IPSR kernel estimate R(t) for
small values of J = 100 and D = 50, respectively. Clear
stripes are formed in the raster plot, and the corresponding
IPSR kernel estimate R(t) exhibits large-amplitude regular
oscillation with population frequency fp = 200 Hz. For this
case, individual interneurons fire regularly with the same MFR
fi which is the same as the population frequency fp, and
hence complete full synchronization with fi = fp occurs,
independently of inhomogeneous network structure. However,
for the sparsely synchronized cortical rhythms, fp : 〈fi〉 ∼
4 : 1 (〈fi〉: ensemble-averaged MFR of individual neurons),
unlike in the case of full synchronization [11–14]. Hence, when

the population frequency is much higher than the MFR rate of
individual interneurons (fp > 4 〈fi〉), the synchronization will
be referred to as sparse synchronization. For sufficiently large
values of J and D, sparse synchronization with fp > 4 〈fi〉
appears. Figures 2(b1) and 2(b2) show the raster plot of spikes
and the IPSR kernel estimate R(t) for J = 1500 and D = 450,
respectively. For this case, the population frequency fp of R(t)
is about 147 Hz [see Fig. 2(c1)], while the distribution of
MFRs fi of individual neurons is very broad [see Fig. 2(c2)]
and the ensemble-averaged MFR 〈fi〉 (=36 Hz) is much less
than the population frequency fp. Due to this stochastic and
intermittent discharge of individual interneurons, stripes in the
raster plot become sparse and smeared. Consequently, the am-
plitude of R(t) becomes smaller. Figure 2(d) shows the overall
state diagram in the J -D plane. As D is increased, the full
synchronization for D = 0 evolves, depending on the values
of J , and eventually desynchronization occurs when passing
a critical value D∗. Plots of fp and 〈fi〉 versus D are also
shown in Figs. 2(e1)–2(e4) for J = 100, 500, 1500, and 2000.
For small J [J ∗(� 14) < J < 173], the full synchronization
for D = 0 develops directly into an unsynchronized state
without any other type of intermediate synchronization stage
because fp = fi (e.g., see the case of J = 100). However, for
J > 173, the full synchronization for D = 0 is developed into
partial synchronization with fp > 〈fi〉 at some lower threshold

FIG. 2. State diagram in the J -D plane for IDC = 1500 in the directed SFN of α = 1 (i.e., β = 0) and l(in)
α = l(out)

α ≡ lα = 25 (i.e., symmetric
preferential attachment). (a1) Raster plot of spikes and (a2) plot of the IPSR kernel estimate R(t) for the full synchronization when J = 100
and D = 50. (b1) Raster plot of spikes and (b2) plot of the IPSR kernel estimate R(t) for the sparse synchronization when J = 1500 and
D = 450. The band width of the Gaussian kernel estimate for the IPSR R(t) is 1 ms. (c1) One-sided power spectrum of �R(t) [=R(t) − R(t)]
(the overbar represents the time average) with mean-squared amplitude normalization and (c2) distribution of mean firing rates (MFRs) of
individual neurons for J = 1500 and D = 450. Power spectrum is obtained from 216 (=65 536) data points. Averaging time for the MFR is
104 ms and the bin size for the histogram is 3 Hz. (d) State diagram in the J -D plane. For the full synchronization, the individual MFR fi is
the same as the population frequency fp , while for the partial and sparse synchronization, the ensemble-averaged MFR 〈fi〉 is less than fp .
Particularly, the case of fp > 4〈fi〉 is referred to as the sparse synchronization. Plots of fp and 〈fi〉 versus for J = (e1) 100, (e2) 500, (e3)
1500, and (e4) 2000. Here the circles and the crosses denote fp and 〈fi〉, respectively.
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FIG. 3. Fast sparse synchronization for IDC = 1500 and J = 1500 in the directed SFN of α = 1 (i.e., β = 0) and l(in)
α = l(out)

α ≡ lα = 25
(i.e., symmetric preferential attachment). Raster plots of spikes in (a1)–(a5), plots of the IPSR kernel estimate R(t) in (b1)–(b5), and the ISI
histograms in (c1)–(c5) for various values of D = 100, 150, 450, 600, and 800; vertical dotted lines denote integer multiples of the global
period TG of R(t) [�9.3 ms in (c2), 6.8 ms in (c3), and 6.5 ms in (c4)]. The band width of the Gaussian kernel estimate for the IPSR R(t) is
1 ms. Each ISI histogram is composed of 5 × 104 ISIs and the bin size for the histogram is 0.5 ms.

value Dth,l via pitchforklike bifurcations (e.g., see the cases of
J = 500 1500, and 2000). With increasing J , the difference
between fp and fi increases abruptly when passing Dth,l .
For J > 1440, the partial synchronization also evolves into
sparse synchronization with fp > 4 〈fi〉 as D passes a higher
threshold Dth,h (e.g., see the cases of J = 1500 and 2000),
and eventually when passing a critical value D∗, transition to
unsynchronization occurs.

For further understanding, we present explicit examples
for J = 1500 which show how the full synchronization is
evolved into an unsynchronized state as D is increased.
Figures 3(a1)–3(a5), 3(b1)–3(b5), and 3(c1)–3(c5) show the
raster plots, the IPSR kernel estimates R(t), and the interspike
interval (ISI) histograms for D = 100, 150, 450, 600, and
800, respectively. For D < Dth,l(�109), full synchronization
with fp = fi occurs (e.g., see the case of D = 100). All
the individual neurons fire regularly with the same MFR
fi = 67 Hz, which is well shown in the ISI histogram with
a single peak at the global period TG (�14.9 ms) of R(t)
in Fig. 3(c1). Consequently, clear stripes are formed in the
raster plot of spikes and the IPSR kernel estimate R(t) shows
large-amplitude regular oscillation with fp = 67 Hz [see
Figs. 3(a1)–3(b1)]. However, when passing the lower threshold
Dth,l , partial synchronization with fp > 〈fi〉 appears. As an
example, consider the case of D = 150. In contrast to the
case of full synchronization, the ISI histogram has multiple
peaks appearing at multiples of the period TG (�9.3 ms)
of R(t) [see Fig. 3(c2)]. Similar skipping phenomena of
spikings (characterized with multipeaked ISI histograms) have
also been found in networks of coupled inhibitory neurons
in the presence of noise where noise-induced hopping from
one cluster to another one occurs [63], in single noisy
neuron models exhibiting stochastic resonance due to a weak
periodic external force [64,65], and in inhibitory networks
of coupled subthreshold neurons showing stochastic spiking
coherence [66–68]. “Stochastic spike skipping” in coupled

systems is a collective effect because it occurs due to a
driving by a coherent ensemble-averaged synaptic current, in
contrast to the single case driven by a weak periodic force
where stochastic resonance occurs. Due to this stochastic
spike skipping, partial occupation occurs in the stripes of the
raster plot. Thus, the ensemble-averaged MFR 〈fi〉 (�46 Hz)
of individual interneurons become less than the population
frequency fp (�107 Hz, which results in the occurrence of
partial synchronization. In contrast to the full-synchronization
case of D = 100, 〈fi〉 is decreased, while fp is increased.
For this case of partial synchronization, the density of stripes
in the raster plot becomes lower because smaller fraction
of total neurons fire in each stripes, and the stripes become
smeared, as shown in Fig. 3(a2). Thus, both the occupation
and the pacing degrees of spikes in the raster plot decrease,
and, consequently, a large decrease in the amplitude of R(t)
occurs [see Fig. 3(b2)]. As D is further increased and passes
the higher threshold Dth,h (�400), sparse synchronization with
fp > 4 〈fi〉 appears (e.g., see the cases of D = 450 and 600).
The interval between stripes in the raster plot becomes smaller
[see Figs. 3(a3)–3(a4)], and hence the population frequency of
R(t) increases [see Figs. 3(b3)–3(b4); fp = 147 and 154 Hz
for D = 450 and 600, respectively]. On the other hand, the
ensemble-averaged MFR 〈fi〉 (�36 Hz) for both cases of
D = 450 and 600 only slightly decreases in comparison to
the case of D = 150, which results in a decrease in the density
of the stripes. We also note that multiple peaks in the ISI
histogram overlap and the height of the first peak increases, as
shown in Figs. 3(c3) and 3(c4), and hence the stripes become
more and more smeared. In this way, both the occupation and
the pacing degrees of spikes (seen in the raster plot) decrease.
Eventually, when passing the critical value D∗ (�759), a
transition to unsynchronization occurs. As an example of an
unsynchronized state, consider the case of D = 800. Multiple
peaks in the ISI histogram become overlapped completely [see
Fig. 3(c5)], and hence spikes in the raster plot are completely
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FIG. 4. Individual neuronal dynamics for IDC = 1500 and J = 1500 in the directed SFN of α = 1 (i.e., β = 0) and l(in)
α = l(out)

α ≡ lα = 25
(i.e., symmetric preferential attachment). (a1)–(a4) Time series of the membrane potentials of the hub neuron (i = 1) with highest degree and
the fastest and the slowest peripheral neurons with low degrees for various values of D = 100, 150, 450, and 600. [(b1)–(b4)] Plots of MFRs
of individual neurons versus the in-degree d (in) for D = 100, 150, 450, and 600. Averaging time for the MFR is 104 ms. [(c1)–(c4)] Histograms
for the MFRs of presynaptic neurons for the hub neuron and the fastest and the slowest peripheral neurons with low degrees for D = 100, 150,
450, and 600. Horizontal gray lines in (b2)–(b4) denote ensemble-averaged MFRs [�46 Hz in (b2) and 36 Hz in (b3)–(b4)]. Gray regions,
solid lines, and dotted lines in (c2)–(c4) denote the histograms for the MFRs of the presynaptic neurons for the hub neuron and the fastest and
the slowest peripheral neurons with low degrees, respectively. Histograms in (c1)–(c4) are obtained from 30 realizations and the bin size for
the histogram is 3 Hz.

scattered, as shown in Fig. 3(a5). Consequently, the IPSR
kernel estimate R(t) in Fig. 3(b5) becomes nearly stationary
(i.e., no population rhythm appears).

