
PHYSICAL REVIEW E 92, 022709 (2015)

Model for calcium-mediated reduction of structural fluctuations in epidermis
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We propose a reaction-advection-diffusion model of epidermis consisting of two variables, the degree of
differentiation and the calcium ion concentration, where calcium ions enhance differentiation. By analytically
and numerically investigating this system, we show that a calcium localization layer formed beneath the stratum
corneum helps reduce spatiotemporal fluctuations of the structure of the stratum corneum. In particular, spatially
or temporally small-scale fluctuations in the lower structure are suppressed and do not affect the upper structure,
due to acceleration of differentiation by calcium ions. Analytical expressions for the reduction rate of fluctuation
amplitudes are shown.
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I. INTRODUCTION

Skin is an important organ for mammals: it serves as a bar-
rier by blocking chemical and physical attacks from outside,
as well for keeping body fluid inside. The inner part of the
skin is called the dermis, where blood vessels and nerve fibers
exist; and the outer part is the epidermis, where epidermal cells
(keratinocytes) form a layered structure. The barrier function is
maintained by the outermost layers of keratinocytes, called the
stratum corneum (SC), where keratinocytes have undergone
terminal differentiation (cornification). An ordered structure
of the SC is important to fully exhibit the barrier function [1].

The SC is maintained by continuous supply of epidermal
cells from the basal layer, which is located along the boundary
between the epidermis and the dermis. This boundary is known
to be highly undulated, while the boundary between the SC
and the rest of the epidermis is flat [Fig. 1(a)]. In addition,
timing of stem cell division is stochastic. Therefore, in order
to realize a flat boundary of the SC in spite of such spatially and
temporally inhomogeneous supply of the cells, there must be
a mechanism that helps coordinate the timing of cornification,
which remains to be found.

Several experiments have shown that a calcium localization
layer, which exists just beneath the SC, plays a vital role
in epidermal homeostasis [2–4]. Motivated by these obser-
vations, we have recently proposed a mathematical model
of the epidermis, which has revealed that calcium dynamics
can stabilize the structure of the SC [5,6]. This model was
based on particle dynamics for cell movements and reaction-
diffusion process for calcium dynamics, where individual
cells are assigned the degree of differentiation as an inner
variable, which is affected by calcium dynamics. Because of
its complexity, however, little insight has been obtained on
how calcium stabilizes the structure of the SC.

In this study, we propose an analytically tractable model
of the epidermis, which is based on a reaction-advection-
diffusion system. In this model, it is assumed that the dif-
ferentiation process is accelerated by the presence of calcium
ions and that a sustained calcium excitation is induced by
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FIG. 1. (Color online) (a) Cross section of a human skin sample.
The yellow (bright) solid curve is the boundary between the dermis
(below) and the epidermis (above). The broken curve is the boundary
between the SC (above) and the rest of the epidermis. (Image courtesy
of M. Denda, Shiseido Co., Ltd., Japan.) (b) Schematic of the
epidermal section, where the solid and the broken curves correspond
to those in panel (a). The solid curve determines the lower interface,
denoted by z = f (x,t), and the broken curve determines the upper
interface, denoted by z = h(x,t).

cornification. We show that when the lower structure of the
epidermis has fluctuations in space and time, only those with
larger scales can affect the upper structure, especially the SC,
and those with shorter scales are suppressed due to the effect
of calcium ions. We give analytical expressions that relate the
fluctuation amplitude of the upper structure to that of the lower
structure.

II. MODEL

The following processes are known to be responsible for
the formation of the stratum corneum: (a) reproduction of
epidermal cells in the basal layer; (b) upward migration of
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the reproduced cells; and (c) differentiation of the cells during
migration, and especially cornification as a terminal differ-
entiation. Also, as mentioned above, (d) calcium dynamics
beneath the SC could be another important factor.

