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Positioning of nucleosomes along a eukaryotic genome plays an important role in its organization and
regulation. There are many different factors affecting the location of nucleosomes. Some can be viewed as
preferential binding of a single nucleosome to different locations along the DNA and some as interactions
between neighboring nucleosomes. In this study, we analyze positioning of nucleosomes and derive conditions
for their good positioning. Using analytic and numerical approaches we find that, if the binding preferences are
very weak, an interplay between the interactions and the binding preferences is essential for a good positioning
of nucleosomes, especially on correlated energy landscapes. Analyzing the empirical energy landscape, we
conclude that good positioning of nucleosomes in vivo is possible only if they strongly interact. In this case, our
model, predicting long-length-scale fluctuations of nucleosomes’ occupancy along the DNA, accounts well for
the empirical observations.
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I. INTRODUCTION

Our genome is packed and organized by nucleosomes:
histone octamers wrapped around by 147 bp of DNA [1,2].
Nucleosomes are in some cases very well positioned, while
in others they are rather “smeared” along the DNA molecule
[3,4]. Their positioning properties are known to be important
in the regulation of gene expression [5–7]. Most transcription
factors are not able to bind to nucleosomal DNA, such that
sites bound by transcription factors in vivo are nucleosome free
[8]. This argues that transcription factor binding is dependent
on nucleosome occupancy level. Moreover, the location of
transcription factor binding sites with respect to nucleosomes
is important to fine tune the response of genes to activating
signals, as has been revealed for the response to phosphate
starvation in budding yeast [9].

There are many factors which determine positioning of
nucleosomes along the DNA, and their relative influence is
a matter of active debate in the field (see Ref. [10] for a
review). The most discussed positioning mechanism is the
DNA sequence heterogeneity. It is well known that to wrap
DNA around a nucleosome, one needs different energies for
different DNA sequences [11,12]. In this case, the debate
is only about the importance of DNA sequence preferences,
relative to other factors.

An obvious competitor of sequence preferences for nu-
cleosomes’ positioning is thermal fluctuations. All measured
binding energy differences between different sequences do
not exceed a few kBT even for specially designed strongest
binders, which do not exist in known genomes [13–17].
This indicates that, at least in equilibrium, entropic forces
are expected to play an important role. It is not entirely
clear whether the nucleosomes reach (quasi)equilibrium and
how they do it. It was suggested that some active chromatin
remodeling enzymes facilitate the equilibration of the nucle-
osomes by increasing the off rate of the nucleosomes from
the DNA [18]. These and others active chromatin remodeling
enzymes [19,20] and DNA-binding proteins [21] also affect
nucleosomes positioning by actively moving the nucleosomes
and by DNA-binding competition. Moreover, ATP-dependent
chromatin remodelers and DNA-bound factors, such as RNA

polymerase, are believed to be capable of organizing nucleo-
somes. In particular, they may play a major role in vivo [22].
These external interactions, so far, appear to be the most natural
explanation for the major differences between in vitro and in
vivo nucleosome occupancy profiles, observed in Ref. [23] and
others.

In addition to external positioning signals, there are argu-
ments for and evidences of interactions between neighboring
nucleosomes along the DNA [24–35]. A preferential distance
between nucleosomes is evident in vivo but not in vitro (see,
e.g., Refs. [22,36]). Biochemical reconstitution of uniform
spacing requires the action of ATP-dependent remodelers,
giving rise to a density independent spacing at par with
statistical positioning [22]. This argues for the idea that
the preferential spacing observed in vivo is generated by
these ATP-dependent remodelers. In principle, a preferential
distance can be generated by a combination of strong attraction
and steric, hard-core repulsion. In this case, the preferential
linker length between two neighboring nucleosomes is ex-
pected to be very small.

The interactions are also expected to affect nucleosome
positioning. This positioning factor is different from, say,
sequence preferences since it depends not on the absolute
position of a nucleosome on the DNA, but on the relative
position of two nucleosomes: the distance between two
neighboring nucleosomes.

In this study, for simplicity, we group all the positioning
factors to two types. The first type includes all the factors
which determine the position of a single nucleosome. One
can characterize it by an effective binding energy landscape
of a nucleosome along the DNA molecule, that depends
only on the location of the nucleosome along the DNA. The
second type corresponds to interactions between neighboring
nucleosomes. We characterize this positioning factor by an
effective interaction potential, that depends only on the
distance between two neighboring nucleosomes. We assume
that nucleosomes cannot invade each others DNA territories
(although it is not entirely true [37–39], this is not expected to
affect significantly the conclusions of this study). In addition,
we analyze only the equilibrium distribution of nucleosomes,
ignoring nonequilibrium aspects.
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FIG. 1. Illustration of how interactions between nucleosomes improve their positioning along the DNA. In this toy example, “nucleosomes”
are merely particles of 1-bp size with disordered binding energy landscape on 400-bp-long, circular “DNA.” (a) Binding energies of a single
nucleosome are i.i.d random variables with a Gaussian distribution with the standard deviation of σ = 1.5kBT . (b) Binding energies of a single nu-
cleosome are normally distributed with the standard deviation of σ and are correlated, such that 〈EiEi+r〉 = σ 2e− r

rc , with rc = 20. (c) The prob-
ability that the site i is occupied by a nucleosome ni is plotted vs i for 10 noninteracting nucleosomes located on the binding energy profile from
(a). (d) The same as (c) but for the binding energy profile from (b). (e) The same as (c) but for nucleosomes with strong interactions, such that
the distance between two neighboring nucleosomes is constrained to 15 bp. (f) The same as (e) but for the binding energy profile from (b).

In general, we address the following question: Within the
framework of the above assumptions, what should be the
properties of the effective energy landscape and effective
interaction potential between neighboring nucleosomes to
achieve a good positioning? We analyze energy landscapes
with different properties and different interaction potentials
and derive conditions leading to good positioning of nucleo-
somes. Our results suggest that the most crucial parameters for
positioning are as follows: standard deviation of the binding
energy distribution σ , autocorrelation length of binding energy
rc, and affinity of the interactions κ . We show that strong
interactions (large values of κ) between nucleosomes signifi-
cantly improve their positioning even on an almost flat (small
values of σ ) and highly correlated (large values of rc) energy
landscape. In this case, if the positioning is good, one expects
to observe also large-length-scale fluctuations of nucleosome
occupancy along the DNA. We find that such fluctuations can
be clearly observed in published experimental data. Moreover,
comparing predictions of our model with strong interactions to
the experimental study, we find good qualitative (similar long-
length-scale fluctuations) and quantitative (similar occupancy
profiles on long length scales) agreement. In sum, our results
suggest that interactions between neighboring nucleosomes

play an important role in positioning of nucleosomes both
locally, on short length scales, and globally, on long length
scale. The last type of positioning merely means that there are
long regions (more than 104 bp) along the genome, which are
nucleosomes enriched or depleted.