In addition to the population dynamics shown in Fig. 3,
we also investigate the dynamics of individual neurons for
J = 1500 to examine whether individual dynamics reveals
the inhomogeneous structure of the SFN. Figures 4(a1)–4(a4)
show the time series of membrane potentials vi of the hub
neuron (i = 1 with the highest degree) and the fastest and
slowest peripheral neurons with low degrees (i : varying
depending on D). For the full-synchronization case of D =
100, all the individual neurons fire regularly with the same
MFR fi (�67 Hz), as shown in Fig. 4(b1), and hence complete
full synchronization occurs, irrespective of inhomogeneous
structure of the SFN. However, for the partial and the sparse
synchronization, MFRs vary depending on their degrees. For
the partial synchronization of D = 150, the MFR f1 of the
hub neuron (i = 1) with highest degree is 32 Hz [which is a
little less than the ensemble-averaged MFR 〈fi〉 (�46 Hz)],
while the MFRs f691 and f730 of the fastest (i = 691) and
the slowest (i = 730) peripheral neurons are 87 and 18 Hz,
respectively. Hence, MFRs of peripheral neurons with low
degrees are distributed broadly around (i.e., above and below)
the ensemble-averaged MFR 〈fi〉 [denoted by the gray line

in Fig. 4(b2)], while the MFRs of most of the hub neurons
with high degrees are less than 〈fi〉. As D is further increased
and passes the higher threshold Dth,h, sparse synchronization
fp > 4 〈fi〉 appears. For the sparse-synchronization cases
of D = 450 and 600, distributions of MFRs of individual
neurons become more broad when compared with that for
the partial-synchronization case of D = 150, as shown in
Figs. 4(b3) and 4(b4). The ensemble-averaged MFR 〈fi〉 for
both cases of D = 450 and 600 is 36 Hz, which is less than
that for D = 150 because more fraction of neurons have lower
MFRs for the case of sparse synchronization. Differences in
the MFRs of the hub neuron (i = 1) and the fastest and slowest
peripheral neurons can also be easily understood in terms
of the time-averaged synaptic conductance gsyn,i of Eq. (6).
The synaptic conductance gsyn,i of the neuron i is determined
mainly by MFRs of presynaptic neurons because the fraction of
open synaptic ion channels is controlled through the double-
exponential function of spikes of presynaptic neurons [see
Eq. (7)]. If the MFR of a presynaptic neuron is fast (slow), then
its contribution to gsyn,i becomes larger (smaller), and hence
more (less) inhibition can be given to the postsynaptic neuron.
Consequently, the MFR of the postsynaptic neuron becomes
slow (fast). Figures 4(c1)–4(c4) show the distributions of
MFRs of presynaptic neurons for the three cases of the hub
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FIG. 5. Synchronization-unsynchronization transition for IDC = 1500 and J = 1500 in the directed SFN of α = 1 (i.e., β = 0) and
l(in)
α = l(out)

α ≡ lα = 25 (i.e., symmetric preferential attachment). (a) Plots of the thermodynamic order parameter versus D. Averaging time for
the thermodynamic order parameter is 3 × 104 ms. Synchronized state for D = 700: raster plots of spikes and plots of the IPSR kernel estimate
R(t) for N = (b1) 103 and (b2) 104. Unsynchronized state for D = 800: raster plots of spikes and plots of the IPSR kernel estimate R(t) for
N = (c1) 103 and (c2) 104. The band width of the Gaussian kernel estimate for the IPSR is 1 ms.

neuron with i = 1 (gray region) and the fastest (solid line) and
the slowest (dotted line) peripheral neurons. For the case of full
synchronization (D = 100), all presynaptic neurons have the
same MFR fi (�67 Hz), irrespectively of degrees of neurons.
However, for the partial and sparse synchronization, the
distribution of MFRs of presynaptic neurons vary depending
on postsynaptic neurons. The fastest peripheral neuron has a
higher fraction of presynaptic neurons with slower MFRs (as
shown by the solid lines) than the hub neuron (gray region), and
hence its time-averaged synaptic conductance becomes less
than that of the hub neuron. Consequently, its MFR becomes
faster than that of the hub neuron. On the other hand, the slow-
est peripheral neurons have a higher fraction of presynaptic
neurons with faster MFRs (as shown by dotted lines) than the
hub neuron (gray region), and hence its time-averaged synaptic
conductance becomes more than that of the hub neuron. As a
result, its MFR becomes slower than that of the hub neuron. In
this way, for the partial and sparse synchronization, individual
neuronal dynamics vary depending on their degrees and reveal
the inhomogeneous network structure.

As is well known, a conventional order parameter, based
on the ensemble-averaged global potential VG, is often used
for describing transition from asynchrony to synchrony in
computational neuroscience [69–71]. Recently, instead of VG,
we used an experimentally obtainable IPSR kernel estimate
R(t) and developed a realistic order parameter, which may
be applicable in both the computational and the experimental
neuroscience [26,54]. The mean square deviation of R(t),

O ≡ (R(t) − R(t))2, (11)

plays the role of an order parameter O. (Here the overbar
represents the time average.) The order parameter may be
regarded as a thermodynamic measure because it concerns
just the macroscopic IPSR kernel estimate R(t) without any
consideration between R(t) and microscopic individual spikes.

In the thermodynamic limit of N → ∞, the order parameterO
approaches a nonzero (zero) limit value for the synchronized
(unsynchronized) state. Figure 5(a) shows a plot of the order
parameter versus the noise intensity D. For D < D∗ (�759),
synchronized states exist because the order parameter O be-
come saturated to a nonzero limit value for N � 3 × 103. As D

passes the critical value D∗, a transition to unsynchronization
occurs because the values of O tends to zero as N → ∞. Here
we present two explicit examples for the synchronized and the
unsynchronized states. First, we consider the population state
for D = 700. As shown in Fig. 5(b1) for N = 103, the raster
plot shows sparse stripes of spikes, and R(t) shows a regular os-
cillation, although there are some variations in the amplitudes.
As N is increased to N = 104, stripes in the raster plot become
a little more clear, and R(t) also shows a little more regular
oscillation [see Fig. 5(b2)]. Consequently, the population state
for D = 700 seems to be synchronized because R(t) tends to
show regular oscillations as N goes to the infinity. As a second
example, we consider an unsynchronized case of D = 800.
For N = 103, sparse spikes are scattered without forming any
stripes in the raster plot, and R(t) exhibits noisy fluctuations
with small amplitude. As N is increased to 104, sparse spikes
become more scattered, and, consequently, R(t) becomes
nearly stationary, as shown in Fig. 5(c2). Hence the population
state for D = 800 seems to be unsynchronized because R(t)
tends to be nearly stationary as N increases to the infinity.

We further understand the above synchronization-
unsynchronization transition in terms of the “microscopic”
dynamical cross-correlations between neuronal pairs [26]. For
obtaining dynamical pair cross-correlations, each spike train of
the ith neuron is convoluted with the Gaussian kernel function
Kh(t) of band width h to get a smooth estimate of instantaneous
individual spike rate (IISR) ri(t):

ri(t) =
ni∑

s=1

Kh

(
t − t (i)

s

)
, (12)
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FIG. 6. Characterization of synchronization-unsynchronization transition in terms of spatial cross-correlations for IDC = 1500 and J =
1500 in the directed SFN of α = 1 (i.e., β = 0) and l(in)

α = l(out)
α ≡ lα = 25 (i.e., symmetric preferential attachment). Plots of the spatial

correlation function CL between neuronal pairs versus spatial distance L for the synchronized cases of various values of D = 100, 150, 450,
and 600 when N = 103 [(a1)–(a4)] and 104 [(b1)–(b4)]. (c) Plot of the average spatial-correlation degree 〈CL〉L versus D. Plots of the spatial
correlation function CL versus L for the unsynchronized cases of D = 800 and 1000 when [(d1)–(d2)] N = 103 and [(e1)–(e2)] N = 104. The
number of data used for the calculation of each temporal cross-correlation function Ci,j (τ ) (the values at zero-time lag (τ = 0) are used for
calculation of CL) is 2 × 104.

where t (i)
s is the sth spiking time of the ith neuron, ni is the

total number of spikes for the ith neuron, and Kh(t) is given
in Eq. (10). Then, the normalized temporal cross-correlation
function Ci,j (τ ) between the IISRs ri(t) and rj (t) of the (i,j )
neuronal pair is given by:

Ci,j (τ ) = �ri(t + τ )�rj (t)√
�ri

2(t)
√

�rj
2(t)

, (13)

where �ri(t) = ri(t) − ri(t) and the overline denotes the
time average. Then the spatial cross-correlation CL (L =
1, . . . ,N/2) between neuronal pairs separated by a spatial
distance L is given by the average of all the temporal
cross-correlations between ri(t) and ri+L(t) (i = 1, . . . ,N) at

the zero-time lag [26]:

CL = 1

L

N∑
i=1

Ci,i+L(0) for L = 1, . . . ,N/2. (14)

Figure 6(a1) shows the plot of the spatial cross-correlation
function CL versus L for N = 103 in the case of full
synchronization for D = 100. The spatial cross-correlation
function CL is nearly nonzero constant (� 0.97) in the
whole range of L, and hence the correlation length η

becomes N/2 (=500), covering the whole network (note
that the maximal distance between neurons is N/2 because
of the ring architecture on which neurons exist). Consequently,
the whole network is composed of just one single synchronized
block. For N = 104, the flatness of CL in Fig. 6(b1) also
extends to the whole range (L = N/2 = 5000) of the network,
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and the correlation length becomes η = 5000, which also
covers the whole network. For this case of D = 100, due to
constructive role of noise favoring the pacing between sparse
spikes, the correlation length η seems to cover the whole
network, independently of N . Then the normalized correlation
length η̃ (= η

N
), representing the ratio of the correlation length

η to the network size N (i.e., denoting the relative size of
synchronized blocks when compared to the whole network
size), has a nonzero limit value, 1/2, and, consequently, full
synchronization emerges in the whole network. However, as
D is further increased, the full synchronization breaks up
due to stochastic and intermittent discharges of individual
neurons, and then partial and sparse synchronization appears.
For the cases of partial synchronization (D = 150) and sparse
synchronization (D = 450 and 600), plots of CL are shown
in Figs. 6(a2)–6(a4) for N = 103 and in Figs. 6(b2)–6(b4) for
N = 104. The values of CL are also nearly nonzero constants in
the whole range of L, independently of N . Hence, the partial
and sparse synchronization appears because the correlation
length η covers the whole network. The degree of population
synchronization may be measured in terms of the average
spatial cross-correlation degree 〈CL〉L given by averaging of
CL over all lengths L. Figure 6(c) shows the plot of 〈CL〉L
versus D. Just after breakup of the full synchronization,
〈CL〉L drops abruptly and then decreases slowly to zero. In
contrast to the case of population synchronization, the spatial
cross-correlation functions CL for D = 800 and 1000 are
nearly zero for both cases of N = 103 and 104, as shown
in Figs. 6(d1) and 6(d2) and Figs. 6(e1) and 6(e2). For theses
cases, due to a destructive role of noise spoiling the pacing
between sparse spikes, the correlation lengths η become nearly
zero, independently of N , and hence no synchronization occurs
in the network.

By changing D in the whole range of population syn-
chronization, we also measure the degree of population
synchronization in terms of a realistic statistical-mechanical
spiking measure Ms which was developed in our recent
work [54]. As shown in Figs. 3(a1)–3(a4), population spike
synchronization may be well visualized in a raster plot of
spikes. For a synchronized case, the raster plot is composed
of stripes (indicating population synchronization), and the
density and the smearing of these stripes represent the degree
of the population synchronization. To measure the degree
of the population synchronization seen in the raster plot, a
statistical-mechanical spiking measure Ms , based on R(t),
was introduced by considering the occupation pattern and the
pacing pattern of the spikes in the stripes [54]. The spiking
measure Mi of the ith stripe is defined by the product of the
occupation degree Oi of spikes (representing the density of
the ith stripe) and the pacing degree Pi of spikes (denoting the
smearing of the ith stripe):

Mi = OiPi. (15)

The occupation degree Oi in the ith stripe is given by the
fraction of spiking neurons:

Oi = N
(s)
i

N
, (16)

where N
(s)
i is the number of spiking neurons in the ith stripe.