As the simplest model that can describe these processes,
we consider two variables, c(x,z,t) and S(x,z,t), representing
the calcium ion distribution and the degree of differentiation,
respectively, defined in a two-dimensional system. Note that
individual cells are not directly considered here: In this con-
tinuous description, c(x,z,t) and S(x,z,t) must be understood
as coarse-grained values of the cells around the point (x,z).
The degree of differentiation S(x,z,t) specifies the state of the
cells at (x,z): At S = 0, cells are produced in the basal layer; S
increases in z direction, which corresponds to a differentiation
process during migration; and at S = 1, cells are considered to
undergo cornification. The region S > 1 thus defines the SC.

The model is considered in the following space: � =
{(x,z)|0 � x � L,f (x,t) � z}. The boundary between the
dermis and the epidermis is given by the function f (x,t), which
we call the lower interface. The other boundary separating the
SC and the rest of the epidermis is denoted by z = h(x,t),
which we call the upper interface. By definition, S|z=f (x,t) = 0
and S|z=h(x,t) = 1. The lower interface is given as a boundary
condition, while the upper interface is determined by S(x,z,t).

The dynamics of c(x,z,t) and S(x,z,t) are governed by

∂c

∂t
= D∇2c − γ c + σδ(z − h(x,t)), (1)

∂S

∂t
= −U

∂S

∂z
+ α + βc. (2)

Upward migration is expressed as an advection term with
a constant velocity U . A normal differentiation process is
represented by α, and when calcium exists, differentiation
is accelerated by a factor β [7]. Calcium dynamics obeys
the diffusion equation with decay, which accounts for ex-
perimental observations that calcium waves in the epidermis
propagate only within a finite range [5,8–10]. The source
of calcium ions, which is represented by the δ function, is
considered to be located along the upper interface z = h(x,t),
according to an experimental finding that sustained calcium
excitation occurs around dead cells, which might account for
the calcium localization layer beneath the SC [11]. Hence,
in this model, calcium dynamics is affected by the shape of
the upper boundary h(x,t), which is implicitly determined
by the relationship S|z=h(x,t) = 1, while the differentiation is
accelerated in the regions where the calcium concentration is
high.

In the analysis below, we try to find how the upper interface
z = h(x,t) is determined from a given lower interface z =
f (x,t) [see Fig. 1(b)]. It is obvious that if the dermis is flat and
the migration speed is uniform in x, the timing of cornification
is also uniform in x, resulting in a uniform upper interface.
Hence, spatial inhomogeneity in x should be caused by the
different timing of cornification in x. It should be noted that
such inhomogeneities are different from elastic deformation of
the originally flat interface: Spatially uniform migration speed
U means that the arrangement of the cells is unchanged and
hence there is no source of deformation. Therefore, the spatial

structure of the SC is solely caused by the spatial dependence
of S(x,z,t).

The upper interface is well-defined only when S(x,z,t) is a
monotonically increasing function in z near the region S ∼ 1.
In stationary states this is assured from Eq. (2): ∂zS = (α +
βc)/U > 0. However, this is not maintained when the lower
interface changes too fast in time. Throughout this paper, we
only consider the case where the upper interface is always well-
defined. Also we exclude cases where f (x,t) is a multivalued
function in x. Also, we consider a situation where the effect
of calcium ions is well localized around the upper interface
and does not affect the state around the lower interface, which
is consistent with physiological situations. In other words,
we consider a situation where the effect of calcium ions is
negligible around the lower interface.

III. ANALYTICAL RESULTS

An analytical treatment is possible when the lower interface
has only a small deviation from z = 0: f (z,t) = O(ε). In this
case, the upper interface h(x,t) is also expected to have a
small dependence on x and t of order O(ε). Let us choose a
new coordinate to eliminate h-dependence of the δ function
and simplify the analysis:

x̃ = x, (3)

z̃ = z − h(x,t), (4)

t̃ = t. (5)

We also introduce new variables:

u(x̃,z̃,t̃) = u(x,z − h(x,t),t) = c(x,z,t), (6)

s(x̃,z̃,t̃) = s(x,z − h(x,t),t) = S(x,z,t). (7)

Then Eqs. (1) and (2) are rewritten as

∂u

∂t
− ḣ

∂u

∂z
= D

{
∂2

∂x2
− 2h′ ∂2

∂x∂z
− h′′ ∂

∂z

+ [1 + (h′)2]
∂2

∂z2

}
u − γ u + σδ(z), (8)

∂s

∂t
− ḣ

∂s

∂z
= −U

∂s

∂z
+ α + βu, (9)

where ḣ ≡ ∂th and h′ ≡ ∂xh; and tildes of x̃, ỹ, and z̃ are
dropped for simplicity.