Before we start with detailed description of the model and
its analysis, it might be instructive to illustrate the main mes-
sage of the paper with a toy example. Consider noncorrelated
Gaussian binding energy landscape with standard deviation of
1.5kBT , on a circular DNA of length 400 bp [see Fig. 1(a)].
Ten noninteracting “nucleosomes” of size 1 bp cannot be
well positioned with such a weak energetic disorder [see
Fig. 1(c)]. However, adding very strong interaction between
the nucleosomes, such that the distance between them is
restricted to 15 bp, one gets good positioning on the same,
weak energetic profile [see Fig. 1(e)]. Autocorrelation of
an energy [see Fig. 1(b)] makes the positioning even more
problematic [see Fig. 1(b)]. However, again, strong interac-
tions between the nucleosomes improve it to a reasonable
level [see Fig. 1(d)]. In the paper we will derive, within a
quite general set of assumptions, conditions for positioning
on uncorrelated and correlated binding energy landscapes.
In Figs. 1(e) and 1(f), one can see that, when interactions
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between the nucleosomes are exploited for a better positioning,
there are long-length-scale fluctuations of the nucleosomes’
occupancy along the DNA: there are long enriched and long
depleted regions. In the following, we analyze the properties
of such regions and demonstrate the relevance of this effect to
empirical data.

The structure of the paper is as follows. In Sec. II we
formulate the model we use. In Sec. III we define the
quantities we use to characterize positioning of nucleosomes
on the DNA. In Sec. IV we analyze positioning of a single
nucleosome. The purpose of this section is not only didactic,
because we use its results in the following. In Sec. V we
analyze positioning of many nucleosomes with only hard-core
interactions. The purpose of this section is to contrast it to the
case with interactions between neighboring nucleosomes and
demonstrate the importance of these interactions in Sec. VI.
We generalize our results for energy landscapes with an
autocorrelation in Sec. VII. In Sec. VIII we discuss relevance
of our conclusions to real systems and compare to empirical
results. After discussion about tunability and robustness of
positioning issues, emerging from our results, in Sec. IX,
we summarize in Sec. X. We proceed now with a detailed
description of our model.

II. MODEL

We analyze the following lattice based model, which
is often used to calculate occupancy of DNA-binding pro-
teins [40]. In a grand-canonical ensemble, on average N

nucleosomes are located on a linear DNA of length L, in
units of bp, with reflecting boundaries. Note that near the
saturation of the DNA by nucleosomes the grand-canonical
and canonical ensembles may be different [20,41]. Each
nucleosome occupies W = 147 bp on the DNA, such that if
its leftmost position is bound to a site i, another nucleosome
cannot bind with its leftmost position to any of the sites in
the interval [i − W + 1,i + W − 1]. Due to DNA sequence
preferences of nucleosomes, or any other reason, a nucleosome
bound with its leftmost position to site i possesses an effective
free energy Ei . In addition to this energy there is an interaction
energy between two neighboring nucleosomes. Given the
distance r � 0 between the leftmost positions of the two
nucleosomes, the interaction energy is denoted by V (r). The
hard-core interaction is realized by V (r) = ∞ for 0 � r < W .
To obtain the equilibrium properties of the nucleosomes we
numerically solve the recursive equation for the partition
function [42,43].

Our focus is the following question: What should be
the properties of the signal in the one-nucleosome energy
profile along the DNA Ei and the interaction between the
nucleosomes V (r) to achieve good positioning of nucleosomes
on the DNA? In the next section we define this question in more
quantitative terms.

III. QUANTITIES OF INTEREST

In this paper, we focus on several quantities which reflect
positioning of nucleosomes. Each one of them can be derived
from an equilibrium probability of the site i to be covered
by the leftmost position of a nucleosome ni (start site

probabilities). The average number of nucleosomes N is given
by

N =
L∑

i=1

ni. (1)

We also define an ordered vector of occupancies no
m, such that

no
1 is the occupancy of the most occupied site (site with the

highest value of ni), no
2 is the occupancy of the second-most

occupied site, etc.
For cases when it is not important how a base pair along

the DNA is covered by a nucleosome (by which part of the
nucleosome it is covered) the occupancy function

ρi =
W−1∑
j=0

ni−j (2)

is of interest. We define the average coverage of the DNA by

ρ = 1

L

L∑
i=0

ρi = NW

L
. (3)

There are different ways to define a measure of how well
nucleosomes are positioned along the DNA. In this paper, we
use a very simple one: given that there are N nucleosomes,
we define as P the fraction of nucleosomes which occupies N

(the average number of nucleosomes) most occupied locations
along the DNA. Namely,

P =
∑N

m=1 no
m∑L

m=1 no
m

= 1

N

N∑
m=1

no
m. (4)

In the case of a single nucleosome N = 1 this definition
becomes simply the occupation probability of the ground state:
the order parameter of, say, the random energy model [44].
For multiple nucleosomes P can be viewed as a fraction
of well positioned nucleosomes. In the case of a perfect
positioningP = 1, while in case of no positioning whatsoever,
P = N/L � 1. The last quantity N/L can be at most 1/W

for ρ = 1.
As we show in the following, for correlated energy

landscapes, in some cases nucleosomes are not positioned well
on a single bp length scale but are positioned well within a few
base pairs. In this case, the value of P does not characterize
fully the positioning goodness. For those cases we exploit the
following generalization of P . Denoting the profile around the
mth largest values of ni , as no

m(s) we define for odd values
of k

Pk = 1

N

N∑
m=1

(k−1)/2∑
s=−(k−1)/2

no
m(k). (5)

The value of Pk is the measure of positioning given that one
does not care about fuzziness on the length scale of k. One can
easily see that on the level of one bp resolution P1 is given
by P . However, as we show in the following, on correlated
energy landscapes and/or with interaction potential with wide
wells the function Pk can be much more informative than
its single-bp resolution value P1 = P . We turn now to the
consideration of positioning for different scenarios, starting
from the simplest one.
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IV. POSITIONING OF ONE NUCLEOSOME

It is instructive to consider first the simplest case of a single
nucleosome N = 1 on a DNA of a certain length L. To position
it on the DNA in equilibrium one should generate a nonuniform
energy profile along the DNA. Following, we discuss possible
energy profiles which can be roughly divided to designed and
generic ones.

A. Designed energy landscape

Conceptually, the easiest way to position a nucleosome on
a site j is to design an energy landscape such that up to an
additive constant Ei=j = −E and Ei �=j = 0. In this designed
DNA case, the positioning measure (4) is given by (we measure
all energies in units of kBT )

P = no
1 = 1

1 + (L − 1)e−E
, (6)

such that the nucleosome occupies site i with probability of
order one if E � ln L. Therefore, having in the arsenal only
energies of the order of a few kBT , one can position a single
nucleosome only on short sequences of tens to hundreds base
pairs, even on the best possible energy landscape.

B. Disordered energy landscape with Gaussian distribution

In the more generic case of a disordered energy landscape,
the problem can be mapped to the random energy model
[44–47]. In this case, the probability that the leftmost location
of the nucleosome is located on site i along the DNA is given
by

ni = e−Ei

Z
, (7)

where the partition function is

Z =
L∑

i=1

e−Ei (8)

Therefore, to position a nucleosome on site i one has to
fulfill the condition e−Ei ∼ Z. Consider the case where the
energies {Ei} are a set of i.i.d random variables with a normal
probability distribution with standard deviation σ :

Pr (Ei) = e
− E2

i

2σ2

√
2πσ 2

. (9)

In this case, the cumulative density distribution for average
lowest energy is given by the Lth power of the cumulative
distribution for E [48]:

Pr
(
Eo

1 < E
) = [Pr (E < E)]L. (10)

Defining a typical value of a distribution as the value where the
cumulative distribution drops to e−1, one gets that the lowest
energy Eo

1 in the large L limit is approximated by∫ Eo
1

−∞
Pr (Ei)dE = 1

L
. (11)

One can interpret this equation in the following way. The
minimal energy should be such that the number of sites with
such an energy, or below it, is 1 on average.