For sparse synchronization, Oi � 1, while Oi = 1 for full syn-
chronization. The pacing degree Pi of each microscopic spike
in the ith stripe can be determined in a statistical-mechanical
way by taking into account its contribution to the macroscopic
IPSR kernel estimate R(t). Each global cycle of R(t) begins
from its left minimum, passes the central maximum, and
ends at the right minimum; the central maxima coincide with
centers of stripes in the raster plot [see Figs. 3(a1)–3(a4) and
Figs. 3(b1)–3(b4)]. An instantaneous global phase 
(t) of R(t)
is introduced via linear interpolation in the two successive
subregions forming a global cycle [54,72]; for more details,
refer to Fig. 4 in Ref. [54]. The global phase 
(t) between the
left minimum (corresponding to the beginning point of the ith
global cycle) and the central maximum is given by


(t) = 2π (i − 3/2) + π

[
t − t

(min)
i

t
(max)
i − t

(min)
i

]
for t

(min)
i � t < t

(max)
i (i = 1,2,3, . . . ), (17)

and 
(t) between the central maximum and the right minimum
(corresponding to the beginning point of the (i + 1)th cycle)
is given by


(t) = 2π (i − 1) + π

[
t − t

(max)
i

t
(min)
i+1 − t

(max)
i

]
for t

(max)
i � t < t

(min)
i+1 (i = 1,2,3, . . . ), (18)

where t
(min)
i is the beginning time of the ith global cycle

(i.e., the time at which the left minimum of R(t) appears
in the ith global cycle) and t

(max)
i is the time at which the

maximum of R(t) appears in the ith global cycle. Then the
contribution of the kth microscopic spike in the ith stripe
occurring at time t

(s)
k to R(t) is given by cos 
k , where 
k is

the global phase at the kth spiking time {i.e., 
k ≡ 
[t (s)
k ]}.

A microscopic spike makes the most constructive (in-phase)
contribution to R(t) when the corresponding global phase 
k

is 2πn (n = 0,1,2, . . . ), while it makes the most destructive
(antiphase) contribution to R(t) when 
i is 2π (n − 1/2). By
averaging the contributions of all microscopic spikes in the ith
stripe to R(t), we obtain the pacing degree of spikes in the ith
stripe:

Pi = 1

Si

Si∑
k=1

cos 
k, (19)

where Si is the total number of microscopic spikes in the
ith stripe. By averaging Mi of Eq. (15) over a sufficiently
large number Ns of stripes, we obtain the statistical-mechanical
spiking measure Ms :

Ms = 1

Ns

Ns∑
i=1

Mi. (20)

By varying D, we follow 3 × 103 stripes for each D and
characterize population synchronization in terms of 〈Oi〉
(average occupation degree), 〈Pi〉 (average pacing degree),
and the statistical-mechanical spiking measure Ms for 11
values of D in the synchronized region, and the results are

022717-10



FAST SPARSELY SYNCHRONIZED BRAIN RHYTHMS IN A . . . PHYSICAL REVIEW E 92, 022717 (2015)

FIG. 7. Characterization of population synchronization for IDC =
1500 and J = 1500 in the directed SFN of α = 1 (i.e., β = 0) and
l(in)
α = l(out)

α ≡ lα = 25 (i.e., symmetric preferential attachment). Plots
of (a) the average occupation degree 〈Oi〉, (b) the average pacing
degree 〈Pi〉, and (c) the statistical-mechanical spiking measure Ms

versus D. 〈Oi〉, 〈Pi〉, and Ms are obtained by following 3 × 103 stripes
in the raster plot of spikes. (d) Plot of the statistical-mechanical cor-
relation measure Mc, based on temporal cross-correlations between
the IPSR R(t) and IISRs ri(t) of individual neurons versus D. The
number of data used for the calculation of temporal cross-correlation
function for each D is 2 × 104.

shown in Figs. 7(a)–7(c). In the case of full synchronization
for D < Dth,l , 〈Oi〉 = 1 and 〈Pi〉 � 1, which results in Ms �
1. However, just after breakup of the full synchronization,
the average occupation degree 〈Oi〉 drops abruptly, because
of the partial occupation due to stochastic spike skipping,
and then it saturates to a nonzero limit value (�0.23). For
the case of partial and sparse synchronization, the average
pacing degree 〈Pi〉 also decreases monotonically to zero.
Consequently, the statistical-mechanical spiking measure Ms

abruptly drops after breakup of the full synchronization and
then slowly decreases to zero, which is similar to the case
of the average spatial cross-correlation degree 〈CL〉L shown
in Fig. 6(c). In addition to the spiking measure Ms , we
also characterize the population synchronization in terms of
another statistical-mechanical correlation measure Mc, based
on the cross-correlations between the IPSR R(t) and the IISRs
ri(t) (i = 1, . . . ,N ) [55]. This correlation-based measure Mc

may also be regarded as a statistical-mechanical measure
because it quantifies the average contribution of (micro-
scopic) IISRs to the (macroscopic) IPSR. The normalized
cross-correlation function Ci(τ ) between R(t) and ri(t) is
given by

Ci(τ ) = �R(t + τ )�ri(t)√
�R2(t)

√
�ri

2(t)
, (21)

where τ is the time lag, �R(t) = R(t) − R(t), �ri(t) =
ri(t) − ri(t), and the overline denotes the time average. Then
the statistical-mechanical correlation measure Mc is given by
the ensemble-average of Ci(0) at the zero-time lag [55]:

Mc = 1

N

N∑
i=1

Ci(0). (22)

Figure 7(d) shows the plot of Mc versus D. Mc � 1 for the case
of full synchronization. On the other hand, it drops abruptly
just after breakup of the full synchronization, and then slowly
decreases to zero, which is similar to the case of Ms shown in
Fig. 7(c).

For further understanding of population synchronization
in Fig. 7, we also investigate contributions of individual
neuronal dynamics to the population synchronization. Similar
to the population occupation, pacing, and spiking measures
of Eqs. (15), (16), and (19), we introduce a spiking measure
M (i)

s of the ith neuron by considering the firing and the pacing
degrees of the spikes of the ith neuron. The firing degree F (i),
representing the degree of participation of the ith neuron to
the stripes in the raster plot of spikes, is given by:

F (i) = 1

Ns

Ns∑
j=1

F
(i)
j , (23)

where Ns is the number stripes for averaging and F
(i)
j denotes

the participation of the ith neuron in the j th stripe. If the
ith neuron fires in the j th stripe (i.e., the spike of the ith
neuron participates in the j th stripe), then F

(i)
j = 1; otherwise

F
(i)
j = 0. The pacing degree of the ith neuron, denoting the

degree of contributions of the spikes of the ith neuron to the
IPSR R(t), is given by:

P (i) = 1

S(i)

S(i)∑
k=1

cos 

[
t

(s)
k (i)

]
, (24)

where t
(s)
k (i) is the kth spiking time of the ith neuron (k =

1, . . . ,S(i)), 
[t (s)
k (i)] is the global phase at t

(s)
k (i), and S(i) is

the total number of spikes of the ith neuron. Then the spiking
measure M (i)

s of the ith neuron is given by the product of the
firing and pacing degrees of the ith neuron:

M (i)
s = F (i)P (i). (25)

Figures 8(a1)–8(c1) show plots of F (i), P (i), and M (i)
s versus

the in-degree d (in) in the case of the full synchronization for
D = 100, respectively. The values of F (i)(=1), P (i)(�0.99),
and M (i)

s (�0.99) are constants, independent of the in-degrees,
and hence contributions of individual neurons to population
synchronization are the same. On the other hand, F (i), P (i), and
M (i)

s vary depending on the in-degrees for the partial and sparse
synchronization. The firing degrees F (i) of individual neurons
for D = 150, 450, and 600 are shown in Figs. 8(a2)–8(a4),
respectively. Due to stochastic spike skipping of individual
neurons, they spread around their ensemble-averaged values
〈F (i)〉 [denoted by gray lines and corresponding to the average
occupation degree 〈Oi〉 in Fig. 7(a)], as in the case of MFRs in
Figs. 4(b2)–4(b4). Hence, F (i) of individual neurons seems
to be correlated with their MFRs. As D is increased, the
ensemble-averaged firing degree 〈F (i)〉 decreases abruptly
and then saturates to a lower limit value, similarly to the
case of 〈Oi〉 in Fig. 7(a). Distributions of the pacing degree
P (i) and the spiking measure M (i)

s of individual neurons
also exhibit spreads from their ensemble-averaged values
(represented by gray lines), as shown in Figs. 8(b2)–8(b4)
and Figs. 8(c2)–8(c4), respectively. With increase in D, the
ensemble-averaged pacing degree 〈P (i)〉, corresponding to the
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FIG. 8. Contributions of individual dynamics to the population
synchronization for IDC = 1500 and J = 1500 in the directed SFN
of α = 1 (i.e., β = 0) and l(in)

α = l(out)
α ≡ lα = 25 (i.e., symmetric

preferential attachment). Plots of (a) the firing degree F (i), (b) the
pacing degree P (i), and (c) the spiking measure M (i)

s of individual
neurons versus the in-degree d (in) for various values of D = 100, 150,
450, and 600. F (i), P (i), and M (i)

s are obtained by following 3 × 103

stripes in the raster plot of spikes. (d) Plots of cross-correlations
between IPSR R(t) and IISRs ri(t) of individual neurons versus the
in-degree d (in) for D = 100, 150, 450, and 600. The number of data
used for the calculation of temporal cross-correlation function for
each D is 2 × 104. Horizontal gray lines represent ensemble-averaged
values.

average pacing degree 〈Pi〉 in Fig. 7(b), shows a gradual de-
crease when compared to the case of 〈F (i)〉. Consequently, the
ensemble-averaged spiking measure 〈M (i)

s 〉, corresponding to
the population spiking measure Ms in Fig. 7(c), abruptly drops
after breakup of the full synchronization, mainly due to the
sudden decrease in the ensemble-averaged firing degree 〈F (i)〉,
and then slowly decreases. With increasing D, the relative
variances of F (i), P (i), and M (i)

s from their ensemble-averaged
values increase. For additional characterization of individual
dynamics, we also introduce the correlation measure M (i)

c of
the ith neuron, defined by the cross-correlation Ci(0) [see
Eq. (21)] between the IPSR R(t) and the IISR ri(t) of the
ith neuron at the zero-time lag. The “individual” correlation
measure M (i)

c represents the contribution of the ith neuron
to the “population” correlation measure Mc of Eq. (22).
Figures 8(d1)–8(d4) show distributions of M (i)

c versus the
in-degree d (in) for D = 100, 150, 450, and 600, respectively.
For the case of the full synchronization (D = 100), M (i)

c

is the same independently on the in-degrees, while for the
cases of partial (D = 150) and sparse (D = 450 and 600)
synchronization, M (i)

c spreads around the ensemble-average
value 〈M (i)

c 〉 (denoted by gray lines). As D is increased, the
ensemble-averaged value 〈M (i)

c 〉 decreases, while the relative
variance from 〈M (i)

c 〉 increases, like the case of 〈M (i)
s 〉. In this

way, for the partial and sparse synchronization, contributions
of individual dynamics to population synchronization depend
on their degrees (although ensemble averages of individual
measures such as F (i), P (i), and M (i)

s give the average occu-
pation degree 〈Oi〉, pacing degree 〈Pi〉, and spiking measure

Ms in the whole population) and reveal the inhomogeneous
structure of the SFN, in contrast to statistically homogeneous
networks such as the random graph and the small-world
network.