For this system we perform perturbation expansions: u, s,
and h are expanded as

u(x,z,t) = u0(z) + εu1(x,z,t) + O(ε2), (10)

s(x,z,t) = s0(z) + εs1(x,z,t) + O(ε2), (11)

h(x,t) = h0 + εh1(x,t) + O(ε2). (12)

Here we assume that u and s do not depend on x and t at the
zeroth order.

The boundary conditions are assigned as follows. In real
epidermis, calcium ions do not permeate into the SC, while
the situation around the dermis is not well known. Hence,
instead of imposing realistic boundary conditions, we simply
assume u(x, ± ∞,t) = 0, and separately impose conditions
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on the model parameters so that the calcium distribution is
well localized around the upper interface, as assumed above.

The boundary condition for s is imposed at z =
f (x,t) − h(x,t), which is also expanded in terms of ε.
Since s(x,f (x,t) − h(x,t),t) = 0, by using ∂zs0(−h0) ∼
α+βu0(−h0)

U
∼ α

U
, we have

s0(−h0) = 0, s1(x, − h0,t) = α

U
{h1(x,t) − f (x,t)}. (13)

Also, the cornification condition S = 1 is now written as

s0(0) = 1, s1(x,0,t) = 0. (14)

A. The zeroth order

The zeroth order corresponds to the case f (x,t) = 0, where
the steady-state solutions u0(z) and s0(z) must satisfy

0 = D
∂2u0

∂z2
− γ u0 + σδ(z), (15)

0 = −U
∂s0

∂z
+ α + βu0. (16)

The solution u0(z) is obtained as

u0(z) = A0e
−|z|/λc , (17)

where A0 ≡ σ/(2
√

γD) and λc ≡ √
D/γ . A0 is the value

of u0 at the upper interface: u0(0) = A0. Since the value
at the lower interface is written as u0(−h0) = u0(0)e−h0/λc ,
the assumption that calcium is well localized near the upper
interface is expressed as

e−h0/λc � 1. (18)

Substituting u0(z) into Eq. (16) and taking into account the
boundary condition Eq. (13), s0(z) is also obtained as

s0(z) = α(z + h0)

U
+ βσ

2γU
{1 − e−h0/λc

+ sgn(z)(1 − e−|z|/λc )}. (19)

The cornification condition Eq. (14) determines h0 as

1 = αh0

U
+ βσ

2γU
(1 − e−h0/λc ). (20)

Using the assumption Eq. (18), h0 is explicitly written as

h0 = U

α
− C0λc, (21)

C0 ≡ βA0

α
, (22)

where C0 is a dimensionless parameter, which corresponds to
the ratio of the speed between calcium-dependent differenti-
ation and normal differentiation. If no calcium source exists
(σ = 0), or if calcium does not affect differentiation (β = 0),
the height of the upper interface is simply given by U/α,
and the height decreases due to acceleration of differentiation
induced by calcium ions. The spatial profiles of u0(z) and s0(z)
are shown in Fig. 2.

It should be emphasized that if we return to the original co-
ordinates, c0(x,z,t) = u0(z − h0 − h1(x,t)) and S0(x,z,t) =
s0(z − h0 − h1(x,t)) contains the first order correction h1(x,t).

z

u0(z)
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FIG. 2. (Color online) Steady-state profiles of the zeroth-order
solution u0(z) (blue) and s0(z) (red), with D = γ = σ = 1, U =
0.01, α = 0.0005, and β = 0.01. Circles, numerical data; curves,
analytical expressions [Eqs. (17) and (19)]. Red dotted line corre-
sponds to s0(z) = 1. Shaded region corresponds to the SC, defined by
z satisfying s0(z) � 1.