The solution of Eq. (11) is given by

Eo
1 	 σ

√
2erf−1

(
2

L
− 1

)
	 −σ

√
2 ln L. (12)

In the limit of zero temperature (or, equivalently, an infinite
disorder strength σ ), the nucleosome will occupy the state
with the lowest energy (the ground state) with probability 1.
However, for small nonzero temperatures, non-ground states
will be partly occupied, such that the occupation probability
of the ground state is smaller than one. Consider the m-lowest
energy (1-lowest energy means the lowest one, 2-lowest energy
is the second lowest energy, etc.) on the DNA Eo

m. Its value
can be well approximated using a similar argument to the one
above, for the m = 1 case: The m-minimal energy should be
such that the number of sites with such an energy, or below it,
is m on average. This results in∫ Eo

m

−∞
Pr (E)dE = m

L
. (13)

The solution is given by

Eo
m 	 σ

√
2erf−1

(
2m

L
− 1

)
	 Eo

1 + σ

σf
ln m, (14)

where the freezing disorder strength is given by

σf 	 −
√

2erf−1

(
2m

L
− 1

)
	

√
2 ln L. (15)

The affinities of the m-lowest state are given by

Ko
m = e−Eo

m 	 e−√
2erf−1( 2m

L
−1) 	 Ko

1

mσ/σf
. (16)

In the low temperature (high disorder) limit σ > σf , the
occupation of the lowest state is given by

P = no
1 	 Ko

1∑
m Ko

m

= 1

ζ
(

σ
σf

) 	
(

1 + 21− σ
σf

σ
σf

− 1

)−1

, (17)

where ζ (s) = ∑∞
m=1 m−s is the Riemann zeta function [49].

Above the freezing point, σ < σf , the sum in the equation
above diverges. In this case, the annealed approximation of
the free energy is valid and the partition function is not widely
distributed around its mean value:

Z 	 〈Z〉 = Leσ 2/2. (18)

In this regime, the probability of occupation of any site is given
by

P = no
1 = e−Eo

m

Z
	 eσ

√
2 ln L

Leσ 2/2
, (19)

such that it vanishes in the thermodynamic limit L → ∞. In
genomes of lengths in the range L = 106–109 bp the freezing
transition happens in the range σf 	 √

2 ln L = 5.3–6.4kBT .
In sum, positioning of a single nucleosome is determined by

the disorder strength. It is well positioned on DNA of length
L (such that P 	 1) with energetic Gaussian, uncorrelated
disorder with width σ for σ � √

2 ln L, and is “smeared”
along the DNA (such thatP � 1) in the opposite limit of weak
disorder σ � √

2 ln L. In Fig. 2, the above considerations are
illustrated. In the Appendix Sec. A 1 we discuss positioning on
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FIG. 2. (Color online) Positioning of a single nucleosome on the
DNA with length L = 106 bp, such that the freezing transition is
at σf 	 5.3kBT . Occupancy of the deepest energy well is plotted vs
disorder width. The dots represent numerical simulation: median of
100 realizations of the disordered energy landscape energy. The lines
represent the analytic solution: Eq. (17) for σ > σf and Eq. (19) for
σ < σf . Inset: the same plot in the linear scale.

energy landscape with two non-Gaussian distributions. Now,
we turn to discuss positioning of many nucleosomes on the
DNA.

V. POSITIONING OF MULTIPLE NUCLEOSOMES WITH
ONLY HARD-CORE INTERACTIONS

Here, we analyze positioning of N � 1 nucleosomes with
only hard-core interactions. The study of particles with hard-
core repulsion on disordered energy landscapes has a long
history and is relevant to many applications (see, e.g., [50]). In
the context of protein-DNA binding, such a repulsion between
proteins leads to crowding on attractive sites and influences
the binding properties [51–54]. Here, we consider positioning
of nucleosomes of a finite size W � 1 [55,56] and focus on
positioning properties on different energy landscapes.

A. Designed energy landscape

Consider first a designed case when there are N nucleo-
somes of size W on a DNA of length L and N energy wells
of energy −E while the rest of the DNA positions have zero
energy. For the best positioning, all the distances have to be
larger or equal to W , such that nucleosomes do not have to
overlap to occupy all the energy wells. In this case, to position
well the nucleosomes one needs E � ln L

N
. Then, having,

say, 10%–70%–90% coverage of the DNA by nucleosomes
of length W = 147, to position the nucleosomes one needs the
energy well to be deeper than 7–4–3kBT . Moreover, even if the
wells are that deep, but the number of nucleosomes differs from
the number of energy wells, the positioning is getting worse. To
make the positioning more robust, one can make the distance
between the wells being random. However, doing this one has
to keep the minimal distance between two neighboring wells to

ρ
0 0.2 0.4 0.6 0.8 1
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0.1

0.2

0.3

0.4
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1

(c) 8kBT

(b) 5kBT (a) 2kBT

FIG. 3. (Color online) Numerical results for positioning of nu-
cleosomes with only hard-core interactions with W = 147 bp on
designed energy landscapes of a length of L = 103 × W . Positioning
parameter is plotted as a function of the coverage fraction ρ =
NW/L. The energy profile is designed such that neighboring energy
wells are separated by distances with the following properties: Each
distance is W + 63 bp (circles), any distance is a sum of W and a
number drawn from a geometric distribution with an average of 63 bp
(squares), and each distance is a number drawn from a geometric
distribution with an average of W + 63 bp (diamonds). The depths of
the energy wells relative to the rest positions on the DNA are (a) 2,
(b) 5, and (c) 8 kBT (see arrows in the figure). The lines are to guide
the eye.

be W . Otherwise, the nucleosomes, being not able to overlap,
spread more on the DNA decreasing the positioning parameter
P (see Fig. 3). In a more generic, disordered case the position-
ing is more problematic. We turn now to discuss this case.

B. Disordered energy landscape with Gaussian distribution

Consider positioning of N nucleosomes on uncorrelated
disordered energy profile normally distributed with standard
deviation σ [see Eq. (9)]. In the regime σ �

√
2 ln L

N
, the nu-

cleosomes are poorly positioned, while in the opposite regime

σ �
√

2 ln
L

N
, (20)

the positioning is good. In sum, having, say, 10%–70%–90%
coverage of the DNA by nucleosomes of length W = 147, to
position the nucleosomes one needs disorder strength σ to be
larger than 3.8–2.9–2.4kBT .

