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Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between
aerodynamics and a torsional spring
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While the wing kinematics of many flapping insects have been well characterized, understanding the underlying
sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main
difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a
flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among
the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order
approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis
of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest
angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that
flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly
control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model
explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation
of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate
that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all
three effective spring parameters on longer time scales.
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I. INTRODUCTION

Insects were the first animals on Earth to evolve flight,
about 350 million years ago, and can perform a wide array of
extreme aerial maneuvers with exquisite accuracy and robust-
ness [1,2]. The mechanisms of insect flight are multilayered,
spanning a wide range of length and time scales: Genetics and
cellular mechanisms, sensory mechanisms, neural networks,
muscular morphology and actuation, and wing kinematics and
aerodynamics all combine to elicit a complex and graceful
animal behavior. Developing an understanding of flapping
flight at each of these layers presents unique challenges. At
the neuromuscular level, for example, efforts are being made
to determine how neural circuits are configured to provide
precise activation of wing muscles with fast feedback at the
single wing-stroke time scale [3–10].

The level of flight mechanics, which is the focus of this
work, requires us to develop an understanding of how the
wing kinematics and aerodynamic mechanisms enable insects
to generate the forces and torques required to fly, maneuver,
and mitigate the aerodynamic instabilities inherent to their
flapping [11–22]. However, understanding the underlying
mechanisms that generate these wing kinematics remains
a challenge for two main reasons. First, the interaction
of the wing with its own unsteady flow field is highly
complex [12,15,16,23–28], similarly to other fluid-structure
problems [29–32]. Second, the wing hinge of insects is among
the most complicated joints in the animal kingdom [33,34].
In flies, for example, it consists of multiple steering muscles,
tendons, and both flexible and rigid parts. These elements
intertwine into a transmission mechanism that both redirects
power from the main flight muscles to the wing and allows
fine-tuned control over the wing motion [5,7,34–36]. Although
the morphology of the wing hinge is known and the neural
activation patterns of several steering muscles have been
measured [4–7], the dynamics of the wing hinge is still unclear,

due to both its mechanical complexity as well as the intricate
neural activity of each of its muscles. Only recently has it
become possible to visualize muscles of the wing hinge in
action [37].

Remarkably, this seemingly intractable behavior can often
be summarized by a reduced-order approach in which the
wing-hinge and the fluid-structure interactions are represented
by simplified models. This strategy has been used very success-
fully to estimate the aerodynamic forces arising from complex
flows using quasistatic models [12,14,38] and describe some
basic aspects of animal locomotion control with linear control
theory [19–22,39–48]. This reduced-order approach is useful
because it provides a framework for characterizing the com-
plex behaviors and a well-defined functional target that can
guide the process of determining the underlying mechanism
generating the behavior.

Here we take such an approach in explaining the kinematics
of the wing-pitch angle of maneuvering fruit flies. This
degree-of-freedom describes the rotation of a wing about its
leading edge. Hence, the wing-pitch angle directly determines
the wing’s angle of attack, which is, together with the wing
speed, a key parameter governing the magnitude and direction
of the aerodynamic force generated by the wing [14].

Several pioneering studies have suggested that wing-pitch
kinematics are passively determined by a balance between
aerodynamic and elastic torques, as well as the inertia of
the moving wing [49–56]. Subsequently, a number of studies
have used torsional-spring models to describe wing-pitch
kinematics in mechanical [57–64] and computational [63,65–
72] models of flapping wings, as well as to describe wing-pitch
kinematics of free-flying fruit flies [73]. For example, the
latter study showed that the torques produced by the wing
hinge to control wing pitch can be effectively modeled as
those arising from a damped torsional spring. Furthermore,
the study showed that simple modification of the spring rest
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angle generates wing-pitch asymmetries that result in body
yaw turns.

Here we measure the body and wing kinematics of fruit files
during roll correction maneuvers and model their wing hinge
as a torsional spring with three parameters: elastic coefficient,
damping coefficient, and pitch rest angle. We find that the fly’s
wing-pitch kinematics are accurately explained by an interplay
between the spring torque and aerodynamic torque. Moreover,
the torsional-spring model explains the measured, sub-wing-
beat modulation of the wing-pitch angle during roll maneuvers
as resulting from an increase in both the spring damping and
elastic coefficient that occurs on a slower, single-wing-beat
time scale. Thus, in addition to modulation of the rest angle
reported in prior work, we find that flies can modulate all three
spring parameters to control wing pitch. These results also give
rise to a number of open questions regarding the physiological
origin of the three spring parameters, their mode of actuation,
and their dependence on the wing stroke angle.

II. EXPERIMENTAL METHODS

We mechanically perturbed fruit flies (Drosophila
melanogaster) in midair, filmed their correction maneuvers
using high-speed video, and measured their body and wing
kinematics. To exert midair roll perturbations we glued a
1.5- to 2-mm-long magnetic carbon-steel pin to the back of
each fly, on the dorsal surface of its thorax, and applied
short magnetic field pulses that rolled the flies [Fig. 1(a)].
The pin did not interfere with the motion of the wings and
added 20% to the fly’s mass, which did not alter its flight as
compared with control experiments with untreated flies. The
change in the body center-of-mass position due to the pin was
small, about 3.5% of the body length. Further experimental
details, including the small effect of the pin on the body inertia
tensor, are discussed in Ref. [21]. In each experiment ∼15
prepared flies were released in a transparent cubic chamber
of side length 13 cm, equipped with two Helmholtz coils that
are used to generate a vertical magnetic field [19,21]. Three
synchronized fast cameras (Phantom v7.1, Vision Research)
were focused on a cubic subvolume at the center of the
chamber. The cameras were orthogonal to each other and
operated at 8000 frames s−1 and 512 × 512 pixel resolution.

Recording was initiated by an optical trigger detecting when
a fly enters the filming volume and triggering the cameras as
well as a 5-ms (1 wing-beat) vertical magnetic pulse generated
by the two Helmholtz coils. Controlling the voltage across
the coils enables us to vary the magnetic field strength up
to ∼10−2 Tesla, which is about 1000 times stronger than the
Earth’s magnetic field. Since fruit flies fly with their body axis
pitched up at ∼45◦ and since the moment of inertia along
their body axis is smaller than along the other axes, the largest
deflection is generated along the body roll axis, with smaller
perturbations along pitch and yaw (Fig. 1) [21].

We analyzed 10 flight sequences from nine individual flies
that were subject to roll perturbations of 35◦−70◦. This range
of perturbation angles was achieved by setting the amplitude
of the current pulse through the Helmholtz coils during each
experiment, such that increasing the current resulted in larger
perturbation torque. In each maneuver, the fly performed a
steady flight before and after the correction maneuver. Using
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FIG. 1. (Color online) Roll correction maneuver following a
midair impulsive perturbation. (a) Superimposed images from three
orthogonal cameras of the fly during the maneuver. The 3D-rendered
fly represents the measured kinematics. The perturbation location
[red (dark gray) line] is shown on the fly’s center-of-mass trajectory
in green (light gray). In the second snapshot the fly is deflected 45◦ to
its right with respect to its preperturbation roll angle. (b) Definition
of body Euler angles with respect to the laboratory frame. x̂b is the
long body axis. (c) Definition of the body frame (x̂b,ŷb,ẑb) and wing
Euler angles, measured in the body frame with respect to the stroke
plane shown in shaded blue (dark gray). The wing-pitch angle ψ

describes the rotation of the wing about its vein, or leading edge;
vector is shown for the right wing by a curved arrow. A pitch angle of
ψ = 0◦ implies that the wing is parallel to the wing stroke plane with
the leading edge ahead of the wing surface. (d) Body Euler angles
versus time. Perturbation was applied between 0 and 5 ms in yellow
(black vertical lines). White and gray stripes represent forward and
back strokes, respectively. Roll was measured manually at the middle
of each half-stroke and smoothed by a spline (dashed black line).
Measurement errors are smaller than the symbols size. The snapshots
above the plot show top side views of nine consecutive wing strokes
of the maneuver, taken when the wings are at their forwardmost
position. The perturbation wing beat is numbered 0.