B. The first order

u1(x,z,t) obeys{
∂t − D

(
∂2
x + ∂2

z

) + γ
}
u1(x,z,t) = (ḣ1 − Dh′′

1)∂zu0(z).

(23)

Since we consider only a small perturbation here, it suffices
to consider a single Fourier mode of f (x,t); we focus on the
following case:

f (x,t) = dq,ω cos qx sin ωt. (24)

Then we adopt the following ansatz for the upper interface:

h1(x,t) = aq,ω cos qx sin(ωt − θ ), (25)

and try to find the solution to Eq. (23) in the following form:

u1(x,z,t) = φq,ω(z,t) cos qx. (26)

Substituting this into Eq. (23), φq,ω(z,t) is obtained as

φq,ω(z,t) = 2A0aq,ω

λc
{e−|z|/λc sin ωt

+ e−κ(q,ω)|z| sin[k(q,ω)|z| − ωt]}, (27)

where

κ(q,ω) ≡ λc
−1

√√√√√(
1 + λ2

cq
2
)2 + γ −2ω2 + 1 + λ2

cq
2

2
, (28)

k(q,ω) ≡ λc
−1

√√√√√(
1 + λ2

cq
2
)2 + γ −2ω2 − (

1 + λ2
cq

2
)

2
.

(29)
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s1(x,z,t) is determined from

(∂t + U∂z)s1(x,z,t) = ḣ1∂zs0(z) + βu1(x,z,t). (30)

We try to obtain s1(x,z,t) in the form

s1(x,z,t) = [Pq,ω(z) cos ωt + Qq,ω(z) sin ωt] cos qx. (31)

From Eqs. (30) and the cornification condition Eq. (14),
Pq,ω(z) and Qq,ω(z) are explicitly obtained, where the values
at z = −h0 are particularly important:

Pq,ω(−h0) =
{
�1(q,ω) sin

ωh0

U
+ �2(q,ω) cos

ωh0

U

}

× αaq,ω

U
, (32)

Qq,ω(−h0) =
{
�1(q,ω) cos

ωh0

U
− �2(q,ω) sin

ωh0

U
+ 1

}

× αaq,ω

U
, (33)

where

�1(q,ω) = −(1 + C0) + C0

{
κ(q,ω)χ1(q,ω)

+
[
k(q,ω) − λcω

U

]
χ2(q,ω)

}
, (34)

�2(q,ω)= C0

{[
k(q,ω)− λcω

U

]
χ1(q,ω) − κ(q,ω)χ2(q,ω)

}
,

(35)

and

χ1(q,ω) = λc

λc
2ω2

U 2 + λc
2q2 + 1(

λc
2ω2

U 2 + λc
2q2 + 1

)2 + γ −2ω2
, (36)

χ2(q,ω) = λc
γ −1ω(

λc
2ω2

U 2 + λc
2q2 + 1

)2 + γ −2ω2
. (37)

Then, using the boundary condition Eq. (13), we finally
obtain the relationship between the amplitudes of the lower
and the upper interfaces:

aq,ω

dq,ω

= 1√
�1(q,ω)2 + �2(q,ω)2

. (38)

This ratio depends on a length scale λc, two time scales γ −1

and U−1λc, and a dimensionless parameter C0.
In the case of real epidermis, it is expected that the timescale

of calcium dynamics is much faster than that of differentiation.
Therefore, it is reasonable to assume γ −1 � U−1λc and
take γ −1ω → 0. In this limit, the ratio of the amplitude is
characterized by only three parameters C0, λc, and U−1λc,
and Eq. (38) is simplified as

aq,ω

dq,ω

= 1√
(1 + C0)2 + C2

0 − 2C0(1 + C0)
√

1 + λc
2q2

1 + λc
2q2 + U−2λc

2ω2

.

(39)

In particular, the following limiting behavior is obtained:

aq,ω

dq,ω

→
{

1 q → 0 and ω → 0
1

1+C0
q → ∞ or ω → ∞, (40)

where the limit of ω is taken while keeping γ −1ω � U−1λcω.
Thus, we find that when the lower interface changes in space
and time, high-wave-number or high-frequency modes are
suppressed by the factor 1/(1 + C0).