The derived requirement for positioning may sound weak.
However, in fact it means that, say, for ρ = 70% and σ = 5kBT

(moderate positioning regime, P 	 0.6, as shown in Fig. 4),
the typical energy well for a nucleosome is 14 ± 2kBT deep
[see Eq. (12) with L replaced by L/N], relative to a random
DNA sequence. In sum, one can see that without interactions
the energy variations required for a good positioning seem
to be above the ones measured in experiments [13–17]. In
the Appendix Sec. A 2 we discuss positioning of nucleosomes
with only hard-core interaction on energy landscape with two
non-Gaussian distributions and show that the results in this
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FIG. 4. (Color online) Positioning of nucleosomes with only
hard-core interactions. Positioning parameter the DNA with length
L = 103 × W and W = 147 as a function of the coverage fraction
ρ = NW/L. The markers represent numerical simulation for σ = 2
(squares), 5 (circles), 8 (diamonds), and 11 (dots) kBT .

section do not change qualitatively in this case. In the next
section we show how interactions between nucleosomes allow
to position them with much weaker energetic disorder along
the DNA.

VI. POSITIONING OF STRONGLY INTERACTING
NUCLEOSOMES

Consider N nucleosomes on a DNA of length L. As we
show above, weak sequence specificity cannot position nucle-
osomes. In this section we analyze positioning of interaction
nucleosomes on designed and disordered energy landscapes.

Interaction between neighboring nucleosomes were sug-
gested before as one of the driving forces ordering nucle-
osomes [32,33,35,57]. Here, we consider for simplicity the
minimal model of an interaction with an energy well when
two neighboring nucleosomes are at a distance R − � � r �
R + � from each other. Namely, the interaction potential is of
the form

e−V (r) =
⎧⎨⎩0, r < W

ev = κ, R + � � r � R − � � W

1, else
(21)

and is schematically shown in Fig. 5. For simplicity, we
analyze the narrow interaction energy well of only one bp,
� = 0. Further, we discuss other possible potential functions
in general and, in particular, importance of a finite width of
the interaction potential well � > 0.

For strong enough interactions strength (large values of κ)
the nucleosomes gather to clusters, such that in each cluster
the distance between the neighboring nucleosomes is R. As we
show in the following, this clustering effect can significantly
improve positioning of nucleosomes. We demonstrate it first
on a designed energy landscape.

W R

-9

0

15

FIG. 5. Illustration of the interaction strength between neighbor-
ing nucleosomes used in the paper. V (r) from Eq. (21) is presented.
In this particular case, R = 154, W = 147, and � = 2.

A. Designed energy landscape

In order to exploit interactions between nucleosomes and
position them on a weak but designed energy landscape, one
should have a spatial resonance between the energy wells’
distance and the preferable distance between neighboring
nucleosomes R. Consider first the case of periodic array of
wells with energy −E, such that the affinity is K = eE , and set
the number of nucleosomes to be the number of wells. Due to
interactions, nucleosomes locally crystallize to ordered arrays
with nearest-neighbor distance of R. Denoting the average
length of a cluster by M , one gets the condition for the
positioning of the cluster (and, therefore, all the nucleosomes
in the cluster)

ME � ln
L

N/M
(22)

or

KM

M
� L

N
. (23)

The average number of nucleosomes in a cluster M is given
by

M = 1

1 − Pr(r = R)
, (24)

where Pr(r = R) is the probability that the distance between
two neighboring nucleosomes is R. These quantities can be
calculated using the self-consistency equation

Pr(r = R) = 1 − 1

M
= Kκ

Kκ + L
N/M

. (25)

The last equality comes from the fact that a clustered nucle-
osome contributes energy −E − v. In contrast, nonclustered
can be in any of L

N/M
sites per cluster. The solution of Eq. (25)

is given by

M =
⎧⎨⎩

√
κK N

L
,

√
κK N

L
� 1

1,

√
κK N

L
� 1.

(26)

Therefore, satisfying condition (23), one gets strong improve-
ment of the positioning (P 	 1) even with very weak wells
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K 	 1. However, if the wells do not have a good periodicity
or their period is different from the preferential distance
between the nucleosomes, the interactions do not improve the
positioning.

In sum, one can position strongly interacting nucleosomes
on a designed energy landscape with shallow energy wells.
However, this positioning is not robust to change of nu-
cleosome coverage fraction and requires fine tuning of the
distances between energy wells along the DNA. We turn now
to discuss positioning on generic energy landscapes where the
positioning is not so strong, but is more robust to properties of
the energy landscape and the interaction potential.

B. Disordered energy landscape with Gaussian distribution

In the case when the energy along the DNA is a set
of independent normally distributed variables with standard
deviation σ [see Eq. (9)], local crystallization of interacting
nucleosomes also plays a major role in positioning for small
values of σ . As shown in Sec. V B, with only hard-core
interactions the positioning is possible only when condition
(20) holds. Here, we discuss the opposite limit of weak
disorder and show that interactions between the nucleosomes
can position nucleosomes even in this case. Consider a cluster
of crystallized nucleosomes. The effective energy landscape
for such a cluster possesses a stronger disorder than for
an individual nucleosome. Namely, for a cluster of, say, m

nucleosomes the standard deviation of cluster’s total energy
distribution is

√
mσ , where σ , as before, is the energy standard

deviation of a single nucleosome. However, for m � 1,
this effective energetic disorder possesses an approximate
periodicity of R because by shifting the cluster by this
length the total energy of the cluster does not change much.
Nevertheless, local crystallization, increasing the effective
disorder strength relative to the one for a single nucleosome,
causes the positioning of clusters and, therefore, positioning
of individual nucleosomes.

Consider a single typical cluster of a size M � 1. Typical
available space for it is given by L

N/M
, while the standard

deviation of its binding energy distribution is given by
√

Mσ .
Thus, the typical minimal energy is given by

√
Mσ

√
2 ln R.

Therefore, using the same arguments as in Sec. IV B, it will
be frozen if

√
Mσ �

√
2 ln R (27)

and will be “smeared” on its available space in the opposite
limit.

The value of M can be estimated in the following way,
using Eq. (24):

Pr(r = R) = 1 − 1

M
= κ

κ + L
N/M

. (28)

Thus,

M =
{√

κ N
L
, κ � L

N

1, κ � L
N

.
(29)

FIG. 6. Positioning of nucleosomes with interactions on Gaussian
energy landscape. Positioning parameter P for the DNA with length
L = 104 × W and W = 147 for the coverage fraction ρ = NW/L =
80% is plotted vs disorder strength (left axis) and interaction strength
(bottom axis) with preferable distance of R = 148 (such a close to
W value of R is chosen to make the numerical calculations faster).
On the top one can see the average size of the crystallized cluster of
nucleosomes, derived from Eq. (29). On the right the typical binding
energy of a nucleosome (relative to the average energy) is shown.
The lines represent the analytic conditions for a good positioning
[Eqs. (20) (dotted line) and (30) (solid line)].

Combining Eqs. (27) and (29), the required strength of
interactions to position nucleosomes is given by

κ � 4

σ 4

W

ρ
ln2 R. (30)

In the case when σ � √
2 ln R, condition (30) has to be

replaced by κ � L
N

. However, in this case condition (20)
is satisfied, such that the positioning is possible with only
hard-core interactions. Thus, as shown in Fig. 6, if at least one
of the conditions (20) and (30) holds the positioning is good,
such that P 	 1, while otherwise P � 1. One can see that
strong interactions between nucleosomes are able to improve
their positioning. In Appendix A 3 we discuss positioning of
strongly interacting nucleosomes on energy landscape with
two non-Gaussian distributions and show that the results in
this section do not change qualitatively in this case.