From now on, we investigate the effect of network
architecture on sparse synchronization for fixed values of
J = 1500 and D = 450 in the following three cases. As the
first case of network architecture, we consider the effect of
the degree lα of the symmetric preferential attachment [l(in)

α =
l(out)
α ≡ lα] on sparse synchronization. Figures 9(a1)–9(a5) and

Figs. 9(b1)–9(b5) show the raster plots and the IPSR kernel
estimates R(t) for lα = 15, 20, 25, 40, and 45, respectively.
Where lα is less than a threshold value lth

α (�17), no population
synchronization occurs. As an example of unsynchronization,
we consider a case of lα = 15 where spikes in the raster
plot are completely scattered and the IPSR kernel estimate
R(t) becomes nearly stationary, as shown in Figs. 9(a1)
and 9(b1), respectively. When passing the threshold value lth

α ,
a transition to sparse synchronization occurs. For example,
for lα = 20, stripes appear in the raster plot of spikes and
the IPSR kernel estimate R(t) shows regular oscillation [see
Figs. 9(a2) and 9(b2)]. As lα is further increased, the stripes
in the raster plot become more and more dense and clear and
the IPSR kernel estimates R(t) show larger-amplitude regular
oscillations, as shown in Figs. 9(a3)–9(a5) and Figs. 9(b3)–
9(b5), respectively. Hence, as lα is increased, the degree of
sparse synchronization becomes better. For characterization
of the effect of lα on network topology, we also study the
local property of the SFN in terms of the in- and out-degrees.
Figures 9(c1)–9(c5) show the plots of the out-degree d (out)

versus the in-degree d (in) for lα = 15, 20, 25, 40, and 45,
respectively. The in- and out-degrees are distributed nearly
symmetrically around the diagonal, and with increasing lα
they are shifted upward because of increase in the in- and
out-degrees. Based on these degree distributions, we classify
the nodes into the hub group (consisting of the head hub with
the highest degree and the secondary hubs with higher degrees)
and the peripheral group (composed of a majority of nodes
with lower degrees). As an example, we consider the case of
lα = 25, and explain how to classify the nodes into the hub and
the peripheral groups. For this case, the histogram for fraction
of nodes versus the in-degree d (in) (which is also similar to that
for the case of out-degree d (out)) is shown in Fig. 9(d1). The
majority of peripheral nodes have their degrees near the peak
at d (in) = 25, while the minority of hubs have their degrees in
the long-tail part. For convenience, we choose the threshold
d

(in)
th for the in-degree (denoted by the vertical dotted line in

Fig. 9(d1) and separating the hub and the peripheral groups)
whose fraction of nodes is 0.002 (i.e., 0.2%). Similarly, we
also choose the threshold d

(out)
th for the out-degree, which is the

same as d
(in)
th . [Hereafter, we choose the thresholds d

(in)
th and

d
(out)
th for both the in- and out-degrees whose fractions of nodes

are 0.2%]. For visualization, the peripheral group is enclosed
by rectangles [determined by both thresholds d

(in)
th and d

(out)
th ]

in Figs. 9(c1)–9(c5). The hub group (outside the rectangle) is
composed of about 100 nodes (i.e., approximately 10% of the
total neurons), where the node 1 (denoted by the open circle)
corresponds to the head hub with the highest degree and the
other ones will be called secondary hubs. This kind of degree
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FIG. 9. Effect of symmetric attachment degree lα on the sparse synchronization and economic SFN for IDC = 1500, J = 1500, and D = 450
in the directed SFN of α = 1 (i.e., β = 0). Raster plots of spikes in (a1)–(a5) and plots of the IPSR kernel estimate R(t) in (b1)–(b5) for various
values of symmetric attachment degree lα . The band width of the Gaussian kernel estimate for the IPSR R(t) is 1 ms. Plots of the out-degree
d (out) versus the in-degree d (in) for lα = (c1) 15, (c2) 20, (c3) 25, (c4) 40, and (c5) 45. Peripheral groups are enclosed by rectangles, while hubs
lie outside the rectangles. The head hub with the highest degree is represented by the open circle. (d1) Histogram for fraction of nodes versus
the in-degree d (in) for lα = 25. This histogram is obtained through 30 realizations and the bin size for the histogram is 1. The vertical line
represents a threshold for d (in) whose fraction of nodes is 0.002 (i.e., 0.2%). (d2) Plot of in-degree d (in) versus the neuron index i for lα = 25.
The horizontal line [d (in) = 87] denotes the threshold separating the hub and the peripheral neurons. For each neuron i, its in-degree 〈d (in)〉r

is obtained through the average of 30 realizations. Plots of (e) average path length Lp and (f) betweenness centralization Cb versus lα . (g)
Plots of the maximum betweenness centrality Bmax, the average betweenness centrality 〈B〉hub of secondary hubs, and the average betweenness
centrality 〈B〉peri of peripheral nodes versus lα . Here 〈· · · 〉r represents an average over 30 realizations. (h) Plots of statistical-mechanical spiking
measure Ms and normalized wiring length Lw versus lα . (i) Dynamical efficiency E versus lα . The values of Ms , Lw , and E at an optimal value
of l∗α = 34 are denoted by the symbol “*.” Optimally fast synchronized rhythm for lα = l∗α: (j1) raster plot of neural spikes and (j2) plot of the
IPSR kernel estimate R(t).
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distribution is a “comet-shaped” one; the peripheral and the
hub groups correspond to the coma (surrounding the nucleus)
and the tail of the comet, respectively. Furthermore, to know to
which group (hub or peripheral) the neuron i (i = 1, . . . ,1000)
belongs, we also obtain a plot of the in-degree d (in) versus
the neuron index i in Fig. 9(d2). Here nodes with smaller
(larger) i appear in the early (late) stage of the α process of
network evolution. The horizontal line represents the threshold
[d (in) = 87] separating the hub and the peripheral neurons.
Neurons with smaller i are hubs, while those with larger i are
peripheral neurons. In addition to the in- and out-degrees of
individual nodes, we study the group properties of the SFN
in terms of the average path length Lp and the betweenness
centralization Cb by varying lα . The average path length Lp,
denoting typical separation between two nodes in the network,
is given by the average of the shortest path lengths of all
neuronal pairs:

Lp = 1

N (N − 1)

N∑
i=1

N∑
j=1(j �=i)

lij , (26)

where lij is the shortest path length from the node i to the
node j . We note that Lp characterizes the global efficiency of
information transfer between distant nodes. In the network
science, centrality refers to indicators which identify the
most important nodes within the network (i.e., the centrality
indices are answers to the question “which nodes are most
central?”). Historically first and conceptually simplest is the
degree centrality (explained above), which is defined by the
number of edges of a node. This degree centrality represents
the potentiality in communication activity. Superconnected
hubs participate in the mainstream of information flow in the
network, while peripheral nodes with a few links make no ac-
tive participation in the communication process. Betweenness
is also another centrality measure of a node within the network.
Betweenness centrality of the node i denotes the fraction of
all the shortest paths between any two other nodes that pass
through the node i [73,74]:

Bi =
N∑

j=1(j �=i)

N∑
k=1(k �=j&k �=i)

σjk(i)

σjk

, (27)

where σjk(i) is the number of shortest paths from the node
j to the node k passing through the node i and σjk is the
total number of shortest paths from the node j to the node k.
This betweenness centrality Bi characterizes the potentiality
in controlling communication between other nodes in the rest
of the network. In our SFN, the head hub (i.e., node 1) with the
highest degree is also found to have the maximum betweenness
centrality Bmax, and hence the head hub has the largest load
of communication traffic passing through it. To examine
how evenly the betweenness centrality is distributed among
nodes (i.e., how evenly the load of communication traffic is
distributed among nodes), we consider the group betweenness
centralization, representing the degree to which the maximum
betweenness centrality Bmax of the head hub exceeds the
betweenness centrality of all the other nodes. The betweenness
centralization Cb is given by the sum of differences between
the maximum betweenness centrality Bmax of the head hub and
the betweenness centrality Bi of other node i and normalized

by dividing the sum of differences with its maximum possible
value [73,74]:

Cb =
∑N

i=1(Bmax − Bi)

max
∑N

i=1(Bmax − Bi)
; max

N∑
i=1

(Bmax − Bi)

= (N − 1)(N2 − 3N + 2)

2
, (28)

where the maximum sum of differences in the denominator
corresponds to that for the star network. Large Cb implies
that load of communication traffic is concentrated on the head
hub, and hence the head hub tends to become overloaded by
the communication traffic passing through it. For this case,
it becomes difficult to get efficient communication between
nodes due to destructive interference between so many signals
passing through the head hub [75]. Figures 9(e) and 9(f) show
the plots of the average path length Lp and the betweenness
centralization Cb versus lα , respectively. With increasing lα
both Lp and Cb decrease monotonically to nonzero values.
Decrease in Lp implies reduction in intermediate mediation
of nodes controlling the communication in the whole network
(i.e., reduction in total centrality Btot given by the sum of
centralities of all nodes). How the total betweenness Btot

decreases with increase in lα may be seen explicitly in Fig. 9(g).
The maximum between-ness Bmax of the head hub is much
more reduced than the average centralities of the secondary
hubs and the peripheral nodes, 〈B〉hub and 〈B〉peri, which leads
to decrease in differences between Bmax of the head hub and
Bi of other nodes (i.e., variation between centralities of nodes
is reduced). Hence, as the result of increase in lα , typical
separation between two nodes in the network becomes shorter
and load of communication traffic becomes less concentrated
on the head hub (i.e., the load is more evenly distributed
among nodes). Consequently, as lα is increased, efficiency
of communication between nodes becomes better, which may
result in the increase in the degree of sparse synchronization.
The statistical-mechanical spiking measure Ms of Eq. (20)
for the synchronization degree (denoted by solid circles) is
shown in Fig. 9(h). As lα is increased, the degree of sparse
synchronization increases and tends to become saturated.
However, with increasing lα , the network axon wiring length
becomes longer due to increase in the long-range connections.
Longer axonal connections are expensive because of material
and energy costs. Hence, in view of dynamical efficiency we
search for optimal population rhythm emerging at a minimal
wiring cost. We then calculate the wiring length by varying
lα on a ring of radius r (=N/2π ) where nodes are placed
equidistantly. The axonal wiring length, L

(ij )
w , between the

node i and the node j is given by the arc length between two
nodes i and j on the ring:

L(ij )
w =

{
|j − i| for |j − i| � N

2

N − |j − i| for |j − i| > N
2 .

(29)

Then, the total wiring length is

Ltotal
w =

N∑
i=1

N∑
j=1(j �=i)

aijL
(ij )
w , (30)
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where aij is the ij element of the adjacency matrix A of
the network. The connection between vertices in the network
is represented by its N × N adjacency matrix A (= {aij })
whose element values are 0 or 1. If aij = 1, then an edge
from the vertex i to the vertex j exists; otherwise no such
edges exists. This adjacency matrix A corresponds to the
transpose of the connection weight matrix W in Sec. II. We
get a normalized wiring length Lw by dividing Ltotal

w with
Ltotal

w,global [=∑N
i=1

∑N
j=1(j �=i) L

(ij )
w ] which is the total wiring

length for the global-coupled case:

Lw = Ltotal
w

Ltotal
w,global

. (31)

Open circles in the Fig. 9(h) denote the normalized wiring
length Lw. It increases linearly with respect to lα . Hence,
as lα is increased, the wiring cost becomes expensive. An
optimal rhythm may emerge through trade-off between the
synchronization degree Ms and the wiring cost Lw. To this
end, a dynamical efficiency E is given by [18,26]:

E = synchronization degree (Ms)

normalized wiring length (Lw)
. (32)

Figure 9(i) shows plot of E versus lα . For lα = l∗α (=34), an
optimal rhythm is found to emerge at a minimal wiring cost
in an economic SFN. An optimal fast sparsely synchronized
rhythm is shown in Figs. 9(j1) and 9(j2). Sparse stripes
appear successively in the raster plot of spikes. Hence the
IPSR kernel estimate R(t) shows a regular oscillation at a
population frequency fp (�147 Hz), while individual neurons
fire stochastically and sparsely at the ensemble-averaged MFR
〈fi〉 = 34 Hz.