The characteristic scales of the length and the time that
separate the two limiting behaviors are determined by solving
the conditions aq,0/dq,0 = 1/2 and a0,ω/d0,ω = 1/2 with
respect to q and ω, respectively. Denoting the solutions by
q∗ and ω∗, we find

q∗ =
√

2C0 − 1

C0 − 1

1

λc
, (41)

ω∗ =
√

3√
C2

0 + 2C0 − 3

U

λc
, (42)

suggesting that the critical spatial scale is determined by
the diffusion length of calcium ions λc, and the critical
time scale is determined by U−1λc, the time needed to move
the distance λc with the velocity U . Note, however, that these
scales are modified by the factors that are decreasing functions
of C0. Thus, the dimensionless parameter C0 affects both the
amplitude ratio and the critical scales. As mentioned before,
C0 corresponds to the effect of calcium ions on differentiation.
Therefore, this result means that as the effect of calcium ions
becomes stronger, undulations with larger and larger spatial
and time scales are suppressed, and the suppression rate itself
becomes larger.

There are several constraints to the parameter values: in
addition to the calcium localization condition [Eq. (18)] and the
above-mentioned separation of the timescale γ −1 � U−1λc,
the thickness of the epidermis must be finite: h0 > 0. Since
C0 also affects the entire thickness of the epidermis [Eq. (21)],
too large C0 collapses the epidermis.

Since we can choose units of length, time, and calcium
concentration arbitrarily, only three parameters are indepen-
dent in this system, and we can find such parameter values
that satisfy all these constraints: For example, Eq. (39) is
plotted in Fig. 3 with D = γ = σ = 1, U = 0.01, α = 0.0005,
and β = 0.01, which yields λc = 1 and C0 = 10. The yellow
(bright) solid curve is given by aq,ω/dq,ω = 1/2, where the
q and ω intercepts are given by q∗ and ω∗, respectively.
In the present choice of the parameters, q∗ = 0.48λc

−1 and
ω∗ = 0.16Uλc

−1.

C. Numerical simulation

We numerically solve Eqs. (1) and (2) for two special
cases, ω = 0 or q = 0, with different amplitudes of f (x,t).
The parameters are the same as in the plot for Fig. 3. We
choose the time step as 0.0001, grid size in x and z as 0.2 and
0.005, respectively, and the explicit Euler method is adopted.
The δ function is approximated by δ(z) = 1

�
√

π
e−z2/�2

. Here,
� = 0.01 is found to provide good accuracy, which has been
confirmed by comparing numerical results of u0(z) and s0(z)
to analytical ones (see Fig. 2).
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FIG. 3. (Color online) Ratio of the amplitudes aq,ω/dq,ω against q
and ω, obtained from Eq. (39), with D = γ = σ = 1, U = 0.01, α =
0.0005, and β = 0.01. The yellow (bright) solid curve corresponds
to aq,ω/dq,ω = 1/2, whose q and ω intercepts are given by Eqs. (41)
and (42), respectively.

Figures 4 and 5 show the numerical results in the case
of ω = 0 and q = 0, respectively. In both cases, when the
amplitude is small, the numerical results are in excellent
agreement with the theoretical curves. When the amplitude
becomes larger, the ratio deviates from the analytical results,
but the overall tendency, i.e., suppression of the amplitude in
high q and ω regions, is preserved. Large deviations in low
q and ω regions come from the fact that the amplitude of
the upper interface is so large that the calcium localization
condition [Eq. (18)] is no longer valid. Also in Fig. 5, data
points cannot be extended to high-frequency regions: when
ωd0,ω/U > 1, s(x,z,t) is no longer a monotonically increasing
function at near s = 0, and if it is not monotonous near s = 1,
the upper interface z = h(x,t) is ill-defined.
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FIG. 4. (Color online) Ratio of the amplitudes aq,0/dq,0 in the
case of time-independent lower interface f (x) = dq,0 cos qx, as a
function of q, with D = γ = σ = 1, U = 0.01, α = 0.0005, and β =
0.01. Numerical data (circles, squares, and triangles) are obtained
for three different values of dq,0; the solid curve is obtained from
Eq. (39) with ω = 0; the dotted line is 1