a custom image analysis algorithm, we extracted a three-
dimensional (3D) kinematic description of the fly [Fig. 1(a)]
consisting of its body position and orientation [defined in
Fig. 1(b)] as well as the Euler angles—wing-stroke angle φ,
wing elevation angle θ , and wing-pitch angle ψ—for both

022712-2



WING-PITCH MODULATION IN MANEUVERING FRUIT . . . PHYSICAL REVIEW E 92, 022712 (2015)

wings [defined in Fig. 1(c)]. Importantly, the wing Euler
angles are defined with respect to the stroke place in the body
frame of reference, which is the relevant frame of reference
for discussing wing actuation. While in some insects, such
as locusts, wing deformation is considerable and induces
significant aerodynamic effects [74], in D. melanogaster
wing flexibility is small and the aerodynamic forces are well
described by a flat rigid wing [14,55]. Our measurements of D.
melanogaster indicate that wing bending is negligible during
most of the wing stroke and reaches no more than 5◦ during
the wing’s rapid (<0.3 ms) rotation between the down-stroke
and up-stroke. Hence, in analyzing the wing kinematics we
assume a flat rigid wing defined by its vein and chord vectors.
Our motion tracking algorithm is based on using the movies
from the three cameras to reconstruct a 3D hull of the fly for
each frame, segmenting the hull into a body and two wings
and extracting the position and orientation of each part. The
algorithm is described in detail in Refs. [21,75].

III. RESULTS

A. Wing-pitch angle is modulated during roll maneuvers

Recently, it has been shown that the main mechanism flies
use to correct for roll perturbations is an asymmetric change
of the stroke amplitude between both wings [21]. Here we
show that in addition to actuating the stroke angles, flies also
modulate their wing-pitch angles and that these two degrees
of freedom are strongly coupled. Hence, before discussing the
role of wing pitch and the way it is modulated, we will briefly
review the kinematics of the wing-stroke angle during roll
correction maneuvers.

A typical roll correction maneuver, in which a fly recovered
from a 45◦ right roll perturbation, is shown in Fig. 1(a).
The body Euler angles, roll (ρ), yaw (φb), and pitch (θb),
are plotted in Fig. 1(d). Prior to the perturbation the fly was
flying forward and slightly sideways with a stable roll angle
of 20◦. Following the 5-ms magnetic torque (yellow strip)
the roll angle increased to a maximum of 65◦ at t = 13 ms
after the onset of the perturbation. The fly actively corrected
and by t = 30 ms rolled back to ρ = 0◦, maintaining forward
flight.

To correct for the perturbation the fly flapped asymmet-
rically for three to four wing beats such that the right wing
increased its stroke amplitude and the left wing decreased
its stroke amplitude [the wing stroke angle φ is defined in
Fig. 1(c)]. As soon as 3 ms after the onset of the perturbation
an amplitude asymmetry of 3◦ was observed and by 5 ms the
asymmetry increased to 11◦. The asymmetry is evident in the
top-view snapshots above Fig. 1(d), taken each time the wings
reach their forwardmost position along the stroke. The wing
stroke angles and their amplitude for both wings are plotted
as a function of time in Figs. 2(a) and 2(b). The extrema
of the stroke amplitudes were observed around t = 13 ms,
when the right wing amplitude (red) increased by 27◦ at its
peak and the left wing amplitude (blue) decreased by 18◦ at
its minimum. The stoke amplitude asymmetry is the main
mechanism flies use to generate roll corrective torque and it
is well described by the output of a proportional-integral (PI)
controller model, as has been recently reported in Ref. [21].

After t = 23 ms the stroke amplitude asymmetry was reversed
and the left wing stroke amplitude was larger than the right
stroke amplitude, corresponding to a roll countertorque that
brakes the body roll velocity, allowing for faster corrective
torque and, hence, faster correction time. Similar counter-
torques are typical also in body-pitch correction maneuvers
following impulsive perturbations [22].

The measured wing kinematics show that in addition to
the wing-stroke angle, the wing-pitch and -elevation angles
undergo substantial changes as well [Figs. 2(c) and 2(d)].
Here we take advantage of previously developed reduced order
models for the pitch torques to determine how insects are
changing the wing-pitch angles ψ during a roll correction
maneuver. This angle describes the rotation of each wing about
its leading edge, or wing vein [Fig. 2(c)], and determines the
wing angle of attack, a crucial aerodynamic parameter for
generating aerodynamic forces.

We define ψ = 0◦ when the wing surface is parallel to the
stroke plane with the leading edge closer to the fly’s head. The
direction in which ψ increases is indicated by a curved arrow
in Fig. 1(c), such that a wing with ψ = 90◦ is vertical to the
stroke plane with the leading edge above the wing surface. To
highlight changes in the spatial dependence of ψ during each
stroke of the maneuver, we make a Lissajous-Bowditch plot of
ψ as a function of the wing-stroke angle, φ, for each wing-beat
separately [Fig. 2(e)]. Each of the six plots in Fig. 2(e) shows
a cycle in the (φ,ψ) plane corresponding to a single wing-beat
during the maneuver. Each wing-beat starts when the wings
are at their backwardmost position, corresponding to a local
maximum of φ (marked by black squares), and the motion
in the (φ,ψ) plane is clockwise. The inset on each plot is a
top view snapshot of the fly taken when φ obtain their local
minimum at the forwardmost position of each wing beat, the
same as in Fig. 1(d).

The first wing beat in Fig. 2(e) (labeled 0) started before the
onset of the perturbation pulse and represents a typical motion
in the (φ,ψ) plane. Both wings flapped symmetrically, starting
at the back with φ ≈ 180◦ and ψ ≈ 90◦, and then ψ rotated
rapidly forward as the wings started their forward stroke.
During the forward stroke, which corresponds to the bottom
part of the loop, φ decreased for both wings while ψ was
maintained at ≈30◦, resulting in an angle-of-attack of similar
value. As the wings approached their forwardmost position,
namely the local minimum of φ around 25◦, the wings rotated
backwards about their leading edge, increasing ψ to 90◦. When
the wings started to move backwards (φ increasing, top part
of loop) they also rotated rapidly in pitch, further increasing
ψ almost to 180◦, where the wing surfaces are almost parallel
to the stroke plane. As the back stroke continued, ψ decreased
to ≈130◦, corresponding to an angle-of-attack of 50◦ flapping
backwards. This overshoot of the wing towards ψ ≈ 180◦ that
looks like a “hump” in the ψ(φ) curve is highly reproducible
in nonmaneuvering flight of D. melanogaster. At the end of
the back stroke, ψ started a rapid decrease back to 90◦ as part
of the backflip of the wing before the next stroke.

As the correction maneuver progressed, the top and bottom
limits of φ values on the ψ(φ) plots show the increase of
the right wing stroke amplitude and the decrease of the left
wing stroke amplitude, as in Fig. 2(b). Remarkably, along
with the φ asymmetry, we observe a strong asymmetry in the
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FIG. 2. (Color online) Wing kinematics. (a) The stroke angle φ for both wings as a function of time in ms. Throughout the entire figure,
red (light gray) indicates the right wing and blue (dark gray) indicates the left wing data. The magnetic pulse perturbation is indicated by a
yellow strip between t = 0–5 ms. White and gray stripes indicate forward and back stroke, respectively. (b) The peak-to-peak amplitude of the
stroke angle � for each half-stroke. (c) The wing-pitch angles ψ . (d) Wing elevation angles θ . (e) The wing-pitch angle ψ as a function of the
stroke angle φ for both wings, plotted separately for six wing beats during the roll correction maneuvers. The data in each plot start when the
wings are at their backmost position [black squares with red or blue (light or dark gray) outline], and time propagates clockwise as shown by
the curved arrow on the leftmost plot. Inset images show top-view snapshots of the fly taken when the wings are in their forwardmost position
(minimum φ) during each wing beat. The wing-beat numbering is the same as in Fig. 1.

pitch angle ψ between the two wings: while the left wing
kept the characteristic nonmaneuvering shape, the “hump”
structure of the right wing almost disappeared. This effect
increased gradually with the increase of stroke amplitude
(wing beats 1–3) and correspondingly decreased until the end
of the maneuver, where both wings flapped symmetrically
again (wing beats 4 and 5).