So far, we studied the case of symmetric attachment with
l(in)
α = l(out)

α ≡ lα . As the second case of network architecture,
we consider the case of asymmetric preferential attachment
l(in)
α �= l(out)

α . We set l(in)
α = lα + �lα and l(out)

α = lα − �lα such
that l(in)

α + l(out)
α = 2 lα = const, and investigate the effect of

asymmetric attachment on sparse synchronization by varying
the asymmetry parameter �lα for lα = 25. For comparison,
the raster plot and the IPSR kernel estimate R(t) for the
symmetric case of �lα = 0 [i.e., l(in)

α = l(out)
α = 25] are shown

in Figs. 10(a2) and 10(b2), respectively. Figure 10(a1) shows
the raster plot for the case of negative asymmetric attach-
ment with �lα = −15 [i.e., l(in)

α = 10 and l(out)
α = 40]. When

compared with the case of the symmetric attachment, the
stripes in the raster plot are much more smeared, while they
are a little more dense. In contrast, for the case of positive
asymmetric attachment with �lα = 15 [i.e., l(in)

α = 40 and
l(out)
α = 10], the stripes are less smeared but more sparse in

comparison to the case of symmetric attachment, as shown
in Fig. 10(a3). The amplitudes of the IPSR kernel estimates
R(t) for both cases of �lα = −15 and 15 become smaller
than that for the symmetric attachment [compare Figs. 10(b1)
and 10(b3) with Fig. 10(b2)]. When the two asymmetric cases
are compared, the amplitude of R(t) for �lα = 15 is a little
larger than that for �lα = −15. In this way, the degree of
sparse synchronization becomes reduced as the magnitude of
the asymmetry parameter |�lα| is increased. Depending on
the sign of the asymmetry parameter �lα , the synchronization
degree also differs, in spite of the same magnitude of �lα

(e.g., �lα = 15 and −15). This difference between the
cases of �lα = 15 and −15 occurs due to different in-degree
distributions affecting the synaptic inputs to individual neurons
[see Eq. (6)], which will be explained in Fig. 11. Next, we
study the effect of �lα on the average path length Lp and
the betweenness centralization Cb. Figures 10(c) and 10(d)
show plots of Lp and Cb versus �lα , respectively. Both
Lp and Cb increase symmetrically with increasing |�lα|,
independently of the sign of �lα . Since both inward and
outward links are involved equally in computation of Lp and
Cb, the values of Lp and Cb for both cases of different signs but
the same magnitude (i.e., �lα and −�lα) become the same,
unlike the above case of population synchronization where
only the inward synaptic inputs affect. As |�lα| is increased,
mismatching between the in- and out-degrees of nodes is
increased, which leads to increase in Lp. This increase in
Lp implies enhancement of intermediate mediation of nodes
controlling communication in the network (i.e., enhancement
in total betweenness Btot). As shown in Fig. 10(e), with
increasing |�lα| the maximum betweenness Bmax of the head
hub is much more enhanced than the average centralities
of the secondary hubs and the peripheral nodes, 〈B〉hub and
〈B〉peri, which leads to increase in differences between Bmax

of the head hub and Bi of other nodes (i.e., variation between
centralities of nodes is increased). Hence, as |�lα| is increased,
typical separation between two nodes in the network becomes
longer and the load of communication traffic becomes more
concentrated on the head hub. Consequently, with increasing
|�lα|, efficiency of communication between nodes becomes
worse, which may result in decrease in the degree of sparse
synchronization. However, unlike the change in Lp and Cb,
sparse synchronization varies depending on the sign of �lα .
Figures 10(f1)–10(f2) show plots of the average occupation
degree 〈Oi〉 and the average pacing degree 〈Pi〉 versus �lα .
As �lα is decreased from the symmetric case (i.e., �lα = 0),
〈Oi〉 increases, while it decreases with increasing �lα from 0.
On the other hand, with decrease in �lα from 0, 〈Pi〉 decreases
much, while it increases and tends to become saturated with
increase in �lα from 0. As a result, the statistical-mechanical
spiking measure Ms , given by taking into consideration both
the occupation and the pacing degrees, has its peak at �lα = 0
(i.e., symmetric case), as shown in Fig. 10(f3). Hence, Ms

decreases in both the positive and negative directions with
increasing |�lα| from 0. The decreasing rate depends on the
sign of �lα: Ms for �lα < 0 decreases more rapidly than that
for �lα > 0. For example, Ms for �lα = 15 is higher than that
for �lα = −15. For more clear presentation, we normalize
the occupation degree, the pacing degree, and the spiking
measures by dividing them with their ensemble-averaged
values for the symmetric case. Then the normalized occupation
degree 〈Õi〉, pacing degree 〈P̃i〉, and spiking measure M̃s

are shown in Fig. 10(g). As �lα is decreased from 0, 〈Õi〉
increases, while 〈P̃i〉 decreases much more, and hence M̃s

decreases. On the other hand, as �lα is increased from 0,
〈P̃i〉 increases, while 〈Õi〉 decreases much more, and hence
M̃s also decreases. Furthermore, since the variation from the
symmetric case is larger for the case of �lα < 0, its spiking
measure Ms becomes less than that for the positive asymmetric
attachment with the same magnitude (e.g., Ms for �lα = −15
is less than that for �lα = 15).
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FIG. 10. Effect of asymmetric attachment on the sparse synchronization for IDC = 1500, J = 1500, and D = 450 in the directed SFN of
α = 1 (i.e., β = 0), l(in)

α = 25 + �lα , and l(out)
α = 25 − �lα (�lα: asymmetry parameter). Raster plots of spikes in (a1)–(a3) and plots of the

IPSR kernel estimate R(t) in (b1)–(b3) for various values of �lα = −15, 0, and 15. The bandwidth of the Gaussian kernel estimate for the
IPSR R(t) is 1 ms. Plots of (c) average path length Lp and (d) betweenness centralization Cb versus �lα . (e) Plots of the maximum betweenness
centrality Bmax, the average betweenness centrality 〈B〉hub of secondary hubs, and the average betweenness centrality 〈B〉peri of peripheral
nodes. Here 〈· · · 〉r represents an average over 30 realizations. Plots of (f1) the average occupation degree 〈Oi〉, (f2) the average pacing degree
〈Pi〉, and (f3) the statistical-mechanical spiking measure Ms versus �lα . 〈Oi〉, 〈Pi〉, and Ms are obtained by following 3 × 103 stripes in the
raster plot of spikes. (g) Plots of the normalized average occupation degree 〈Õi〉, the normalized average pacing degree 〈P̃i〉, and the normalized
statistical-mechanical spiking measure M̃s . Normalizations of 〈Oi〉, 〈Pi〉, and Ms are done by dividing them with the values for the case of
�lα = 0.

To understand how the sparse synchronization varies
differently depending on the sign of the asymmetry pa-
rameter �lα , we also investigate contributions of individual
neuronal dynamics on the population synchronization. We
first consider the effect of �lα on the degree distribution of
nodes. Figures 11(a1)–11(a3) show plots of the out-degree
d (out) versus the in-degree d (in) for �lα = −15, 0, and 15,
respectively. A majority of peripheral nodes with lower degrees
are enclosed by rectangles, while hubs with higher degree lie
outside the rectangles. For the case of symmetric attachment

(i.e., �lα = 0), the in- and out-degrees are distributed nearly
symmetrically around the diagonal. Hence, the in-degrees of
the hubs and the peripheral nodes are nearly the same as
the out-degrees, respectively. On the other hand, the degree
distributions vary significantly for the case of asymmetric
attachment. For �lα = −15, the in-degrees of peripheral nodes
are less than their out-degrees, while the in-degrees of hubs are
much more than their out-degrees [i.e., “popular” hubs with
d (in) � d (out) appear]. Thus, the distribution of in-degrees is
broad, while the distribution of out-degrees is narrow (i.e., the
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FIG. 11. Distinct differences in individual neuronal dynamics for the case of asymmetric attachment when IDC = 1500, J = 1500, and
D = 450 in the directed SFN of α = 1 (i.e., β = 0), l(in)

α = 25 + �lα , and l(out)
α = 25 − �lα (�lα = −15, 0, and 15). [(a1)–(a3)] Plots of

the out-degree d (out) versus the in-degree d (in) and [(b1)–(b3)] power-law in-degree distributions with different exponents for the cases of
�lα = −15, 0, and 15. The fractions of nodes are 0.2% at the thresholds d

(in)
th and d

(out)
th of the in- and out-degrees which determine the rectangle

enclosing the peripheral group. [(c1)-(c3)] Plots of MFRs versus the in-degree d (in) and [(d1)–(d3)] histograms for fraction of neurons versus
MFR for the cases of �lα = −15, 0, and 15. Plots of [(e1)–(e3)] firing degree F (i), [(f1)–(f3)] pacing degree P (i), and [(g1)–(g3)] spiking
measures M (i)

s for individual neurons versus the in-degree d (in) and plots of [(h1)–(h3)] normalized firing degree F̃ (i), [(i1)–(i3)] normalized
pacing degree P̃ (i), and [(j1)–(j3)] normalized spiking measure M̃ (i)

s for the cases of �lα = −15, 0, and 15. Normalizations of F (i), P (i), and
M (i)

s are done by dividing them with the values for the case of �lα = 0. Gray horizontal lines represent the ensemble-averaged values.