1+C0
= 0.091. Simulations

were performed until steady states were reached.
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FIG. 5. (Color online) Ratio of the amplitudes a0,ω/d0,ω in the
case of spatially uniform lower interface f (t) = d0,ω sin ωt , as a
function of ω, with D = γ = σ = 1, U = 0.01, α = 0.0005, and β =
0.01. Numerical data (circles, squares, and triangles) are obtained
for three different values of d0,ω; the solid curve is obtained from
Eq. (39) with q = 0. The dotted line is 1

1+C0
= 0.091. Simulations

were performed until periodic solutions were obtained.

IV. DISCUSSION AND SUMMARY

Let us check that the length and the time scales derived
from our parameter choice are consistent with experimental
observations. Without loss of generality, we can set D = γ =
σ = 1, as we did in numerical simulations. This is equivalent
to saying that we set the units of the length and the time as λc =√

D/γ = 1 and γ −1 = 1, respectively. Then there remain
three model parameters: U , α, and β; or equivalently, the
model can be characterized by three dimensionless parameters:
h0/λc, (h0/U )/γ −1, and C0 [Eqs. (21) and (22)], the first two
of which can be estimated from observations.

The first parameter h0/λc is the thickness of the epidermis
measured by the diffusion length of calcium ions. From an
experimental fact that the calcium localization layer beneath
the SC is one cell diameter [2–4], one can estimate that the
diffusion length λc is comparable to the cell size d. On the
other hand, although the thickness of the epidermis varies from
place to place, a typical size is of the order 10d, as is found in
Fig. 1(a), which must be equated with h0. Therefore, h0/λc =
10 calculated from our parameter set is a reasonable choice.

The second parameter (h0/U )/γ −1 is the cell migration
time compared to the time scale of epidermal calcium
dynamics. It is known to be approximately 12 days for an
epidermal cell to migrate from the basal layer to the SC [12],
while a typical timescale of epidermal calcium dynamics
is of the order of minutes. Our parameter choice yields
(h0/U )/γ −1 = 0.001, which corresponds to the timescale of
calcium dynamics estimated as ∼ 17 min, which is acceptable
as a crude order estimation.

On the other hand, the remaining parameter C0, which is
the ratio between the speed of calcium-assisted differentiation
and that of normal differentiation, cannot be estimated directly
from observations. Therefore, we have treated this as a free
parameter. As mentioned above, C0 changes the characteristic
length scale l∗ ≡ 2π/q∗ and the time scale t∗ ≡ 2π/ω∗
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[Eqs. (41) and (42)], as well as determining the limiting
value of the amplitude ratio as 1/(1 + C0). For C0 = 10, as
chosen above, we obtain l∗/λc = 12.9, t∗/γ −1 = 3.92 × 103,
and 1/(1 + C0) = 0.09. This means that spatial fluctuations
comparable to or smaller than the thickness of the epidermis
are reduced with the reduction rate up to 9%. This sounds
reasonable, judging from Fig. 1(a) and other experimental
observations. Also, temporal fluctuations up to three orders
of magnitude longer than calcium dynamics, and in particular
those coming from calcium dynamics themselves, are well
suppressed by the same factor.

We have proposed a mechanism for the formation of the
spatially and temporally uniform SC by the acceleration of
differentiation due to the calcium ion distribution beneath
the SC. In particular, due to this mechanism, small spatial
and temporal scales are filtered out and the SC has only
large-scale fluctuations, which is in accord with experimental
observations. Although we have only considered fluctuations
coming from the lower interface, in reality, there might be
fluctuations of differentiation during the migration process,
or those of calcium distribution. However, such fluctuations
can be short scales in space and time, and are expected to be
suppressed by the same mechanism.