These changes in ψ are consistent throughout our data set,
as shown in Fig. 3, which plots the ψ(φ) curves before the
maneuver and during the third wing beat of each maneuver,
when the fly exerts maximum corrective torque. To quantify
the differences between the curves we identify two points on
each curve: maximum ψ in the front half-stroke (squares)
and minimum φ (circles), corresponding to the frontmost
stroke angle. The “bottom” wing in each maneuver, which
increases its stroke amplitude, is shown in red and the “top”
wing is shown in blue. Before the onset of the correction
maneuver the curves for the “top” and “bottom” wings are
indistinguishable. During the maneuver, however, the curves
for the “top” and “bottom” wings significantly differ. The
maximum ψ for the “top” wing is 169◦ ± 10◦ (mean±standard
deviation) and its value for the “bottom” wing is 144◦ ± 8◦

(p value of 8.5 × 10−6). The frontmost φ values during the
maneuver are 40◦ ± 9◦ for the “top” wing, corresponding to a
decrease of the stroke amplitude, and 9◦ ± 9◦ for the “bottom”
wing, corresponding to an increase of the stroke amplitude (p
value of 5.2×10−7) [21]. These marked changes in ψ raise
two interesting questions. First, do these changes substantially
alter the corrective aerodynamic torques? Second, is the fly
actively controlling the pitch angle or is ψ being passively
determined by the aerodynamic flows?

B. Wing-pitch modulations contribute to roll corrective torque

To quantify the effect of the ψ asymmetry on the roll
correction maneuver, we calculated the total aerodynamic
torque exerted by both wings during the wing beat with
the largest φ and ψ asymmetry—wing beat 3 in Figs. 1(d)
and 2(e). This wing beat also generated the peak roll corrective
acceleration [Fig. 1(d), t = 13 ms] and, hence, maximum
corrective torque. To calculate aerodynamic forces from the
measured body and wing kinematics, we used a quasi-steady-
state aerodynamic model that was calibrated for fruit-fly
wing shape and kinematics using a scaled-up mechanical
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(a) (b)

FIG. 3. (Color online) Lissajous-Bowditch plots of ψ as a func-
tion of φ (a) before and (b) during each of the 10 measured correction
maneuvers. Each loop on the (φ,ψ) plane corresponds to one
wing-beat cycle of one wing. Red (light gray) curves correspond the
the “bottom” wing in each maneuver, which is the wing that increases
its stroke amplitude. Blue (dark gray) curves correspond to the “top”
wing, which reduces its stroke amplitude. A square symbol on each
curve indicates the point of maximum ψ in the front half-stroke. A
circle on each curve indicates the point of minimum (frontmost) φ.
(a) Before the maneuver the curves for the “top” and “bottom” wings
are indistinguishable (p values indicated on the plot). (b) During
the maneuver the maximum ψ for the “top” wing is 169◦ ± 10◦

(mean±standard deviation) and its value for the “bottom” wing is
144◦ ± 8◦ (p value of 8.5×10−6). The frontmost φ values during
the maneuver are 40◦ ± 9◦ for the “top” wing and 9◦ ± 9◦ for the
“bottom” wing, corresponding to an increase of the stroke amplitude
(p value of 5.2×10−7).

model [14]. Aerodynamic forces were calculated using the
wing orientation and velocity as measured in the laboratory
frame of reference. The wing-tip velocity included the wing
velocity with respect to the fly center of mass, the fly center-of-
mass velocity with respect to the laboratory, and the fly’s body
angular velocity with respect to the laboratory. We verified that
the calculated torques are similar for other quasi-steady-state
force models [38,59,76] as well. The torques were calculated
by assuming that the aerodynamic force acts at the pressure
center of each wing, located at 70% of the wing span from the
wing base, and taking the torque arm with respect to the body
center of mass. The components of the torque along the three
body axes are shown in Fig. 4 for two cases: In the first we
used the full wing and body kinematics of wing beat 3 (Fig. 4,
black lines) and in the second we used the same kinematics
except ψ(t), which was taken from the nonmaneuvering wing
beat 0 (dashed red lines).

Although changing ψ(t) from the maneuvering to the
nonmaneuvering kinematics had an effect on the aerodynamic
torques, tracing the corresponding changes in the body roll
dynamics requires solving the Euler equation of motion for
the body. Namely, since 3D rotations do not commute and
since the body has nonzero angular velocity, the effects of the
plotted torques on roll is nonintuitive. For example, it has been
shown that a torque along the body z axis plays an important
part in roll correction and that flies apply torque along this axis
particularly during the back strokes of these maneuvers [21].
Numerical integration of the Euler equations of motion for
the two cases in Fig. 4 shows that while the maneuvering
wing stroke reduced roll velocity by ∼3600◦ s−1, the same

(a) (b) (c)

FIG. 4. (Color online) The three components of the aerodynamic
torque generated by the two wings during wing beat 3 of the roll
maneuver plotted as a function of time in ms (solid black lines).
[(a)–(c)] The torque components shown are along the (x,y,z) axes of
the body frame of reference [defined in Fig. 1(b)]. The torques were
calculated based on the full wing and body kinematics and using a
quasi-steady-state aerodynamic force model. Plotted in dashed red
(light gray) lines are the aerodynamic torque generated by the same
wing-beat kinematics but with ψ(t) taken from a nonmaneuvering
wing beat (0). Solving the Euler equation of motion for the body using
the torque calculated for these two cases and the experimental initial
conditions showed that the measured kinematics reduced the body
roll velocity from 2710◦ s−1 to −870◦ s−1 (a slowdown of 3580◦ s−1),
while the “mixed” kinematics reduces the body roll velocity to
360◦ s−1 (a slowdown of 2350◦ s−1).

kinematics with the nonmaneuvering ψ reduced roll velocity
by ∼2350◦ s−1, corresponding to a 35% loss in corrective roll
braking. This change is attributed to differences in the torque
along the body x or roll axis [Fig. 5(a)], in the beginning of

FIG. 5. (Color online) Torsional spring model for wing pitch. [(a)
and (b)] A fly scheme with the spring torque indicated by red arrows.
The wing frame of reference is shown in (b). [(c) and (d)] The
operation of the spring (black spiral) on a moving wing (thick black
line). For wing with low air speed (c) Red (light gray) line indicates the
aerodynamic force that twists the torsional spring such that in steady
state (when ψ̇ = 0) the spring torque and aerodynamic torques are
balanced. (d) When the wing is moving faster, the aerodynamic force
is stronger and so is the torque it generates about the wing base. In
steady state the torsional spring is twisted further than in (c) such that
the two torques balance at a shallower wing-pitch angle.
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the wing stroke, as well as to the larger differences in the
torque component along the body z axis [Fig. 5(c)] seen after
the middle of the wing beat, where the “hump” structure is
observed. In addition, the mixed kinematics have larger peaks
for the torque along the body y axis [Fig. 5(b)], which roughly
corresponds to larger oscillations in body pitch. Performing
a similar analysis on all 10 movies in our data set showed
that changing ψ to the nonmaneuvering kinematics resulted
in 13% to 65% loss in corrective roll braking, with an average
of 37%±17% (mean±standard deviation). These marked
differences highlight the importance of the modulations in
wing-pitch angle imposed by the fly during roll correction.

C. An equation of motion for wing pitch based on a torsional
spring model and quasi-steady-state aerodynamics

To investigate whether ψ is actively controlled or passively
determined by coupling to the flow, we model the wing hinge
as a torsional spring along the wing-pitch axis as shown in
Fig. 5 [73]. The torque τs generated by the spring is given by:

τs(t) = −k[ψ(t) − ψ0] − cψ̇(t), (1)

where k is an elastic coefficient, ψ0 is the rest angle of
the spring, and c is a damping coefficient. The wing is
assumed to be a rigid plate, which is a good approximation
for D. melanogaster wings [14,55]. The effect of the coupling
between the elastic coefficient k and aerodynamic forces on the
pitch angle in steady state (ψ̇ = 0) is illustrated in Figs. 5(c)
and 5(d). For simplicity, we consider a wing hinge with a
rest angle ψ0 = 90◦ corresponding to a wing with a vertical
orientation.