The described local clustering of nucleosomes not only
improves positioning of nucleosomes but also has other
consequences: large-length-scale fluctuations of occupancy.
We turn now to discuss this aspect of interactions-assisted
positioning of nucleosomes.

C. Large-scale fluctuations of occupancy

Apart from the positioning of nucleosomes on small length
scale, there is another feature that is highly influenced by
interactions between neighboring nucleosomes: the large-
scale fluctuations of occupancy of nucleosomes. One can
also interpret this effect as long-length-scale positioning.
Without interactions, occupancy ρi averaged over thousands
of base pairs is not expected to deviate significantly from
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its average value ρ. However, if neighboring nucleosomes
possess a preferential distance, R which is smaller than
the average linker length W/ρ and the nucleosomes are
very well positioned, one gets long DNA regions which are
enriched by nucleosomes and, therefore, regions depleted
with nucleosomes. The correlation length of the occupancy
on enriched regions for strongly interacting and very well
positioned nucleosomes is given [using Eq. (29)] by

RM ∼ R

√
κ

ρ

W
. (31)

On this length scale the nucleosomes are enriched and their
mean occupancy is given by W/R.

The distance between the clusters of crystallized nucleo-
somes (with highly depleted occupancy) scales as

L

N/M
− RM =

(
W

ρ
− R

)√
κ

ρ

W
. (32)

In sum, strongly interacting and well positioned nucleo-
somes are expected to exhibit highly fluctuating occupancy on
large length scales. In Sec. VIII we discuss how the described
above considerations are relevant for more realistic energy
landscapes and existing experimental data, but before that we
consider effects of another important feature of real systems:
an autocorrelation of the energy landscape.

VII. ENERGY LANDSCAPE WITH CORRELATIONS

So far, we discussed random, noncorrelated energy land-
scapes. However, DNA sequence possesses correlations [58].
Moreover, even on a random DNA sequence an energy
landscape is expected to be correlated for distances smaller
than 147 because small shifts of nucleosomes along the DNA
does not change completely the sequence covered by the
nucleosome. This is why, as we discuss in the next section,
real energy landscape is expected to possess certain autocor-
relation. In this section we discuss how the autocorrelation of
the energy landscape affects positioning of nucleosomes.

We analyze the following scenario in this section. The
energy landscape is assumed to be Gaussian [see Eq. (9)]
with an exponentially decaying autocorrelation, such that

〈EiEi+r〉
σ 2

= e− r
rc . (33)

Here, rc � 1 is the correlation distance, such that for distances
much larger than rc the energies are nor correlated, while for
distance much smaller than rc the variation of energy is much
smaller than σ . This model can be mapped to the generalized
random energy model [59]. This model possesses multiple
phase transitions. The condition for a good positioning on the
single bp resolution (we derive in the following) corresponds
to the lowest temperature phase transition of that model. In
contrast, the condition for a good positioning on a few bp
resolution corresponds to high temperature phase transitions
of the generalized random energy model.

In this section we assume that for rc = 0 the nucleosomes
are well positioned on the DNA. The correlation is additional
trouble for positioning and here we derive an additional
condition for a good positioning in presence of the auto-
correlation, on top of the conditions (20) and (30), for the

noncorrelated energy landscapes. We start from the simplest
single-nucleosome case.

Consider a single nucleosome on DNA of length L with
a Gaussian energy landscape with standard deviation σ and
exponential autocorrelation with correlation length rc � 1.
Conceptually, we divide the DNA to L/rc “boxes” of length
rc. In order to position the nucleosomes on the length scale of
rc, in a box with the highest affinity (inside the box we allow
the nucleosome to be fuzzy, at this point), one needs to satisfy
σ �

√
2 ln L

rc
. This condition is satisfied because we assume

here that without autocorrelation the positioning is good and,
therefore, σ � √

2 ln L. Thus, the problem is the positioning
of the nucleosome within the box.

Within the box all the energies are highly correlated. A way
to generate such a correlated energy landscape is to set [60]

Ei+1 = e− 1
rc Ei +

√
1 − e− 2

rc Gi, (34)

where Gi is an uncorrelated set of Gaussian random variables
with standard deviation σ . Thus, the standard deviation of
energies Ei , if i is in the range much smaller than rc, is given by

σ√
2rc

. With such a standard deviation, to position a nucleosome
in a box of size rc with a single bp resolution, one needs

σ√
2rc

� √
2 ln rc or

σ �
√

4rc ln rc. (35)

This is a strong constraint on the positioning. Even for rc =
5 bp the positioning is bad unless σ is much larger than 6kBT .

Condition (35) remains the same also for the case of
noninteracting nucleosomes or nucleosomes with only hard-
core interactions. This is because (35) does not depend on the
length of DNA per nucleosome but only on the correlation
distance of the energy landscape. This makes positioning of
noninteraction (or interacting with only hard-core repulsion)
extremely problematic. In the next section we show that
the value of rc is, at least, tens of base pairs. For such a
correlated energy landscape, the positioning condition (35)
is not expected to be satisfied.

For interacting nucleosomes, the standard deviation of the
effective energy landscape is given by

√
M σ√

2rc
, where M is

the average number of nucleosomes in a crystallized cluster
and given by Eq. (29). The positioning condition for strongly
interacting nucleosomes is given by

σ �
√

4rc

M
ln rc (36)

or

κ � W

ρ

16r2
c

σ 4
ln2 rc. (37)

In Figs. 7 and 8 one can see the comparison of condition (36)
or (37) to numerical results. The obtained results imply that
even for short-range autocorrelation of the energy profile with
a realistic value of σ , it is impossible to position nucleosomes
on a single bp resolution without strong interactions between
them.

However, the positioning on correlated energy landscape is
easier if one allows the nucleosome to be fuzzy within a few
bp and still consider this as a good positioning. In order to see
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FIG. 7. Positioning of nucleosomes with interactions on Gaussian
energy landscape with an exponentially decaying autocorrelation
with correlation coefficient rc = 20. Positioning parameter P for
the DNA with length L = 104 × W and W = 147 for the coverage
fraction ρ = NW/L = 80% is plotted vs disorder strength (left axis)
and interaction strength (bottom axis) with preferable distance of
R = 148. On the top one can see the average size of the crystallized
cluster of nucleosomes, derived from Eq. (29). On the right the typical
binding energy of a nucleosome (relative to the average energy)
is shown. The line represents the analytic conditions for a good
positioning [Eq. (36) or (37)].