distribution for �lα = −15 seems to be similar to that obtained
through clockwise rotation of the symmetric distribution for
�lα = 0 about a center), as shown in Fig. 11(a1). In contrast,
the out-degrees of peripheral nodes for �lα = 15 are less than
their in-degrees, while the out-degrees of hubs are much more
than their in-degrees [i.e., “social” hubs with d (out) � d (in)

emerge]. Thus, the distribution of in-degrees is narrow, while
the distribution of out-degrees is wide (i.e., the distribution for
�lα = 15 seems to be similar to that obtained through counter-
clockwise rotation of the symmetric distribution for �lα = 0
about a center), as shown in Fig. 11(a3). We note that individual
dynamics vary depending on the synaptic inputs with the
in-degree d (in) of Eq. (6). Hence, the in-degree distribution
affects the dynamics of individual neurons. Figures 11(b1)
and 11(b3) show the power-law distributions of in-degrees for
�lα = −15, 0, and 15, respectively. As is well known, the
exponent for �lα = 0 is γ = 3.0 [44,45]. On the other hand,
γ = 2.0 for �lα = −15 because of broad distribution, while
γ = 4.7 for �lα = 15 because of narrow distribution. Based
on these in-degree distributions, we study MFRs of individual
neurons. Figures 11(c1)–11(c3) and Figs. 11(d1)–11(d3) show
plots of MFR versus d (in) and histograms for fraction of
neurons versus MFR for �lα = −15, 0, and 15, respectively.
For the case of symmetric attachment (i.e., �lα = 0), the

ensemble-averaged MFR 〈fi〉 [denoted by the horizontal gray
line in Fig. 11(c2)] is approximately 36 Hz. Since the in-degree
of a peripheral neuron is small, its presynaptic neurons belong
to a small subset of the whole population. Hence, the MFRs of
the peripheral neurons may change depending on the average
MFR of presynaptic neurons in the small subset. If MFRs of
the presynaptic neurons (in the small subset) is fast (slow)
on average, then the postsynaptic peripheral neuron may
receive more (less) synaptic inhibition, and hence its MFR
becomes slow (fast). As a result, the MFRs of the peripheral
neurons are distributed broadly around the ensemble-averaged
gray line. The average MFR 〈fi〉peri (�38 Hz) of peripheral
neurons is a little faster than the ensemble-averaged MFR
〈fi〉 because MFRs of the peripheral neurons are distributed
a little more above the horizontal gray line. On the other
hand, the presynaptic neurons of a hub neuron with higher
in-degree belong to a relatively larger subpopulation of the
whole network. Since MFRs of the presynaptic neurons in
the larger subset represent approximately those in the whole
population, variation in the synaptic inhibitions received by
the hub neurons is small, and hence the distribution of
MFRs of the hub neurons becomes narrow. Moreover, since
〈fi〉peri > 〈fi〉, the average MFR 〈fi〉hub (�25 Hz) of hub
neurons becomes slower than the ensemble-averaged MFR
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〈fi〉. Thus, MFRs of the hub neurons are narrowly distributed
below the ensemble-averaged horizontal gray line. We then
consider the case of the asymmetric attachment in comparison
with the case of symmetric attachment. For �lα = −15, the
in-degrees of peripheral neurons are lower, while those of hub
neurons are much higher [compare Figs. 11(a1) and 11(b1)
with Figs. 11(a2) and 11(b2)]. Hence, the presynaptic neurons
of a peripheral neuron belongs to a smaller subpopulation in
the whole network. Following the same argument given in the
above case of �lα = 0, MFRs of the peripheral neurons are
distributed around the ensemble-averaged horizontal gray line
more broadly than those for �lα = 0 [compare Fig. 11(c1)
with Fig. 11(c2)]. As shown in Fig. 11(d1), peripheral neurons
with faster MFRs appear in comparison to the case of �lα = 0
shown in Fig. 11(d2), and hence the average MFR 〈fi〉peri (�50
Hz) of peripheral neurons becomes faster than that for �lα =
0, which also leads to increase in the ensemble-averaged MFR
〈fi〉 (�47 Hz) in the whole population, due to the majority
of peripheral neurons. On the other hand, due to higher
in-degrees, variation in the synaptic inhibitions received by
the hub neurons becomes smaller, and hence the distribution
of MFRs of hubs becomes more narrow. Furthermore, since
〈fi〉peri of peripheral neurons is increased, the average MFR
〈fi〉hub (�24 Hz) of hub neurons decreases. Then the MFRs of
the hub neurons are more narrowly distributed much below the
ensemble-averaged horizontal gray line [compare Fig. 11(c1)
with Fig. 11(c2)]. We next consider the case of �lα = 15. For
this case, the in-degrees of peripheral neurons are increased,
while those of hub neurons are much decreased [compare
Figs. 11(a3) and 11(b3) with Figs. 11(a2) and 11(b2)], in
contrast to the case of �lα = −15. Hence, the presynaptic
neurons of a peripheral neuron belongs to a little larger
subpopulation in the whole network, and hence MFRs of
the peripheral neurons are distributed around the ensemble-
averaged horizontal gray line much narrowly than those for
�lα = 0 [compare Fig. 11(c3) with Fig. 11(c2)]. As shown in
Fig. 11(d3), peripheral neurons with slower MFRs appear in
comparison to the case of �lα = 0 shown in Fig. 11(d2), and
hence the average MFR 〈fi〉peri (�29 Hz) of peripheral neurons
becomes slower than that for �lα = 0, which also leads to
decrease in the ensemble-averaged MFR 〈fi〉 (�28 Hz) in
the whole population, because of the majority of peripheral
neurons. Due to this narrow distribution of MFRs of peripheral
neurons, variation in the synaptic inhibitions received by the
hub neurons also becomes smaller, and hence the distribution
of MFRs of hubs also becomes narrow. Moreover, since
〈fi〉peri of peripheral neurons is decreased, the average MFR
〈fi〉hub (�26 Hz) of hub neurons increases. Then the MFRs of
the hub neurons are more narrowly distributed just below the
ensemble-averaged horizontal gray line [compare Fig. 11(c3)
with Fig. 11(c2)].

Based on the above distributions of MFRs, we study contri-
butions of individual dynamics on the sparse synchronization.
Figures 11(e1)–11(e3) show plots of the firing degree F (i) of
individual neurons versus the in-degree d (in) for �lα = −15,
0, and 15, respectively. We note that distributions of the firing
degree F (i) of individual neurons are strongly correlated with
their distributions of MFRs [compare Figs. 11(e1)–11(e3) with
Figs. 11(c1)–11(c3)]. Similarly to the case of MFRs, F (i)

spreads around the ensemble-averaged value 〈F (i)〉 [denoted

by gray lines and corresponding to the average occupation
degree 〈Oi〉 in Fig. 10(f1)]. As �lα is increased, 〈F (i)〉 de-
creases, which results in a decrease in 〈Oi〉 in Fig. 10(f1). The
variation of F (i) about 〈F (i)〉 also decreases with increasing
�lα . Distributions of the pacing degree P (i) of individual
neurons also show spreads from their ensemble-averaged
values [represented by gray lines and corresponding to the
average pacing degree in Fig. 10(f2)], as shown in Figs. 11(f1)–
11(f3). As �lα is increased, both the ensemble-averaged MFR
and the variation decrease, and hence the ensemble-averaged
pacing degree 〈P (i)〉 shows an increase, which also leads to
an increase in 〈Pi〉. Furthermore, the variation of P (i) from
〈P (i)〉 decreases with increasing �lα . Figures 11(g1)–11(g3)
show plots of the individual spiking measure M (i)

s versus the
in-degree d (in) for �lα = −15, 0, and 15, respectively. The
value of individual spiking measure M (i)

s is determined by
competition between the firing degree F (i) and the pacing
degree P (i) of individual neurons, because M (i)

s is given by
the product of both F (i) and P (i) [see Eq. (25)]. For more
clear comparison and presentation, we normalize the firing
degree F (i), the pacing degree P (i), and the spiking measure
M (i)

s by dividing them with their ensemble-averaged values
for the symmetric case of �lα = 0. The normalized firing
degree F̃ (i), pacing degree P̃ (i), and spiking measure M̃ (i)

s

are shown in Figs. 11(h1)–11(h3), Figs. 11(i1)–11(i3), and
Figs. 11(j1)–11(j3). When compared with the case of �lα = 0,
for �lα = −15 the normalized ensemble-averaged firing de-
gree 〈F̃ (i)〉 increases, while the normalized ensemble-averaged
pacing degree 〈P̃ (i)〉 decreases a little more. Consequently,
the normalized ensemble-averaged spiking measure 〈M̃ (i)

s 〉
becomes less than that for �lα = 0. On the other hand, for
�lα = 15 〈F̃ (i)〉 decreases, while 〈P̃ (i)〉 increases only a little.
As a result, 〈M̃ (i)

s 〉 also becomes less than that for �lα = 0.
However, it is a little greater than that for �lα = −15 because
the variation from the symmetric case of �lα = 0 is smaller
for the case of �lα = 15. This normalized ensemble-averaged
spiking measure 〈M̃ (i)

s 〉 of individual neurons corresponds
to the normalized population spiking measure M̃s shown in
Fig. 10(g). Based on the individual dynamics, it is found that
the population spiking measure Ms has its peak value for the
case of symmetric attachment due to perfect matching between
the inward and the outward edges. As the magnitude |�lα| of
the asymmetry parameter is increased from 0, Ms decreases in
both directions because of mismatching between the inward
and the outward edges. However, for the cases of both signs
(+/−) with the same magnitude (e.g., �lα = 15 and −15) the
values of Ms differ, although their network topology such as
Lp and Cb are the same. As shown above, Ms for the case
of positive asymmetric attachment with �lα = 15 is larger
than that for the case of negative asymmetric attachment with
�lα = −15 due to the difference in the distributions of the
in-degrees.

As the third case of network architecture, we consider the
β process (occurring with the probability β), in addition to
the above α process (which occurs with the probability α)
(α + β = 1). Unlike the case of α process, no new nodes are
added, and symmetric preferential attachments with the same
in- and out-degrees [l(in)

β = l
(out)
β (≡lβ)] are made between lβ

pairs of (pre-existing) source and target nodes which are also
preferentially chosen according to the attachment probabilities
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�source[d (out)
i ] and �target[d

(in)
i ] of Eq. (1), respectively, such

that self-connections (i.e., loops) and duplicate connections
(i.e., multiple edges) are excluded, as shown in Fig. 1(b). Here
we set lβ = 5. We investigate the effect of the β process on
sparse synchronization by varying β for the three cases of
�lα = −15, 0, and 15. Figures 12(a1)–12(a3) show the raster
plots of spikes for β = 0, 0.6, and 0.8, respectively, in the
case of �lα = −15. As β is increased from 0, the stripes
in the raster plot become more clear, and the IPSR kernel
estimates R(t) show larger-amplitude regular oscillations,
as shown in Figs. 12(b1)–12(b3). Also for both cases of
�lα = 0 and 15, a similar effect of β process occurs in the
raster plots of spikes and the IPSR kernel estimates R(t), as
shown in Figs. 12(c1)–12(f3). Consequently, with increasing
β the degree of sparse synchronization becomes better. For
characterization of the effect of β on the network topology, we
also measure the average path length Lp and the betweenness
centralization Cb by varying β. Figures 12(g) and 12(h) show
the plots of Lp and Cb versus β, respectively, for the three cases
of �lα = −15, 0, and 15. As β is increased, both Lp and Cb

decrease monotonically for all three cases of �lα . As explained
above, decrease in Lp leads to reduction in total centrality Btot

(i.e., the sum of centralities of all nodes). How Btot decreases
with increase in β can be seen explicitly in Figs. 12(i1)–12(i3)
for the cases of �lα = −15, 0, and 15, respectively. We
note that the maximum betweenness Bmax of the head hub
is much more reduced than the average centralities of the
secondary hubs and the peripheral nodes, 〈B〉hub and 〈B〉peri,
for each case of �lα , which results in decrease in differences
between Bmax of the head hub and Bi of other nodes (i.e.,
decrease in Cb). Hence, with increasing β, typical separation
between two nodes in the network becomes shorter and load
of communication traffic becomes less concentrated on the
head hub. Thus, as β is increased, efficiency of communication
between nodes becomes better, which may result in increase in
the degree of sparse synchronization. Figures 12(j1) and 12(j2)
show plots of the average occupation degree 〈Oi〉 and the
average pacing degree 〈Pi〉 versus β. As β is increased, at
first 〈Oi〉 decreases for both cases of �lα = −15 and 0,
while it increases very little for �lα = 15. Then they seem
to approach each other for large β. On the other hand, 〈Pi〉
increases markedly for all three cases of �lα . Consequently,
the statistical-mechanical spiking measure Ms , given by taking
into consideration both the occupation and the pacing degrees,
increases monotonically mainly due to marked increase in 〈Pi〉
for all three cases of �lα , as shown in Fig. 12(j3).