When the wing is moving [Fig. 5(c)], its airspeed exerts
an aerodynamic force that is approximately perpendicular to
the wing surface [14]. The aerodynamic force exerts a torque
about the wing hinge, rotating the wing such that the spring
exerts an opposite torque. In steady state, the pitch angle is
deflected from its rest value such that the two torques balance
each other. The gravitational torque on the wing is negligible
compared with the aerodynamic toque, since the wing weighs
∼0.3% of the fly’s weight, while the aerodynamic force is
comparable to the fly’s weight. When the wing’s airspeed is
increased as in Fig. 5(d), the aerodynamic and spring torques
are larger, resulting in a greater steady-state pitch deflection
with respect to the vertical.

Modulating the wing-pitch rest angle ψ0 induces an
asymmetric change in the angle of attack between the front and
back half-strokes, which has been associated with body-yaw
maneuvers [73]. The effect of the spring damping coefficient
on ψ kinematics is manifested by a countertorque −cψ̇

proportional to the wing-pitch velocity that damps its motion.
Hence, the effect of this damping torque is expected to be most
prominent when ψ̇ is large, namely when the wing is flipping
either at the front or at the back of the wing stroke. Conversely,
during the middle parts of each half-stroke, when the wing is
not rotating much along its pitch axis, the effect of damping is
expected to be small.

We derive an equation of motion for the pitch angle ψ of a
single wing described as a thin elliptical plate with typical fruit-
fly paramters: major axis equal to the wing span R = 2.1 mm,
minor axis equal to the chord length a = 0.7 mm, thickness

b = a/50, and mass m = 0.03 mg. We work in the wing frame
of reference (ê1,ê2,ê3) as defined in Fig. 5, such that the pitch
rotation axis is ê1. The wing moment of inertia tensor with
respect to rotation about the wing hinge and assuming a thin
wing (b � a,R) is

I =
⎛
⎝I11 I12 0

I21 I22 0
0 0 I33

⎞
⎠ = 3m

10

⎛
⎝ a2 5

6aR 0
5
6aR R2 0

0 0 a2+R2

⎞
⎠.

(2)

The off-diagonal terms arise from considering rotations about
the wing hinge, which is offset with respect to the wing center
of mass.

Due to the flapping motion, the wing frame of reference
rotates with respect to the body frame of reference. In addition,
the body itself generally rotates in the laboratory frame of
reference during the roll correction maneuver, which generates
fictitious torques in the wing frame of reference. The two
coordinate transformations from the laboratory to the body
frame and from the body to the wing frame must, therefore, be
considered in deriving the equation of motion for ψ . We define
� to be the wing angular velocity vector in the wing frame
of reference, such that � includes both the body and wing
angular velocities (see Appendix A). The equation of motion
is a balance of angular momentum L = I� in a rotating frame
of reference:(

dL
dt

)
lab

=
(

dL
dt

)
wing

+ � × L = τtotal, (3)

in which the total torque is the sum of aerodynamic and spring
torques:

τtotal = τaero + τs. (4)

The aerodynamic torque τaero is calculated from the wing and
body kinematics as described above, and the spring torque τs

is given by Eq. (1). Substituting L = I� into Eq. (3) and using
the thin wing approximation so I33 = I11+I22 we find:

I11(�̇1 + �2�3) + I12(�̇2 − �1�3) = τtotal,1, (5)

similar to Ref. [59], although here both wing and body frames
of references are rotating. Hence, to obtain an equation of
motion for ψ , we need to obtain an explicit expression for ψ̈ .
The only place where ψ̈ appears is in �̇1. We express � as
a sum of the wing angular velocity in the wing frame ωw,w

and the body angular velocity in the wing frame ωb,w, namely
� = ωw,w+ωb,w, with the wing and body parts given by [77]:

ωw,w =

⎛
⎜⎝

ψ̇ + φ̇ sin θ

φ̇ cos θ sin ψ − θ̇ cos ψ

φ̇ cos θ cos ψ + θ̇ sin ψ

⎞
⎟⎠. (6)

ωb,b =

⎛
⎜⎝

ρ̇ + φ̇b sin θ

φ̇b cos θb sin ρ − θ̇b cos ρ

φ̇b cos θb cos ρ + θ̇b sin ρ

⎞
⎟⎠ (7)

ωb,w = Tb→w · ωb,b. (8)

The vector ωb,b is the body angular velocity in the body
frame of reference and the rotation matrix Tb→w describes
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the transformation between the body and wing frames of
references (see Appendix A). Note that since θ and θb are
defined with an opposite sign with respect to Ref. [77] [see
Fig. 1(c)], their sign in Eqs. (6) and (8) is reversed accordingly.
The equation of motion (5) becomes:

ψ̈ = τtotal,1

I11
− φ̈ sin θ − φ̇θ̇ cos θ − ω̇b,w,1

−�2�3 − I12

I11
(ω̇w,w,2 + ω̇b,w,2 − �1�3). (9)

The three terms ω̇b,w,1, ω̇b,w,2, and ω̇2,w,1 appear in Appendix A
in full form.

Given the torsional spring parameters (k,c,ψ0), the body
orientation [φb(t),θb(t),ρ(t)], body center-of-mass velocity
[ẋ(t),ẏ(t),ż(t)], wing kinematics [φ(t),θ (t)], and an initial
condition for (ψ,ψ̇), we solve the equation of motion for
ψ(t) using MATLAB’s ordinary differential equation solver. The
body center-of-mass velocity is used to determine the wing-tip
velocity in the laboratory frame of reference, which is then
used to calculate the aerodynamic force. To use experimentally
measured data and their time derivatives, we smoothed the data
using splines, keeping the smoothing residuals comparable to
the measurement accuracy of each kinematic variable.

D. Determining whether wing-pitch modulation
is active or passive

We used the above model to find the spring parameters
(k,c,ψ0) that best fit the measured ψ kinematics. For each
wing, the fit was performed one wing beat at a time to
find whether the spring parameters accurately describe the
wing-pitch kinematics and whether the spring parameters
change during the correction maneuver. The fitting was
achieved by searching the 3D spring parameters space for
a triplet (k,c,ψ0) that minimizes the root-mean-squared error
(RMSE) of the calculated ψ with respect to the measured
one. The minimization was performed using two methods. In
the first method, we scanned a dense 3D grid in parameter
space, and for each point solved the differential equation
for ψ and calculated its RMSE. We then verified that the
error landscape is smooth with a single global minimum and
picked the spring parameters corresponding to the minimum
error. In the second method, we used MATLAB’s nonlinear
trust-region-reflective least-squares optimization algorithm to
find the minimum, such that each step of the algorithm
entailed solving the differential equation for ψ . Both methods
gave quantitatively equivalent results that were within the
experimentally determined uncertainty for ψ .

For each fitted spring we estimated the fit confidence
intervals (CI) for each of the three fitted parameters. For
example, to estimate the CI for k we calculated ψ(t) arising
from a spring with (k + δk,c,ψ0). We then search for the
maximum positive δk such that the calculated ψ kinematics
deviate by less than 4◦ from the measured values during the
entire stroke. This threshold corresponds to the uncertainty
of our wing-pitch angle measurement. The lower CI for k

was calculated similarly by considering a negative δk. The
CI values for the other two spring parameters were calculated
using the same method.