FIG. 8. Positioning of nucleosomes with interactions on Gaussian
energy landscape with an exponentially decaying autocorrelation
with correlation coefficient rc = 100. Positioning parameter P for
the DNA with length L = 104 × W and W = 147 for the coverage
fraction ρ = NW/L = 80% is plotted vs disorder strength (left axis)
and interaction strength (bottom axis) with preferable distance of
R = 148. On the top one can see the average size of the crystallized
cluster of nucleosomes, derived from Eq. (29). On the right the typical
binding energy of a nucleosome (relative to the average energy) is
shown. The solid line represents the analytic conditions for a good
positioning on a resolution of k = 1 bp [Eq. (36) or (37)]. The dashed
line represents the analytic conditions for a good positioning on a
resolution of k = 9 bp [Eq. (38) or (39)].

it, we exploit the positioning function, defined in Eq. (5). This
function Pk characterizes the positioning within the resolution
of k base pairs. In Fig. 9 one can see that in some cases even
when the single bp resolution positioning is bad,P = P1 � 1,
the positioning within k = 3,5, . . . is significantly better. The
condition forPk to be of the order one is equivalent to condition
(36) or (37) with rc replaced by rc/k. Namely, the condition
for a good positioning within k bp is given by

σ �
√

4rc

Mk
ln

rc

k
(38)

or, equivalently,

κ � W

ρ

16
(

rc

k

)2

σ 4
ln2 rc

k
. (39)

One can see in Fig. 8 that condition (38) [or (39)] can be
much weaker than (36) [or (37)]. In the next section we
study empirical landscape for which σ is roughly 1.5kBT

and rc is roughly 100 bp. Thus, if the interaction between
nucleosomes is strong enough to crystallize them to clusters
of size M = 10–100 nucleosomes, one would expect to see
bad positioning on the level of a single bp resolution with
P1 = 0.1–0.25 [(36) does not hold] but within k = 9 bp the
nucleosomes are positioned significantly better [(38) does
hold] with P9 = 0.5–0.8 (see Fig. 9). In the next section we
discuss positioning properties on empirical energy landscape
and, in general, relevance of the above considerations to real
systems.

VIII. RELEVANCE TO EMPIRICAL RESULTS

So far, we discussed positioning on artificial energy land-
scapes and dissected the phase diagram to different regimes.
An obvious question to ask now is the following: Where is
the real system on the phase diagram? In this section we try
to get insight into this problem. To do so, we calculate an
energy landscape using a model in Ref. [23]. In fact, there are
many different models for a binding energy of a nucleosome
to a given sequence (examples include [23,61–63], for a
review see, e.g., [64,65]). We exploit only one of them,
from Ref. [23], because we are not interested in predicting
locations of nucleosomes on some piece of DNA but in general
properties of positioning of nucleosomes. In particular, our
goal in this section is to validate our results on artificial energy
landscapes and show their relevance to more realistic energy
landscapes.

We start with contrasting the presented, artificial energy
landscapes and the one generated using the model in Ref. [23]
on the genome of S. cerevisiae. The first thing to note is that
the distribution of the binding energies on the S. cerevisiae
genome is close to, but deviates from, a Gaussian (see Fig. 10).
The standard deviation of the energy landscape is given by
1.6kBT . This seems to be an overestimate because an energy
landscape with σ = 1.6kBT on a genome of length L 	 107 bp
and correlation length of rc 	 100 bp possesses the strongest
binder with energy −7kBT , relative to the energy of a random
sequence, while even the strongest artificial binder, 601, has
the energy around 2–5kBT [13]. Interestingly, as shown in
Fig. 10, the same model on a randomly shuffled S. cerevisiae
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FIG. 9. (Color online) Positioning of nucleosomes with interactions on Gaussian energy landscape with an exponentially decaying
autocorrelation with correlation coefficient rc = 100. Positioning parameter Pk for the DNA with length L = 104 × W and W = 147 for
the coverage fraction ρ = NW/L = 80% is plotted vs k for different disorder strengths (left axis) and interaction strengths (bottom axis) with
preferable distance of R = 148. The line represents the analytic conditions for a good positioning on a single bp resoltion k = 1 [Eq. (36)
or (37)].

genome yields significantly narrower energy landscape, well
fitted by a Gaussian with σ = 1.24kBT . The energy landscape,
generated by the model in Ref. [62], predicts even narrower
energy landscape, with more realistic standard deviation of
0.8kBT (also shown in Fig. 10), such that, if L = 107 bp and
rc 	 100 bp, the strongest binder possesses a more realistic
energy of −3.5kBT , close to energies of the strongest natural
binders, found in Ref. [13]. Following, we use the energy
landscape from Ref. [23] to demonstrate that, even with such
a clear overestimation of the energetic landscape roughness,
one needs interactions in order to get a good positioning.
We do not use the energy landscape to predict locations of
nucleosomes along the genome but focus on general properties
of positioning, such as global positioning parameter and

long-length-scale fluctuations of occupancy level. We expect
our main conclusions (in contrast to detailed predictions of
locations of nucleosomes along the genome) to be valid for
other models for the energy landscapes with a reasonable
roughness.

Energy landscape from Ref. [23] with such a narrow
distribution even with no autocorrelation is not expected to
position well the nucleosomes without strong interactions [see
Eq. (20) and Fig. 4]. Interaction between nucleosomes can
improve the positioning [see Eq. (30) and Fig. 6].

However, as is expected, the calculated energy land-
scape possesses certain autocorrelation. Some part of this
autocorrelation is because shifting a nucleosome a few bp
does not change entirely the bound sequence. This sort of
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FIG. 10. (Color online) Distribution of the binding energy of a
nucleosome on a S. cerevisiae (circles) and randomly shuffled S.
cerevisiae genome (squares), calculated using the model in Ref. [23].
The standard deviation is equal to 1.6kBT for S. cerevisiae and
1.24kBT for randomly shuffled S. cerevisiae genome. The diamonds
represent the distribution of the energy landscape calculated in
Ref. [62] for S. cerevisiae genome with a standard deviation of
0.8kBT . The lines are Gaussian fits with zero mean and respective
standard deviations.

autocorrelation, for distances smaller than 147 bp, exists even
on a randomly shuffled genome (see Fig. 11). One can clearly
see the periodic oscillations with an approximate 10 bp period
[13,66].

On top of that, due to some sequence correlation along the
real, nonshuffled, S. cerevisiae genome, the autocorrelation of
binding energy persists even for distances larger than 147 bp
(see Fig. 11). One reason for such a long-scale autocorrelation
is that the model in Ref. [23] may be biased by GC content the
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FIG. 11. (Color online) Autocorrelation of the binding energy of
a nucleosome on a S. cerevisiae (black solid line) and randomly
shuffled S. cerevisiae genome (dotted, red line), calculated using the
model in Ref. [23]. The inset is a zoom-in on the main plot.

percentage of bases on a DNA molecule that are either guanine
or cytosine [67] and GC content possesses significant autocor-
relation along the S. cerevisiae genome [68] (see Fig. 12). The
autocorrelation function clearly deviates from the simple expo-
nential decay, which we assumed in our theoretical considera-
tions above. Roughly, the correlation distance is close to rc 	
100 bp, making the positioning much more problematic, rela-
tive to uncorrelated energy landscape with the same standard
deviation. This is demonstrated in Figs. 13(a) and 13(b). On the
left in each panel we plot the average profile of N peaks of ni .
Namely, we take N highest peaks and average ni around them.
The width of such a profile indicates the resolution of the posi-
tioning, a width of an average peak. On the right of each panel
we plot the positioning parameter Pk [see Eq. (5)] versus k.