Finally, we investigate contributions of individual neuronal
dynamics to sparse synchronization by varying β for the
three cases of �lα = −15, 0, and 15. Figures 13(a1)–13(a3)
show “comet-shaped” plots of the out-degree d (out) versus
the in-degree d (in) for β = 0, 0.6, and 0.8 in the case of
�lα = −15. For each β, peripheral nodes (correspond to the
coma part of the comet) are enclosed by the rectangle, while
hubs (corresponding to the tail part of the comet) lie outside the
rectangle and the head hub (node 1) with the highest degree is
represented by the open circle. In the β process, the probability
that the head hub may be chosen as a source and/or a target
node is low because self-connections (i.e., loops) and duplicate
connections are excluded. Hence, there is no particular change
in the degree of the head hub, unlike the case of α process

in Fig. 9. On the other hand, there is a marked increase
in the degrees of some (pre-existing) peripheral nodes and
secondary hubs through the β process, which results in the
immigration of some peripheral nodes into the secondary hub
group. As a result, with increasing β the tail part of the comet
is intensified (i.e., the secondary hub group is intensified)
because the number of secondary hubs is increased. Then,
although the number of peripheral nodes is reduced, the size
of the coma part (i.e., the size of the rectangle enclosing the
peripheral group) increases with increasing β because both
the in- and the out-degrees of peripheral nodes are increased.
Figures 13(d1)–13(d3) also show the power-law distributions
of in-degree d (in) for β = 0, 0.6, and 0.8, respectively. As β is
increased, the exponent γ decreases, because the secondary
hub group is intensified (i.e., their fraction of nodes is
increased) but the fraction of peripheral nodes is decreased.
For the other two cases of �lα = 0 and 15 (see the middle and
the right panels in Fig. 13), as β is increased the distributions
of in- and out-degrees evolve in a similar way, as shown
in Figs. 13(b1)–13(b3) and Figs. 13(c1)–13(c3), respectively.
The main effect of β process is to intensify the secondary hub
group (without particular change in the degree of the head hub)
(i.e., the tail part of the comet-shaped distribution is intensified
with increasing β). Hence, as β is increased the exponent
for the power-law distributions of in-degree decreases [see
Figs. 13(e1)–13(e3) and Figs. 13(f1)–13(f3)]. These in-degree
distributions for �lα = −15, 0, and 15 affect the MFRs of
individual neurons. Based on the change in the in-degree
distribution in the β process, we study the effect of the β

process on the MFRs of individual neurons. Figures 13(g1)–
13(g3) show the distribution of MFRs of individual neurons
versus the in-degree d (in) for β = 0, 0.6, and 0.8 in the case
of �lα = −15. For each β, the ensemble-averaged MFR is
represented by the horizontal gray line. As β is increased,
the ensemble-averaged in-degree of the peripheral neurons
increases, and hence the size of the subset of presynaptic
neurons of a typical peripheral neuron becomes larger. Then
the variation of MFRs of peripheral neurons becomes reduced
particularly because the part of higher MFRs gradually disap-
pears. Consequently, the ensemble-averaged MFR in the whole
population decreases a little due to the majority of peripheral
neurons. With increasing β the number of hubs with higher
in-degrees increases, and each hub receives less inhibition on
average because of the decreased ensemble-averaged MFR.
Consequently, distribution of MFRs of the hubs goes upward
and approaches the ensemble-averaged gray line. For the
symmetric case of �lα = 0, distribution of MFRs of individual
neurons also evolves in a similar way with increasing β, as
shown in Figs. 13(h1)–13(h3). For β = 0 the distribution of
MFRs of peripheral neurons becomes more narrow than that
for �lα = −15 [compare Figs. 13(h1) with 13(g1)], due to
increased average in-degree of peripheral neurons (refer to a
detailed explanation in Fig. 11). As β is increased, the average
in-degree of peripheral neurons also increases more, and hence
the variation of MFRs of peripheral neurons becomes more
reduced. Consequently, the ensemble-averaged MFR in the
whole population decreases very little with increasing β, in
comparison to the case of �lα = −15. As β is increased,
the distribution of MFRs of hubs goes more upward than
those for �lα = −15 because the hubs receive less synaptic
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FIG. 12. Effect of the β process on sparse synchronization for IDC = 1500, J = 1500, and D = 450 in the directed SFN of β = 0,
0.6, and 0.8 (i.e., α = 1 − β). For the α process, l(in)

α = 25 + �lα and l(out)
α = 25 − �lα (�lα = −15, 0, and 15), while for the β process

l
(in)
β = l

(out)
β ≡ lβ = 5. Effect of β process for �lα = −15: [(a1)–(a3)] Raster plots of spikes and [(b1)–(b3)] plots of the IPSR kernel estimate

R(t) for the cases of β = 0, 0.6, and 0.8. Effect of the β process for �lα = 0: [(c1)–(c3)] Raster plots of spikes and [(d1)–(d3)] plots of the IPSR
kernel estimate R(t) for the cases of β = 0, 0.6, and 0.8. Effect of the β process for �lα = 15: [(e1)–(e3)] Raster plots of spikes and [(f1)–(f3)]
plots of the IPSR kernel estimate R(t) for the cases of β = 0, 0.6, and 0.8. Plots of (g) average path length Lp and (h) betweenness centralization
Cb versus β and [(i1)–(i3)] plots of the maximum betweenness centrality Bmax, the average betweenness centrality 〈B〉hub of secondary hubs,
and the average betweenness centrality 〈B〉peri of peripheral nodes versus β for the cases of �lα = −15, 0. and 15. Here 〈· · · 〉r represents
an average over 30 realizations. Plots of (j1) average occupation degree 〈Oi〉, (j2) average pacing degree 〈Pi〉, and (j3) statistical-mechanical
spiking measure Ms versus β for the three cases of �lα = −15, 0, and 15.
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FIG. 13. Distinctly different individual dynamics in the β process for IDC = 1500, J = 1500, and D = 450 in the directed SFN of β = 0,
0.6, and 0.8 (i.e., α = 1 − β). For the α process, l(in)

α = 25 + �lα and l(out)
α = 25 − �lα (�lα = −15, 0, and 15), while for the β process

l
(in)
β = l

(out)
β ≡ lβ = 5. Plots of the out-degree d (out) versus the in-degree d (in) for [(a1)–(a3)] �lα = −15, [(b1)–(b3)] �lα = 0, and [(c1)–(c3)]

�lα = 15. The fractions of nodes are 0.2% at the thresholds d
(in)
th and d

(out)
th of the in- and out-degrees which determine the rectangle enclosing

the peripheral group. Power-law in-degree distributions for [(d1)–(d3)] �lα = −15, [(e1)–(e3)] 0�lα = 0, and [(f1)–(f3)] �lα = −15. Plots
of MFRs versus the in-degree d (in) for [(g1)–(g3)] �lα = −15, [(h1)–(h3)] �lα = 0, and [(i1)–(i3)] �lα = 15. Plots of firing degree F (i)

for individual neurons versus the in-degree d (in) for [(j1)–(j3)] �lα = −15, [(k1)–(k3)] �lα = 0, and (l1)–(l3)] �lα = 15. Plots of pacing
degree P (i) for individual neurons versus the in-degree d (in) for [(m1)–(m3)] �lα = −15, [(n1)–(n3)] �lα = 0, and [(o1)–(o3)] �lα = 15.
Plots of spiking measure M (i)

s for individual neurons versus the in-degree d (in) for [(p1)–(p3)] �lα = −15, [(q1)–(q3)] �lα = 0, and [(r1)–(r3)]
15�lα = 15.

inhibition. For the case of positive asymmetric attachment
with �lα = 15, evolution of distribution of MFRs of individual
neurons also follows a similar way with increasing β, as shown
in Figs. 13(i1)–13(i3). For β = 0, distribution of MFRs for
�lα = 15 is much narrower than those for �lα = −15 and
0, and hence with increase in β the distribution of MFRs of
peripheral neurons becomes reduced a little more. Then the
average MFR of peripheral neurons decreases a little. On the
other hand, the number of hubs increases, their distribution
of MFRs goes upward, and hence the average MFR of hubs
increases. For this case, the effect of hubs is a little greater than
that of peripheral neurons, and hence the ensemble-averaged
MFR in the whole population becomes increased very little.
Based on these distributions of MFRs of individual neurons,
we also study contributions of individual dynamics to the
sparse synchronization by varying β. Figures 13(j1)–13(j3)
show plots of the firing degree F (i) of individual neurons
versus the in-degree d (in) for β = 0, 0.6, and 0.8 in the case of
�lα = −15, respectively. As mentioned in Fig. 11, distribution
of the individual firing degree F (i) is strongly correlated with
their distribution of MFRs. As in the case of MFRs, F (i) also
spreads around the ensemble-averaged value 〈F (i)〉 [denoted

by the gray line and corresponding to the average occupation
degree 〈Oi〉 (denoted by the triangles) in Fig. 12(j1)] which
decreases with increasing β. For both cases of increased
�lα = 0 and 15, distributions of F (i) also evolve in a similar
way with increasing β, as shown in Figs. 13(k1)–13(k3)
and Figs. 13(l1)–13(l3), respectively. For �lα = 0, 〈F (i)〉
decreases a little as β is increased, while 〈F (i)〉 for �lα = 15
increases a little. These results of 〈F (i)〉 lead to variation of
〈Oi〉 in Fig. 12(j1). Distributions of the pacing degree P (i) of
individual neurons for �lα = −15, 0, and 15 also show spreads
from their ensemble-averaged values (represented by gray
lines), as shown in Figs. 13(m1)–13(m3), Figs. 13(n1)–13(n3),
and Figs. 13(o1)–13(o3), respectively. For each �lα , the
variance in the distribution of MFRs decreases with increasing
β, and hence the ensemble-averaged pacing degree 〈P (i)〉,
corresponding to the average pacing degree 〈Pi〉 in Fig. 12(j2),
increases monotonically as β is increased, while the variation
of P (i) from 〈P (i)〉 tends to decrease. Figures 13(p1)–13(p3),
Figs. 13(q1)–13(q3), and Figs. 13(r1)–13(r3) show plots of
the individual spiking measure M (i)

s versus the in-degree
d (in) for �lα = −15, 0, and 15, respectively. For all three
cases of �lα , with increasing β 〈P (i)〉 increases markedly,
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in comparison to 〈F (i)〉. Consequently, for each �lα the
ensemble-averaged spiking measure 〈M (i)

s 〉, corresponding to
the population spiking measure Ms in Fig. 12(j3), increases as
β is increased.

As explained above, for all three cases of effect of net-
work architecture on sparse synchronization, contributions of
individual neuronal dynamics on population synchronization
vary depending on the in-degrees, although their ensemble-
averaged individual measures, 〈F (i)〉, 〈P (i)〉, and 〈M (i)

s 〉,
give the population measures such as 〈Oi〉, 〈Pi〉, and Ms .
Consequently, dynamics of individual neurons for the case
of sparse synchronization reveal the inhomogeneous structure
of the SFN, in contrast to statistically homogeneous random
and small-world networks.