(a) (b)

(c) (d)

FIG. 6. (Color online) Calculated wing-pitch kinematics from
the torsional-spring model plotted in the (φ,ψ) plane (solid black
lines) along with the smoothed measured kinematics of the left
and right wings (circles). Fit results for for a wing beat before the
correction maneuver (0) are shown in (a) for the left wing and in (b)
for the right wing. Similarly, fit results for a maneuvering wing beat
(3) are plotted in (c) for the left wing and in (d) for the right wing. Each
plot [(a)–(d)] includes also the values of the fitted spring parameters.
The mean RMSE values for the fits in (a)–(d) were 5.7◦, 5.2◦, 6.2◦,
and 6.1◦, respectively. The torsional spring model captures the salient
features of the measured ψ kinematics. The dashed gray curves in (c)
and (d) correspond the the calculated ψ kinematics resulting from the
wing and body kinematics of the maneuvering wing beat combined
with the fitted spring for the nonmaneuvering wing beat in (a) and
(b), respectively.

To illustrate the types of changes that the spring parameters
produce in the ψ(t) curves, we show the fit results for ψ(t) for
a nonmaneuvering wing beat and a maneuvering one in Fig. 6.
The resulting wing-pitch angles are shown in the (φ,ψ) plane
(solid lines) along with the measured ψ (symbols). We find
that the fitted torsional spring model reproduced the salient
features for all four measured ψ kinematics with mean fitting
error of 5.8◦. For example, the model accurately captured the
“hump” in the ψ(φ) curve seen after the front wing flip in
Figs. 6(a)–6(c) as well as the “hump” absence in the right wing
stroke during the maneuvering wing beat shown in Fig. 6(d).

As expected, the fitted spring parameters for both wings
before the maneuver were very similar and within each
other’s CI: k = 47 pN×m/deg, c = 27 fN×m/(deg s−1), and
ψ0 = 0◦ ± 2.3◦. During the correction we observe changes in
all three spring parameters. However, not all these changes
were significant. For example, we find that for the right wing,
which increased its stroke amplitude during the roll correction,
the elastic coefficient k changed from 48 ± 7.5 pN×m/deg to
52.5 ± 6.7 pN×m/deg, but that this change fell within the fit
CI and was therefore experimentally indistinguishable. In con-
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FIG. 7. (Color online) The calculated torque exerted by the
spring during the same wing beats shown in Fig. 6. The torques
were calculated using Eq. (1) with the fitted spring parameters and
the measured wing kinematics. The total spring torque τs is plotted
in dashed thick green (light gray) lines, the elastic torque term
−k(ψ(t) − ψ0) is plotted in black, and the damping torque term
−cψ̇ is plotted in red (darker gray). The wing beats shown are a
nonmaneuvering wing beat for the left (a) and right (b) wing, as well
as a manuevering wing beat for the left (c) and right (d) wing. Black
arrows indicate a time when the torque in (d) is more negative than
in (a)–(c) as a result of the damping term after the front wing flip.

trast, the rest angle ψ0 changed from −2.3◦ ± 3.2◦ to −15◦ ±
3.9◦, which fell outside the fit CI and was therefore a detectable
change. The most prominent change we observed in this
particular maneuver was a 46% increase of the spring damping
coefficient of the right wing form 28.4 ± fN×m/(deg s−1) to
41.5 ± 2.6 fN×m/(deg s−1) (fitted value ± CI).

To highlight the effect of the different fitted springs on
the kinematics of ψ , we solved for ψ(t) of the maneuvering
wing beat but with the spring fitted for the nonmaneuvering
wing beat. The resulting ψ(t) is plotted in Fig. 6(d) in
dashed gray, showing a large overshoot of the wing-pitch
angle after the front flip, reminiscent of the nonmaneuvering
kinematics.

The individual contributions of the elastic and damping
torques to the total spring torque during two wing beats in Fig. 6
are shown in Fig. 7. First, we find that the magnitudes of elastic
and damping torques are comparable, indicating that both
of them are important in determining wing-pitch kinematics.
Second, we find that the spring torques during the maneuvering
wing beat of the right wing [Fig. 7(d)] differ from the torques
during the other wing beats in Figs. 7(a)–7(c). Namely, the
torques in Fig. 7(d) show stronger positive damping torque
during the back wing flips, as well as stronger negative
damping torque after the forward flip, where the “hump”
appears during nonmaneuvering wing beats.

(a) (b) (c)

FIG. 8. (Color online) Intuition for the individual effect of each
spring parameter on the ψ(φ) curve. We calculated the wing-
pitch kinematics of the nonmaneuvering wing beat in Fig. 6(a)
and as a reference used the spring with k = 50 pN×m/deg, c =
25 fN×m/(deg s−1), and ψ0=0◦ (with respect to the vertical). The
curves resulting from the reference spring are plotted in solid black
lines. (a) Wing-pitch curves for increasing k. Panels (b) and (c) show
similar curves for increasing c and ψ0, respectively. Color bars show
values of each parameter.

To gain intuition for the effect that each of the spring
parameters induces on wing pitch, we calculated the ψ(t)
kinematics that arise from individually modulating each one of
the spring parameters [Fig. 8(a)]. We used the wing and body
kinematics of the nonmaneuvering wing beat in Fig. 6 and
considered a reference spring with k = 50 pN×m/deg, c =
25 fN×m/(deg s−1), and ψ0 = 0◦ (with respect to the vertical),
which is within the CI of the best-fitted spring. Increasing k

from 20 to 80 pN×m/deg [Fig. 8(a)] shows that both the top
and bottom branches of the ψ(φ) loops approach the ψ = 90◦
center line (black arrows in Fig. 8). Increasing k stiffens the
spring, such that the aerodynamic force induces smaller ψ

deviations from the vertical (ψ = 90◦). This effect is nonlinear,
since the aerodynamic force depends on ψ through the angle of
attack. Increasing the damping coefficient c from the reference
value of 25 (thick black curve) to 45 fN×m/(deg s−1) (red
curve) resulted in the disappearance of the “hump” structure
after the front flip (top left part of the curve). In addition,
this increase also smoothed a similar smaller feature of the
ψ(φ) curve seen after the back flip (bottom right part of the
curve). Conversely, decreasing c from 25 to 5 fN×m/(deg s−1)
generated two large “hump” structures after the forward and
back wing flips. The most prominent effect of the damping
coefficient appears around the wing flips, since these stages
of the wing stroke have the largest pitch velocity, which
maximizes the damping torque −cψ̇ . Increasing the rest angle
ψ0 from −20◦ to 20◦ consistently moved both parts of the
ψ(φ) loop towards more positive ψ values (Fig. 8, black
arrows). In addition, we find that increasing ψ0 affected
the “hump” structure (top left part of the curve), since
off-setting the spring makes it easier for the aerodyanmic
force to bend the wing backwards after the front flip. Taken
together, the results in Figs. 6–8 highlight the effect of the
spring modulation on the wing-pitch kinematics during roll
correction.

We performed the spring fitting procedure described above
for all nine wing beats of the same maneuver. Figures 9(a)–9(c)
show the fitted spring parameters as a function of time in

022712-8



WING-PITCH MODULATION IN MANEUVERING FRUIT . . . PHYSICAL REVIEW E 92, 022712 (2015)

FIG. 9. (Color online) [(a)–(c)] the fitted spring parameters k, c, and ψ0, as a function of time in wing beats for the maneuver analyzed in
Figs. 1–4 and 6. The time t = 0 corresponds to wing beat in which the fly was perturbed. Data are shown for the right wing in red (light gray)
and for the left wing in blue (dark gray). Error bars correspond to the fit’s confidence intervals (CI). [(d)–(f)] The same fit results for k, c, and
ψ0, plotted as a function of the wing-stroke amplitude for the corresponding wing beat of each wing. The CI are the same as in (a)–(c).

wing beats, such that t = 0 corresponds to the wing beat
during which the fly was perturbed. While the changes in
the fitted k and ψ0 values during the maneuver are comparable
to the fit CI, the changes in c are much larger than the CI.
Figure 9 shows a significant change in c during the active
part of the maneuver. The damping coefficient of the right
wing showed an increase of c followed by a decrease to its
premaneuver value. The maximum change in c was a 67%
increase observed during wing beat 2. Concomitantly, c of the
left wing decreased by 32% before increasing back to its value
prior to the perturbation. At the end of the maneuver c of the left
wing was slightly larger than c of the right wing, corresponding
to the roll countertorque the fly generates at that time. The
variations in spring parameters shown in Fig. 9 should be
compared against the variations during nonmaneuvering flight
(Appendix B), which are much smaller: We find standard
deviations of ±2.3 pN×m/deg in k, ±2 fN×m/(deg s−1) in
c, and ±3.5◦ in ψ0. We note that the variations in k and
c during volitional yaw tuning maneuvers, in which ψ0 is
modulated [73], are also smaller than the modulation of these
parameters reported here.