On such an autocorrelated energy landscape, with only
hard-core interactions, v = 0, nucleosomes are not well
positioned on a single bp resolution (see a typical ni profile
in Fig. 12). Namely, the single bp positioning parameter
P = 0.06 (calculated on the first chromosome of S. cerevisiae)
is much smaller than 1. With only hard-core interactions,
the peaks in ni are not only low, but also wide. In fact, the
positioning function Pk , shown in Fig. 13(a), demonstrates
that the nucleosomes are “fuzzy” and poorly positioned even
on the resolution of 10 bp.

The absence of good positioning can be partially attributed
to strong autocorrelation of energy because the distribution
of uncorrelated Gaussian energy landscape with σ = 1.6kBT

results in much better positioning, as is discussed in Sec. V B.
Indeed, calculation of positioning of nucleosomes with only
hard-core interaction on randomly shuffled energy landscape,
calculated using the model in Ref. [23], results in narrow
(1 bp) peaks of ni of an average height of P1 = P = 0.18
[see Fig. 13(b)].

In contrast to the case with only hard-core interactions, the
nucleosomes can be positioned much better in the presence of
interactions between neighboring nucleosomes. For example,
for the interaction strength of v = 9 and the preferable distance
R = 154, the peaks of ni are much higher, such that the
positioning parameter is P1 = 0.3 [see Figs. 12 and 13(c)].
The width of the peaks is 3–5 bp, such that the positioning
function is Pk ∼ 0.45 for k � 3, as can be seen in Fig. 13(c).

Can one position a nucleosome with a more realistic
interaction potential? A reasonable choice seems to be the
one used in Ref. [33] to fit qualitatively the 10n + 5 (or,
sometimes, 10.6n + 8 [69]) periodicity found in many works,
starting from Ref. [70]. In order to verify that our results do
not depend qualitatively on the precise form of the interaction
potential, we used the same form as in Ref. [33], but with
higher prefactor, i.e., 12 instead of 5 (otherwise the potential
is too weak to position nucleosomes) and with a cutoff of
180 bp for the computational purposes:

V (r) =

⎧⎪⎨⎪⎩
∞, r < W

12kBT cos
( 2π(r−W )

10 bp

)
e
− r−W

50 bp , W � r � 180

0, r > 180.

(40)

In Fig. 13(d) one can see that the interaction potential in
Eq. (40) is able to position nucleosomes on the energy
landscape generated using the model in Ref. [23] within the
resolution of 3–5 bp. In Sec. IX we analyze in more detail

022704-11



MICHAEL SHEINMAN AND HO-RYUN CHUNG PHYSICAL REVIEW E 92, 022704 (2015)

FIG. 12. (Color online) Analysis of the first 7 × 104 bp of S. cerevisiae’s first chromosome. The lines on top of the figure depict exons. In
panel number (I) the GC content is plotted. (II) Binding energy profile (in units of kBT ) calculated using model from Ref. [23]. The additive
constant term is such that the mean energy along the chromosome is zero. (III) Calculation of the nucleosome distribution for interacting
nucleosomes with R = 154 and v = 9. The chemical potential is such that ρ = 0.8. The lines with dots represent ni values, while the thick,
red line represents occupancy level. The thin black line is the occupancy from the data in Ref. [71]. Both the occupancies are smoothed, such
that only 100 lowest Fourier modes are presented. (IV) The same as for the (III) panel but with only hard-core interactions v = 0.

robustness and tunability of positioning to different properties
of the interacting potential.

In sum, these results indicate that good positioning of
nucleosomes is possible even on a realistic energy landscape
with narrowly distributed (small σ ) and highly autocorrelated
(large rc) energies, provided strong enough interactions
between them.

Beyond the positioning of nucleosomes on small length
scales, as we described in Sec. VI C, strong interactions
between neighboring nucleosomes change DNA occupancy
by nucleosomes on large length scales. We turn now to discuss
how the theoretical predictions in Sec. VI C are relevant for
realistic scenarios.

A. Large-scale fluctuations of occupancy

We start with nucleosomes with only hard-core interactions,
as a reference case. In this case, since the energy profile is
not well correlated for long distances, the occupancy does
not fluctuate significantly on large length scales (above a few
nucleosome repeat lengths), as in Figs. 12 and 14. However,
as discussed in Sec. VI C, interactions locally crystallize nu-
cleosomes, inducing large-scale fluctuations in occupancy. In
Figs. 12 (zoom on first 7 × 104 bp of chromosome I of S. cere-
visiae) and 14 (whole chromosome I of S. cerevisiae), one can
see that interacting nucleosomes are distributed nonuniformly
along the DNA, in contrast to nucleosomes with only hard-
core interactions. Interestingly, this sort of large-length-scale

nonuniformity one also observes on the single-bp resolution
data [71] (see Figs. 12 and 14). Moreover, the calculated
occupancy seems to follow quite consistently the experimental
one on different length scales. This is especially surprising
because the data from [71] are based on chemical cleavage,
while the model used by us to calculate the energy profile
along the DNA was derived based on MNase digestion [23].

These results indicate that the interactions between the
nucleosomes help to position them not only on the short length
scales (a few bp), but also on the long length scales, inducing
large long-scale fluctuations in nucleosomes’ occupancy. In
other words, strong interactions between the nucleosomes
naturally yield long nucleosome diluted and enriched regions
along the genome.

We summarize this section with the following conclusions.
On a realistic energy landscape, nucleosomes are much better
localized in presence of strong interactions. In this case,
the calculated results, predicting large-length-scale occupancy
fluctuations, agree qualitatively and, surprisingly, quantita-
tively with the experimental data. We turn now to a more
detailed analysis of how properties of the interaction potential
affect distribution of nucleosomes along the genome.

IX. TUNABILITY AND ROBUSTNESS
OF THE POSITIONING

Several relevant questions are still to be answered. How
robust are the obtained results for the made assumptions? What

022704-12



CONDITIONS FOR POSITIONING OF NUCLEOSOMES ON DNA PHYSICAL REVIEW E 92, 022704 (2015)

0 20 40
0

0.1

0.2

0 200 400
0

0.15 v = 0
randomly shuffled
energy landscape

0 5 10 15
0

0.1

0.2

0.3

0 20 40
0

0.02

0.04

0.06

0 200 400
0

0.05 v = 0

0 3000
0

0.2

v = 9
R = 154
Δ = 0

0 5 10
0

0.1

0.2

0 3000
0

0.2
Eq. (40)

k

0 5 10 15

Pk

0

0.4

k

0 5 10 15

Pk

0

0.4

k

0 5 10 15

Pk

0

0.2

k

0 5 10 15

Pk

0

0.2

0 5 10
0

0.1

0.2

0 3000
0

0.2
v = 9
R = 154
Δ = 2

k

0 5 10 15

Pk

0

0.4

k

0 5 10 15

Pk

0

0.3

0 5 10
0

0.1

0.2

0 3000
0

0.2
v = 9
R = 154, 164
Δ = 0

(d)

(a)

(c)

(e) (f)

(b)

FIG. 13. Positioning goodness in different cases. On the left in each panel the average profile of N peaks of ni is plotted. Namely, we
take N highest peaks i1,i2, . . . ,iN and average ni around them: ñi = 1