IV. SUMMARY

In order to extend previous works on sparse synchroniza-
tion in statistically homogeneous networks such as random
graphs and small-world networks [11–16,26] to the case of
inhomogeneous networks, we have investigated emergence
of sparsely synchronized brain rhythms in the directed
version of the Barabási-Albert SFN model with symmetric
preferential attachment with the same in- and out-degrees
[l(in)

α = l(out)
α ≡ lα = 25]. Fast sparsely synchronized rhythms

with stochastic and intermittent neuronal discharges have
been found to emerge for large values of J and D. We
have made an intensive investigation of population states by
varying D for a fixed value of J = 1500. For small D, fully
synchronized rhythms with the same fp (population-rhythm
frequency) and fi (MFR of individual neurons) appear. For
this case of full synchronization, all the individual neurons
exhibit the same oscillatory behaviors, independently of
inhomogeneous network structure. However, as D passes a
lower threshold Dth,l (�109), partial synchronization with
fp > 〈fi〉 (ensemble-averaged MFR of individual neurons)
occurs due to intermittent discharge of individual neurons.
As D is increased from Dth,l , the difference between fp

and 〈fi〉 increases, and when passing a higher threshold
Dth,h (�400), sparsely synchronized rhythms with fp > 4〈fi〉
appear. Unlike the case of full synchronization, MFRs of
individual neurons vary depending on their in-degrees for the
case of partial and sparse synchronization. As D is further
increased and eventually passes a critical value D∗(�759),
a transition to unsynchronization occurs due to destructive
role of noise to spoil the pacing between sparse spikes. The
critical value D∗ has been determined through calculation
of the thermodynamic order parameter O. For D < D∗,
population synchronization has been found to emerge because
the spatial correlation length between the neuronal pairs
covers the whole system. Moreover, the degree of population
synchronization has also been measured in terms of two types
of statistical-mechanical spiking and correlation measures.
Unlike the case of full synchronization, individual neuronal
dynamics vary depending on their in-degrees and reveal the
inhomogeneous network structure for the case of partial and
sparse synchronization, in contrast to the case of statistically
homogeneous random graphs and small-world networks. As
a next step, we have also investigated the effect of network

architecture on sparse synchronization for fixed values of
J = 1500 and D = 450 in the following three cases: (1)
variation in the degree of symmetric attachment, (2) asym-
metric preferential attachment of new nodes with different
in- and out-degrees, and (3) preferential attachment between
pre-existing nodes (without addition of new nodes). As the de-
gree lα of symmetric preferential attachment is increased, both
the average path length Lp and the betweenness centralization
Cb have been found to decrease. Hence, typical separation
between two nodes in the network becomes shorter and the
load of communication traffic becomes less concentrated on
the head hub. Consequently, with increasing lα the degree of
sparse synchronization has been found to become higher due to
increased efficiency of communication between nodes. On the
other hand, the normalized axon wire lengthLw of the network
also increases. Through a trade-off between the population
synchronization and the wiring economy, an optimal sparsely
synchronized rhythm has been found to emerge at a minimal
wiring cost in an economic SFN with an optimal degree
l∗α(�34). As the second case of network architecture, we
have also considered the case of asymmetric preferential
attachment of new nodes with different in- and out-degrees
[i.e., l(in)

α �= l(out)
α ]. For this case, we have also measured Lp

and Cb by varying the asymmetry parameter �lα denoting the
deviation from the above symmetric case and investigated how
the sparse synchronization changes. As the magnitude |�lα|
of the asymmetry parameter increases, both Lp and Cb have
been found to increase symmetrically, independently of the
sign of �lα . Hence, with increasing |�lα| typical separation
between two nodes in the network becomes longer and load of
communication traffic becomes more concentrated on the head
hub, due to increased mismatching between the inward and
outward edges. Consequently, as |�lα| is increased the degree
of sparse synchronization has been found to become lower due
to decreased efficiency of communication between nodes. For
both cases of the positive and the negative asymmetries with
the same magnitude (e.g., �lα = 15 and −15), the values of
Lp and Cb have been found to be nearly the same, because both
inward and outward edges are involved equally in computation
of Lp and Cb. However, their degrees of sparse synchronization
have been found to become different due to their distinctly
different in-degree distributions affecting individual MFRs. In
addition to the above α process where preferential attachment
is made to newly added nodes with probability α, we
have also considered another β process where preferential
attachment between pre-existing nodes (without addition of
new nodes) is made with probability β (α + β = 1). By
varying the probability β, we have also measured Lp and
Cb and investigated the effect of this β process on sparse
synchronization. As β is increased, communication between
pre-existing neurons becomes more efficient due to a decrease
in both Lp and Cb, and, consequently, the degree of sparse
synchronization has been found to increase. For these three
cases of network architecture, contributions of individual
neuronal dynamics on the sparse synchronization were also
characterized in terms of their MFRs, firing degrees, pacing
degrees, and spiking measures. It has thus been found that
the dynamics of individual neurons vary depending on their
in-degrees and reveal the inhomogeneous structure of the SFN,
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in contrast to the statistically homogeneous networks such
as the random graph and the small-world network. We also
expect that our results might provide important insights on the
emergence of fast sparsely synchronized rhythms, associated
with diverse cognitive functions such as sensory perception,
feature integration, selective attention, and memory formation,
in real brain networks with scale-free property.

Finally, we discuss some limitations and expectations re-
garding our present work. Our study on emergence of sparsely
synchronized brain rhythms is based on numerical simulation
work in an inhibitory SFN of FS Izhikevich interneurons.
For further progress, some analytic works are needed to be
performed. To this end, the simple integrate-and-fire neuron
model which is analytically tractable (e.g., see Refs. [11–13])
is appropriate and some approximation may be made for the
network by employing the star network [73,74] which consists
of one central hub neuron to which all the other peripheral
neurons are directly connected (without any connections
between peripheral neurons). Thus, for example, the critical
value of D∗ for the transition from sparse synchronization to
unsynchronization may be expected to be analytically obtained
for comparison with numerical result. This kind of analytic
approach is beyond present study, and hence it is left as a future
study. Next, we discuss relevance of our SFN model. The real
brain is considered one of the most complex systems [17].
Particularly, the mammalian brain (e.g., cat and macaque)
has been revealed to have a modular structure composed of
sparsely linked clusters with spatial localization [42,76–78].
The connection structure in each module of the real brain
reveals complex topology such as small-worldness and scale-
freeness which are neither regular nor random [17–25]. Hence,
real brain networks are far more complex than minimal models
such as small-world and scale-free networks. For simplicity,
we considered a nonmodular SFN evolved through local α

and β processes. As explained in Sec. II, the α process
(occurring with the probability α) corresponds to a directed
version of the Barabási-Albert SFN model (i.e., growth and
preferential directed attachment) [44,45]. On the other hand,
for the β process (occurring with the probability β) only
preferential attachments between pre-existing nodes are made
without addition of new nodes (i.e., no growth) [45,56–58].
Consequently, degrees of pre-existing nodes are intensified
via the β process. These α and β processes occur naturally
in the evolution of communication networks (e.g., worldwide
web) and social networks (e.g., collaboration graph of actors
or authors) [45,56–58,79]. In contrast, to our knowledge,
evolution of biological networks including brain seems to
remain less understood. Although there seems to be no firm
background on the evolution, we expect that in addition to the
growing α process (i.e., the standard Barabási-Albert model),
incorporation of the β process (intensifying the internal
connections between pre-existing nodes) may be regarded as
a natural extension in typical complex systems (exhibiting
scale-freeness), independently of their specific nature. For
details on the extended models of network evolution, refer to
Refs. [45,56–58] where local processes, incorporating addition
of new nodes and addition or removal of connections between
pre-existing nodes, were discussed. Following this line, for our

brain network we employed the SFN model evolved via the α

and the β processes. For this case, we expect that the α and the
β processes might be associated with brain plasticity, which
refers to the brain’s ability to change its structure and function
by modifying structure and strength of synaptic connections
during development [80]. By changing the probabilities α

and β (=1 − α), we investigated the change in the network
topology (i.e., the average in- and out-degrees, the average path
length, and the betweenness centralization) and their effect on
the degree of sparse synchronization. With increasing β, the
degree of sparse synchronization has been found to increase
because the internal synaptic connections were intensified.
In contrast to the change in network topology, the population
frequency fp (�147 Hz) of the sparsely synchronized rhythms
is nearly invariant, independently of β [see the IPSRs R(t) in
Fig. 12]; fp is also nearly invariant, irrespective of the external
noise intensity D [see Figs. 2(e3) and 2(e4)]. We also note
that the sparse synchronization in our nonmodular SFN is a
global one in the whole population without formation of any
synchronized giant cluster. As shown in Fig. 6, the spatial
cross-correlation function CL is nearly nonzero constant in the
whole range of L, and hence the correlation length η covers the
whole network. Consequently, global sparse synchronization
appears, as explicitly shown in the raster plots of spikes in
Fig. 12 where all individual neurons participate and cooperate
to form “stripes” representing global sparse synchronization.
As mentioned above, a real brain has a modular structure.
In the clustered network composed of scale-free subnetworks,
we expect that modular sparse synchronization (where intrady-
namics of subpopulations makes some mismatching) may also
emerge, in addition to the global sparse synchronization. In
the inhomogeneous SFN, contributions of individual neuronal
dynamics to the global sparse synchronization vary depending
on their in-degrees, in contrast to statistically homogeneous
random and small-world networks. A plot of the in-degree d (in)

versus the neuron index i is shown in Fig. 9(d2). Nodes with
large (small) i appear in the late (early) stage of the α process.
As i is increased, d (in) shows a coarse-grained decrease with
some fluctuations. Hence, neurons with smaller i are hubs,
and those with larger i are peripheral neurons. For smoothing,
a density of in-degree links at the node i may be introduced
through average of the in-degrees at the nodes i − 1, i, and
i + 1 by considering in-degrees of the nearest neighbors. Then,
a smooth density of in-degree links which exhibits a monotonic
decrease with respect to i may be obtained. Thus, the hub group
(composed of neurons with smaller i) may have a high density,
while the peripheral group (consisting of neurons with larger
i) may have a low density. Consequently, individual neuronal
dynamics are also expected to vary depending on the density
of in-degree links.
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T. Vicsek, Physica A 311, 590 (2002).

[80] A. Pascual-Leone, C. Freitas, L. Oberman, J. C. Horvath, M.
Halko, M. Eldaief, S. Bashir, M. Vernet, M. Shafi, B. Westover,
A. M. Vahabzadeh-Hagh, and A. Rotenberg, Brain Topogr. 24,
302 (2011).

022717-25

http://dx.doi.org/10.1098/rstb.2000.0551
http://dx.doi.org/10.1098/rstb.2000.0551
http://dx.doi.org/10.1098/rstb.2000.0551
http://dx.doi.org/10.1098/rstb.2000.0551
http://dx.doi.org/10.1385/NI:2:3:353
http://dx.doi.org/10.1385/NI:2:3:353
http://dx.doi.org/10.1385/NI:2:3:353
http://dx.doi.org/10.1385/NI:2:3:353
http://dx.doi.org/10.1016/S0378-4371(02)00736-7
http://dx.doi.org/10.1016/S0378-4371(02)00736-7
http://dx.doi.org/10.1016/S0378-4371(02)00736-7
http://dx.doi.org/10.1016/S0378-4371(02)00736-7
http://dx.doi.org/10.1007/s10548-011-0196-8
http://dx.doi.org/10.1007/s10548-011-0196-8
http://dx.doi.org/10.1007/s10548-011-0196-8
http://dx.doi.org/10.1007/s10548-011-0196-8