To further illustrate the the coupling between the wing-
stroke and wing-pitch kinematics, we plot the fitted spring
parameters as a function the wing-stroke amplitude � in
each wing beat of the same maneuver [Figs. 9(d)–9(f)]. The
elastic coefficient k shows a slight increase with �. The
fitted values of ψ0 are uncorrelated with �. In contrast, c

shows a clear increase with �, indicating that an increasing

wing amplitude is correlated with an increasing damping
coefficient.

We analyze 10 maneuvers in our data set and fit the
spring coefficients for each wing beat. The mean preper-
turbation spring parameters are k = 46 ± 7 pN×m/deg, c =
29 ± 3 fN×m/(deg s−1), and ψ0 = −7 ± 5◦ (mean±standard
deviation for n = 20). To highlight the changes in the spring
parameters during the maneuvers we plot the differences
�k, �c, and �ψ0 with respect to their values prior to the
maneuver (Fig. 10). Figures 10(a)–10(c) show the values of
these differences for each wing stroke with separated symbols
for the “bottom” wing in the roll maneuver (the wing that
flaps with larger �, red circles) and the “top” wing (blue
squares). While the data for �ψ0 are not correlated with
�, the data for �k and �c are correlated with �. Both
parameters have correlation coefficients of ∼0.5 ± 0.15 (value
±95% confidence interval) and these correlations are highly
significant (p = 3.6×10−10 for �k and p = 8.8×10−8 for
�c). Finally, we note that for � values smaller than the mean
preperturbation value �mean = 156◦ ± 2.5◦ (mean±standard
error for n = 20), we see that �c is scattered around 0 and
for � > �mean �c increases with �. To quantify this trend we
calculate the means of �k, �c, and �ψ0 for the data points
with � � �mean and similarly for those with � > �mean. The
means are shown in the bar plots in Figs. 10(d) and 10(e),
with error bars representing the standard error of each mean.
This analysis shows that while �ψ0 has no significant �

dependence (p = 0.48), we see a clear � dependence of �k
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(a)

(b)

(c) (f)

(e)

(d)

FIG. 10. (Color online) [(a)–(c)] The differences in the fitted spring parameters �k, �c, and �ψ0 calculated with respect to their values
for the corresponding wing prior to each maneuver. The differences are plotted as a function of the wing-stroke amplitude �. The first six wing
beats for each of the 10 maneuvers analyzed are shown, constituting the active part of each maneuver [21]. Red (light gray) circles indicate
data for the “bottom” wing in each roll maneuver, which is the wing that flapped with increased stroke amplitude to exert roll correcting torque.
Blue (dark gray) squares indicate data for the “top” wing in each maneuver. A dashed black line on each plot in (a)–(c) indicates the mean
stroke amplitude before the maneuver �mean = 156◦ ± 2.5◦ (mean±standard error for n = 20). Wing beats with � > �mean. The data for �k

and �c are correlated with �, with correlation coefficients of ∼0.5 ± 0.15 (value ±95% confidence interval) and p values of p = 3.6×10−10

for �k and p = 8.8×10−8 for �c. [(d)–(f)] The mean values of �k, �c, and �ψ0, below and above the � = 165◦ threshold. Black error bars
indicate the standard error of each mean. The p values in each plot are the results of a t test comparing the data below and above the threshold.

and �c, with p values of p = 3.6×10−10 and p = 8.8×10−8,
respectively. Together, Fig. 10 shows that both k and c

increase at higher wing-stroke amplitude associated with the
wing-stroke amplitude asymmetry the flies apply during roll
correction maneuvers.

IV. SUMMARY AND OUTLOOK

We used measured body and wing kinematic data of fruit
flies to show how asymmetric changes in the spring parameters
give rise to differences in wing-pitch kinematics during roll
correction maneuvers. In previous work it was shown that flies
can control the rest angle ψ0 to modulate their wing pitch and
perform yaw turns [73]. Here, we highlight that fruit flies can
also modulate the effective spring damping coefficient c and
elastic coefficient k. This work builds on previous studies that
used a damped torsional spring model [62,64,65,73,78] and on
studies that showed that the torques exerted by the hinge can be
approximated by a such a spring by analytically recovering the
spring torque from measured kinematic data [56,73]. Here we

use this torsional spring model to directly solve the equation
of motion for the wing pitch and reproduce its intricate
kinematics.

Our results directly address the question of whether ψ is
actively or passively controlled. Together with a previous anal-
ysis on yaw turns in flies [73], our findings suggest that flies
take advantage of the passive coupling between aerodynamics
and the torsional spring to indirectly control their wing-pitch
kinematics by modulating the spring parameters: damping
coefficient, rest angle, and elastic coefficient. Thus, flies can
control their wing-pitch kinematics on a sub-wing-beat time
scale by modulating all the effective spring parameters on
longer time scales.

The results presented here raise a few open questions,
for example, what physiological mechanism generates the
effective behavior of a torsional spring and, more specifically,
how can damping be physiologically implemented and
modulated? We can propose two alternative mechanisms for
damping generation: the first is an active mechanism based
on a muscle exerting negative work along the pitch axis, such
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as the first basalare muscle (b1) that has been proposed to be
related to wing-pitch control [4,79]. The activity pattern of the
basalare muscles (b1, b2, and b3) as well as the III2 and III3
muscles have been correlated with the position of the ventral
(frontmost) flip of the wing stroke angle, making these muscles
additional candidates for wing-pitch control [6]. The second
proposed mechanism is a passive mechanism that increases
torsional damping at large wing stroke amplitudes [see
Figs. 9(e), 10(b), and 10(e)]. Our results cannot discriminate
between these two proposed mechanisms. A related open
question is the implication of passive aerodynamic effects
to the design of insect wings through their intricate venation
patten [80–82]. Future extensions of this work may include
more detailed spring models such as an asymmetric linear
spring [52] and nonlinear springs [58], as well as studying
wing-pitch kinematics in insects with flexible wings. Finally,
applying the methods developed here to other organisms
may reveal whether the modulations of relatively simple
biomechanic parameters that allow an animal to control its
complex motion is a general design principle of biolocomotion.
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APPENDIX A: EQUATION OF MOTION FOR ψ

Given below are the terms in the equation of motion for
ψ [Eq. (9)] that were implicitly specified in the main text.
The rotation matrix Tb→w from the body frame of reference
to the wing frame of reference consists of two rotations: a
rotation from the body frame to the wing-stroke place frame
followed by a rotation from the wing-stroke frame to the
wing frame. We define M(α,β,γ ) as the Euler rotation matrix
corresponding to a rotation of α radians in yaw, β radians in
pitch, and γ radians in roll. The matrix Tb→w becomes:

Tb→w = M(φ,θ,ψ) M(0,θb0,0)T , (A1)

where θb0 is the measured pitch angle of the stroke plane with
respect to the body frame of reference. For fruit flies we typ-
ically measure θb0 ≈ 45◦. The remaining terms in Eq. (9) are

ω̇w,w,2 = −θ̈ cos ψ + φ̈ cos θ sin ψ + θ̇ ψ̇ sin ψ

− φ̇θ̇ sin θ sin ψ + φ̇ψ̇ cos θ cos ψ, (A2)

ω̇b,w = Ṫb→w · ωb,b + Tb→w · ω̇b,b, (A3)

�1�3 = (ωw,w,1 + ωb,w,1)(ωw,w,3 + ωb,w,3). (A4)

FIG. 11. (Color online) [(a)–(c)] The fitted spring parameters k, c, and ψ0 as a function of time in wing beats for a fly hovering for 22 wing
beats. Data are shown for the right [red (light gray)] and left [blue (dark gray)] wing and the error bars correspond to the fit’s confidence intervals
(CI). The mean and standard deviation values for the spring parameters of the left (L) and right (R) wings are kL = 47 ± 2.6 pN×m/deg, cL =
29 ± 1.6 fN×m/(deg s−1), ψ0,L = −10 ± 3.5◦, kR = 54 ± 2.3 pN×m/deg, cR = 24 ± 2 fN×m/(deg s−1), and ψ0,R = −4 ± 3.5◦. [(d)–(f)]
The same fit results for k, c, and ψ0, plotted as a function of the wing-stroke amplitude for the corresponding wing beat of each wing. The CI
are the same as in (a)–(c). The mean stroke amplitude of both wings was 151.4 ± 2◦ (mean±standard deviation, n = 44).
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We note that differences between the parameter values
determined in Ref. [73] and the current manuscript are
primarily due to the more accurate equation of motion used in
the present study. The equation of motion used here considers
the wing rotating frame of reference that results in fictitious
torques along the wing-pitch axis.