Our simple model does not take into account various
aspects of epidermis: In real epidermis, epidermal cells are
tightly bound. Also, rigidity of the SC and the change of
the cell shape along the differentiation process are neglected.
However, although these features surely contribute to the
structural stability of the epidermis by providing resilience
from deformations of the originally flat structure, they cannot
be principal factors for producing the flat SC structure from
the beginning: the default structure of the SC could be already
spatially inhomogeneous, if cornification occurs at different
altitudes. Our model suggests a way of controlling the timing
of cornification by calcium-dependent differentiation, thereby
producing a flat structure of the SC.

We have assumed for simplicity that the upward migration
U is constant in space and time. The spatial homogeneity of
migration is partly justified due to the fact that cell adhesion
prevents the rearrangement of the neighboring cells except in
the vicinity of the basal layer, where adhesion is weak and cells
can be rearranged so that they are supplied uniformly to the
upper layers. However, when the supply of the cells from the
basal layer largely changes in space and time, migration is no
longer treated as constant. Since such an inhomogeneous cell
supply is considered to occur in skin disorder such as psoriasis,
extension of our model to space-time dependence of U will be
of practical importance.
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APPENDIX: STABILITY ANALYSIS FOR
THE ZEROTH-ORDER SOLUTION

Here we show that the position of the upper interface at
the zeroth order, h = h0, is stable against perturbation to the
zeroth-order solutions u = u0 and s = s0.

Suppose that small perturbations are applied to the steady
state u = u0(z) and s = s0(z) at t = 0. It suffices to consider
a mode containing eikx in x direction. As a result of the
perturbations, u and s deviate from the steady state:

u(x,z,t) = u0(z) + eikxξ (z,t), (A1)

s(x,z,t) = s0(z) + eikxη(z,t). (A2)

By the perturbations, the upper interface is also shifted
from the steady state: h(x,t) = h0 + eikxH (t), where H (t)
is determined through the relation η(−h0,t) = αH (t)/U . The
deviations ξ (z,t) and η(z,t) obey

{
∂t + Dk2 − D∂2

z + γ
}
ξ (z,t) = (Ḣ + Dk2H )∂zu0(z), (A3)

(∂t + U∂z)η(z,t) − βξ (z,t) = Ḣ ∂zs0(z). (A4)

If H is treated as a given function, Eqs. (A3) and (A4) are
inhomogeneous linear equations, and the solutions ξ (z,t) and
η(z,t) have terms that explicitly contain the initial conditions
ξ (z,0) and η(z,0), and other terms that contain H . It is obvious
that the η(z,0) term is advected away for t � h0/U , and the
ξ (z,0) term decays for t � γ −1. Therefore, after a transient
period, the effect of initial perturbations remains only through
H , and it suffices to confirm that these H terms, which are
obtained as the particular solutions to Eqs. (A3) and (A4),
decay in time. Let us try to find them in the form ξ (z,t) =
eλt ξ̃ (z) and η(z,t) = eλt η̃(z), with H (t) = eλt H̃ . Substituting
these into Eqs. (A3) and (A4), we obtain

λc
ξ̃ (z)

H̃
= A0(e

z
λc − e

√
1+γ −1λ+λc

2k2 z
λc ), (A5)

U

α

η̃(z)

H̃
= 1 + C0e

z
λc − C0

e

√
1+γ −1λ+λc

2k2 z
λc

λc
U

λ +
√

1 + γ −1λ + λc
2k2

− e− λz
U

(
1 + C0 − C0

λc
U

λ +
√

1 + γ −1λ + λc
2k2

)
,

(A6)

for z � 0. Using the condition η̃(−h0) = αH̃/U and the
assumption of calcium localization e−h0/λc ∼ 0, we obtain the
eigenvalue equation

0 = 1 + C0 − C0
1 − e−( λ

U
+
√

1+γ −1λ+λc
2k2) h0

λc

λc
U

λ +
√

1 + γ −1λ + λc
2k2

. (A7)

For λ � 0, the exponential term is smaller than e−h0/λc and can
be neglected. Then the right-hand side becomes greater than
C0 > 0. Therefore, no solution exists for λ � 0. Therefore, the
deviation of the upper interface h1(t) decays in time, and we
can conclude that the zeroth-order steady state is stable.
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