APPENDIX B: SPRING PARAMETERS DURING
NONMANEUVERING FLIGHT

To test whether the spring parameters change when a fly
is not maneuvering, we analyzed a movie of a fly hovering
with no magnetic pin glued on its back and, hence, no

external perturbation. The movie consisted of 22 wing beats
in which the fly’s center-of-mass speed was lower than
60 mm s−1, equivalent to 0.09 body lengths per wing beat.
The mean stroke amplitude of both wings was 151.4 ± 2◦
(mean±standard deviation, n = 44). The fitted spring pa-
rameters for every wing beat of each wing are plotted in
Fig. 11. The mean and standard deviation in the fitted spring
parameters for the left wing are k = 47 ± 2.6 pN×m/deg,
c = 29 ± 1.6 fN×m/(deg s−1), and ψ0 = −10 ± 3.5◦. The
values for the right wing are k = 54 ± 2.3 pN×m/deg, c =
24 ± 2 fN×m/(deg s−1), and ψ0 = −4 ± 3.5◦. The variation
in k and c is markedly smaller than the variation of these
parameters during roll correction maneuvers.
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[49] R. Å. Norberg, J. Comp. Physiol. 81, 9 (1972).
[50] A. R. Ennos, J. Exp. Biol. 127, 355 (1987).
[51] A. R. Ennos, J. Exp. Biol. 140, 161 (1988).
[52] A. R. Ennos, J. Exp. Biol. 140, 137 (1988).
[53] A. R. Ennos, J. Exp. Biol. 142, 87 (1989).

022712-12

http://dx.doi.org/10.1146/annurev.en.39.010194.002233
http://dx.doi.org/10.1146/annurev.en.39.010194.002233
http://dx.doi.org/10.1146/annurev.en.39.010194.002233
http://dx.doi.org/10.1146/annurev.en.39.010194.002233
http://dx.doi.org/10.1016/S0065-2806(07)34005-8
http://dx.doi.org/10.1016/S0065-2806(07)34005-8
http://dx.doi.org/10.1016/S0065-2806(07)34005-8
http://dx.doi.org/10.1016/S0065-2806(07)34005-8
http://dx.doi.org/10.1007/BF00225830
http://dx.doi.org/10.1007/BF00225830
http://dx.doi.org/10.1007/BF00225830
http://dx.doi.org/10.1007/BF00225830
http://dx.doi.org/10.1242/jeb.01229
http://dx.doi.org/10.1242/jeb.01229
http://dx.doi.org/10.1242/jeb.01229
http://dx.doi.org/10.1242/jeb.01229
http://dx.doi.org/10.1016/j.conb.2004.10.004
http://dx.doi.org/10.1016/j.conb.2004.10.004
http://dx.doi.org/10.1016/j.conb.2004.10.004
http://dx.doi.org/10.1016/j.conb.2004.10.004
http://dx.doi.org/10.1016/j.conb.2010.02.002
http://dx.doi.org/10.1016/j.conb.2010.02.002
http://dx.doi.org/10.1016/j.conb.2010.02.002
http://dx.doi.org/10.1016/j.conb.2010.02.002
http://dx.doi.org/10.1073/pnas.0912548107
http://dx.doi.org/10.1073/pnas.0912548107
http://dx.doi.org/10.1073/pnas.0912548107
http://dx.doi.org/10.1073/pnas.0912548107
http://dx.doi.org/10.1098/rstb.1956.0007
http://dx.doi.org/10.1098/rstb.1956.0007
http://dx.doi.org/10.1098/rstb.1956.0007
http://dx.doi.org/10.1098/rstb.1956.0007
http://dx.doi.org/10.1098/rstb.1984.0051
http://dx.doi.org/10.1098/rstb.1984.0051
http://dx.doi.org/10.1098/rstb.1984.0051
http://dx.doi.org/10.1098/rstb.1984.0051
http://dx.doi.org/10.1126/science.284.5422.1954
http://dx.doi.org/10.1126/science.284.5422.1954
http://dx.doi.org/10.1126/science.284.5422.1954
http://dx.doi.org/10.1126/science.284.5422.1954
http://dx.doi.org/10.1242/jeb.00663
http://dx.doi.org/10.1242/jeb.00663
http://dx.doi.org/10.1242/jeb.00663
http://dx.doi.org/10.1242/jeb.00663
http://dx.doi.org/10.1146/annurev.fluid.36.050802.121940
http://dx.doi.org/10.1146/annurev.fluid.36.050802.121940
http://dx.doi.org/10.1146/annurev.fluid.36.050802.121940
http://dx.doi.org/10.1146/annurev.fluid.36.050802.121940
http://dx.doi.org/10.1103/RevModPhys.86.615
http://dx.doi.org/10.1103/RevModPhys.86.615
http://dx.doi.org/10.1103/RevModPhys.86.615
http://dx.doi.org/10.1103/RevModPhys.86.615
http://dx.doi.org/10.1098/rstb.1999.0442
http://dx.doi.org/10.1098/rstb.1999.0442
http://dx.doi.org/10.1098/rstb.1999.0442
http://dx.doi.org/10.1098/rstb.1999.0442
http://dx.doi.org/10.1073/pnas.1000615107
http://dx.doi.org/10.1073/pnas.1000615107
http://dx.doi.org/10.1073/pnas.1000615107
http://dx.doi.org/10.1073/pnas.1000615107
http://dx.doi.org/10.1242/jeb.062760
http://dx.doi.org/10.1242/jeb.062760
http://dx.doi.org/10.1242/jeb.062760
http://dx.doi.org/10.1242/jeb.062760
http://dx.doi.org/10.1098/rsif.2015.0075
http://dx.doi.org/10.1098/rsif.2015.0075
http://dx.doi.org/10.1098/rsif.2015.0075
http://dx.doi.org/10.1098/rsif.2015.0075
http://arxiv.org/abs/arXiv:1503.06507
http://dx.doi.org/10.1242/jeb.00381
http://dx.doi.org/10.1242/jeb.00381
http://dx.doi.org/10.1242/jeb.00381
http://dx.doi.org/10.1242/jeb.00381
http://dx.doi.org/10.1242/jeb.007575
http://dx.doi.org/10.1242/jeb.007575
http://dx.doi.org/10.1242/jeb.007575
http://dx.doi.org/10.1242/jeb.007575
http://dx.doi.org/10.1242/jeb.028662
http://dx.doi.org/10.1242/jeb.028662
http://dx.doi.org/10.1242/jeb.028662
http://dx.doi.org/10.1242/jeb.028662
http://dx.doi.org/10.1016/j.paerosci.2010.01.001
http://dx.doi.org/10.1016/j.paerosci.2010.01.001
http://dx.doi.org/10.1016/j.paerosci.2010.01.001
http://dx.doi.org/10.1016/j.paerosci.2010.01.001
http://dx.doi.org/10.1098/rsif.2014.0933
http://dx.doi.org/10.1098/rsif.2014.0933
http://dx.doi.org/10.1098/rsif.2014.0933
http://dx.doi.org/10.1098/rsif.2014.0933
http://dx.doi.org/10.1103/PhysRevE.81.056304
http://dx.doi.org/10.1103/PhysRevE.81.056304
http://dx.doi.org/10.1103/PhysRevE.81.056304
http://dx.doi.org/10.1103/PhysRevE.81.056304
http://dx.doi.org/10.1146/annurev-fluid-121108-145456
http://dx.doi.org/10.1146/annurev-fluid-121108-145456
http://dx.doi.org/10.1146/annurev-fluid-121108-145456
http://dx.doi.org/10.1146/annurev-fluid-121108-145456
http://dx.doi.org/10.1093/jxb/40.8.941
http://dx.doi.org/10.1093/jxb/40.8.941
http://dx.doi.org/10.1093/jxb/40.8.941
http://dx.doi.org/10.1093/jxb/40.8.941
http://dx.doi.org/10.1073/pnas.1212286109
http://dx.doi.org/10.1073/pnas.1212286109
http://dx.doi.org/10.1073/pnas.1212286109
http://dx.doi.org/10.1073/pnas.1212286109
http://dx.doi.org/10.1016/S0300-9629(96)00162-4
http://dx.doi.org/10.1016/S0300-9629(96)00162-4
http://dx.doi.org/10.1016/S0300-9629(96)00162-4
http://dx.doi.org/10.1016/S0300-9629(96)00162-4
http://dx.doi.org/10.1007/BF00312139
http://dx.doi.org/10.1007/BF00312139
http://dx.doi.org/10.1007/BF00312139
http://dx.doi.org/10.1007/BF00312139
http://dx.doi.org/10.1007/BF00619351
http://dx.doi.org/10.1007/BF00619351
http://dx.doi.org/10.1007/BF00619351
http://dx.doi.org/10.1007/BF00619351
http://dx.doi.org/10.1371/journal.pbio.1001823
http://dx.doi.org/10.1371/journal.pbio.1001823
http://dx.doi.org/10.1371/journal.pbio.1001823
http://dx.doi.org/10.1371/journal.pbio.1001823
http://dx.doi.org/10.1098/rsif.2013.0921
http://dx.doi.org/10.1098/rsif.2013.0921
http://dx.doi.org/10.1098/rsif.2013.0921
http://dx.doi.org/10.1098/rsif.2013.0921
http://dx.doi.org/10.1098/rsif.2014.0239
http://dx.doi.org/10.1098/rsif.2014.0239
http://dx.doi.org/10.1098/rsif.2014.0239
http://dx.doi.org/10.1098/rsif.2014.0239
http://dx.doi.org/10.1242/jeb.048124
http://dx.doi.org/10.1242/jeb.048124
http://dx.doi.org/10.1242/jeb.048124
http://dx.doi.org/10.1242/jeb.048124
http://dx.doi.org/10.1242/jeb.074773
http://dx.doi.org/10.1242/jeb.074773
http://dx.doi.org/10.1242/jeb.074773
http://dx.doi.org/10.1242/jeb.074773
http://dx.doi.org/10.1242/jeb.02166
http://dx.doi.org/10.1242/jeb.02166
http://dx.doi.org/10.1242/jeb.02166
http://dx.doi.org/10.1242/jeb.02166
http://dx.doi.org/10.1523/JNEUROSCI.4198-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.4198-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.4198-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.4198-06.2007
http://dx.doi.org/10.1016/j.conb.2013.11.005
http://dx.doi.org/10.1016/j.conb.2013.11.005
http://dx.doi.org/10.1016/j.conb.2013.11.005
http://dx.doi.org/10.1016/j.conb.2013.11.005
http://dx.doi.org/10.1093/icb/icu050
http://dx.doi.org/10.1093/icb/icu050
http://dx.doi.org/10.1093/icb/icu050
http://dx.doi.org/10.1093/icb/icu050
http://dx.doi.org/10.1242/jeb.077644
http://dx.doi.org/10.1242/jeb.077644
http://dx.doi.org/10.1242/jeb.077644
http://dx.doi.org/10.1242/jeb.077644
http://dx.doi.org/10.1242/jeb.088922
http://dx.doi.org/10.1242/jeb.088922
http://dx.doi.org/10.1242/jeb.088922
http://dx.doi.org/10.1242/jeb.088922
http://dx.doi.org/10.1007/BF00693547
http://dx.doi.org/10.1007/BF00693547
http://dx.doi.org/10.1007/BF00693547
http://dx.doi.org/10.1007/BF00693547


WING-PITCH MODULATION IN MANEUVERING FRUIT . . . PHYSICAL REVIEW E 92, 022712 (2015)

[54] J. A. Miyan and A. W. Ewing, J. Exp. Biol. 136, 229 (1988).
[55] S. A. Combes and T. L. Daniel, J. Exp. Biol. 206, 2999

(2003).
[56] A. J. Bergou, S. Xu, and Z. Wang, J. Fluid Mech. 591, 321

(2007).
[57] D. Ishihara, Y. Yamashita, T. Horie, S. Yoshida, and T. Niho,

J. Exp. Biol. 212, 3882 (2009).
[58] Z. Khan, K. Steelman, and S. Agrawal, in Robotics and

Automation, 2009. ICRA’09. IEEE International Conference on
(IEEE, 2009), pp. 3651–3656.

[59] J. Whitney and R. Wood, J. Fluid Mech. 660, 197 (2010).
[60] K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. J. Wood,

Science 340, 603 (2013).
[61] Z. Teoh and R. J. Wood, in Robotics and Automation

(ICRA), 2013 IEEE International Conference on (IEEE, 2013),
pp. 1381–1388.

[62] D.-w. Peng and M. Milano, J. Fluid Mech. 717, R1 (2013).
[63] D. Ishihara, T. Horie, and T. Niho, Bioinspir. Biomimet. 9,

046009 (2014).
[64] L. Hines, D. Campolo, and M. Sitti, IEEE Transact. on Robotics

30, 220 (2014).
[65] J. Toomey and J. D. Eldredge, Phys. Fluids (1994-present) 20,

073603 (2008).
[66] M. Vanella, T. Fitzgerald, S. Preidikman, E. Balaras, and B.

Balachandran, J. Exp. Biol. 212, 95 (2009).
[67] D. Ishihara, T. Horie, and M. Denda, J. Exp. Biol. 212, 1 (2009).
[68] J. Zhang, N.-S. Liu, and X.-Y. Lu, J. Fluid Mech. 659, 43

(2010).

[69] H. Mahjoubi and K. Byl, J. Intelligent Robot. Syst. 70, 181
(2013).

[70] C. Chevallereau, M. Porez, and F. Boyer, in Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International Con-
ference on (IEEE, 2014) pp. 3404–3410.

[71] Y. Qin, B. Cheng, and X. Deng, in Intelligent Robots and
Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on (IEEE, 2014) pp. 3193–3200.

[72] Y. Segev, Lift Generation by Flapping Wings in Hover, Master’s
thesis, Technion – Israel Institute of Technology (2014).

[73] A. J. Bergou, L. Ristroph, J. Guckenheimer, I. Cohen, and Z. J.
Wang, Phys. Rev. Lett. 104, 148101 (2010).

[74] J. Young, S. M. Walker, R. J. Bomphrey, G. K. Taylor, and
A. L. Thomas, Science 325, 1549 (2009).

[75] L. Ristroph, G. J. Berman, A. J. Bergou, Z. J. Wang, and I.
Cohen, J. Exp. Biol. 212, 1324 (2009).

[76] G. J. Berman and Z. J. Wang, J. Fluid Mech. 582, 153 (2007).
[77] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics,

3rd ed. (Addison Wesley, San Francisco, CA, 2002).
[78] P. Parks, B. Cheng, Z. Hu, and X. Deng, in Intelligent Robots

and Systems (IROS), 2011 IEEE/RSJ International Conference
on (IEEE, 2011), pp. 574–579.

[79] M. H. Dickinson, F.-O. Lehmann, and K. Götz, J. Exp. Biol.
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