N
(ni−i1 + ni−i2 + . . . + ni−iN ). On the y axis is plotted the symmetrized

function 1/2(̃ni + ñ−i) vs i. The width of such a profile indicates the resolution of the positioning: a width of an average peak. On the right of
each panel we plot the positioning parameter Pk [see Eq. (5)] vs k. Insets are zoom-out of the main plots. The right plots are the positioning
function Pk vs k. (a) Energy landscape from Ref. [23] with only hard-core interactions between the nucleosomes v = 0. (b) The same as in
(a) but the energy landscape (not the sequence) is randomly shuffled. (c) The same as in (a) but nucleosomes interact with v = 9, R = 154,
� = 0. (d) The same as in (a) but nucleosomes interact with the potential from Eq. (40). (e) The same as in (c) but nucleosomes interact with
� = 2. (f) The same as in (a) but nucleosomes interact with two well potentials R = 154 and 164.

if the interaction potential possesses a certain width [� > 1 in
Eq. (21)]? How robust are the positions of nucleosomes to a
change of parameters, such as the strength of the interactions
v, preferable distance R, number of wells, and the width of
the interactions potential �. Can one “tune” the distribution
of nucleosomes along the DNA changing (locally or globally)
the parameters of the interaction potential?

We addressed some of these issues above, considering more
realistic potential between the nucleosomes, in Eq. (40), and
found that the conclusions are quite robust to a particular form
of the potential. In this section we address these questions more
systematically. We focus here on the energy profile from the
previous section, calculated using the model from Ref. [23]
and take as a starting point the potential with a single well
with R = 154, v = 9, � = 0. In this case, the positioning is
reasonably good [see Figs. 12 and 13(c)].

We start by changing the width of the interaction potential
�. Before we always [except from analyzing the potential
form from Eq. (40)] assumed that the interaction potential
is sharp to the level of a single bp, � = 0. Of course,
this assumption is not realistic and real effective interaction

potentials probably possess a finite width and more than one
energy well [24,32,72]. However, changing the width to a few
base pairs does not change qualitatively the results. Taking
� = 2 the positioning remains good on the length scale of
2� + 1 = 5, such that the typical peak of ni has a height
of P 	 0.3 and width of 5 bp, as shown in Fig. 13(e). As
one can see in Fig. SI1 in the Supplemental Material [73],
the occupancy on large length scales does not change much
as one tunes the value of �. Even on the level of a single
bp resolution the Pearson correlation coefficient of ρi for a
potential with a width of 1 bp (� = 0) and 5 bp (� = 2)
is 0.87. The precise locations of nucleosomes do change,
however. Looking on the N = ρL/W largest values of ni

for both values of � we observe an overlap of 18%. This value
makes sense because we expect that, upon changing the width
of the potential well from 1 to 5 bp, 20% of the nucleosomes
will remain in their positions and 80% will move ±2 bp, within
the new potential well. In sum, widening of the potential width
does not change the distribution of nucleosomes on a large
scale, but makes their position uncertain on the length scale
of 2� + 1.
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FIG. 14. (Color online) Occupancy of nucleosomes on the global scale of the whole first chromosome of S. cerevisiae. Thin, solid line
represents calculation of the nucleosome distribution for interacting nucleosomes with R = 154 and v = 9. Thick, gray line is the occupancy
from the data in Ref. [71]. The calculated occupancy for nucleosomes with only hard-core interactions is represented by the dotted, weakly
fluctuating line. The chemical potential set for calculations is such that ρ = 0.8. All the occupancies are smoothed, such that only 50 lowest
Fourier modes are presented.

We add now one more well to the interaction potential at
10 bp from the first one, R = 154 + 10 = 164. The position-
ing gets slightly worse, such that the typical peak of ni has a
height of P 	 0.2 and width of 3 bp, as shown in Fig. 13(f).
As one can see in Fig. SI2 in the Supplemental Material [73],
the occupancy on large length scales does not change much if
we add another well in the potential function. Even on the level
of a single bp resolution, the Pearson correlation coefficient of
ρi for a potential with one and two wells is 0.75. The precise
locations of nucleosomes do change, dramatically, however.
Looking on the N = ρL/W largest values of ni for both
values of � we observe an overlap of only 3%. In sum, another
well in the potential width does not change the distribution of
nucleosomes on a large scale, but does change their positions
on small length scale.

The depth of the potential well does affect the goodness of
positioning and has to be strong enough to have any effect.
However, once a reasonable positioning is achieved, its value
does not change things much. As one can see in Fig. SI3 in the
Supplemental Material [73], the occupancy on a large length
scale does not change much as one tunes the value of v from 9
to 11. Even on the level of a single bp resolution, the Pearson
correlation coefficient of ρi for a potential with one and two
wells is 0.94. Even the precise locations of nucleosomes do
not change, dramatically. Looking on the N = ρL/W largest
values of ni for both values of v we observe an overlap of 67%.

As one would expect, the position of the well, R, does not
affect significantly the positioning properties and distribution
of the nucleosomes on a large scale. As one can see in Fig. SI4
in [73], the occupancy on large length scales does not change
much as one tunes the value of R from 154 to 160. On the level
of a single bp resolution, the Pearson correlation coefficient
of ρi for a potential with R = 154 and 160 is 0.62. However,
precise positioning of nucleosomes is very sensitive to the
value of R: N = ρL/W locations with the highest values of
ni for the two cases of R = 154 and 160 possess an overlap of
only 1%.

We conclude that, in principle, a cell, tuning the preferable
distance between nucleosomes, can control their distribution
along some part of DNA without changing significantly large-
scale properties, such as an average positioning goodness and
large-length-scale occupancy.

X. SUMMARY

In this article we focus on goodness of positioning of
nucleosomes on the DNA. We make several simplifying
assumptions. We assume that we can take into account all the
positioning factors by having an effective energy landscape
and an effective interaction potential between neighboring
nucleosomes. We ignore that nucleosomes can invade each
other’s DNA territories. In addition, we analyze only the equi-
librium distribution of nucleosomes, ignoring very probable
nonequilibrium aspects of nucleosome positioning. However,
even within this simplified framework we clarify a few aspects
of nucleosome positioning, which do not seem to depend on
these details.

Looking on a generic energy landscape with some energy
distribution width, some energy typical autocorrelation
distance, and some interaction potential between neighboring
nucleosomes, we derive conditions for a good positioning. We
briefly summarize the conditions in the following paragraph.

Assuming that neighboring nucleosomes possess a prefer-
able distance with an affinity κ � 1, relative to other distances,
the number of locally crystallized nucleosomes M � 1 is
given by Eq. (29), where N is the average number of
nucleosomes and L is the length of the DNA. The positioning
is expected to be good on an uncorrelated Gaussian disorder
with standard deviation σ if condition Eq. (27) holds. On a
correlated energy landscape with a certain correlation distance
rc, the positioning conditioning depends on the required reso-
lution. For a good positioning within k bp it is given by Eq. (38).

Importantly, without strong interactions κ 	 1, the condi-
tions do not seem to hold for realistic parameters, indicat-
ing an important role of effective interactions between the
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nucleosomes in their positioning. If the positioning, as we
suggest, is controlled by interactions, one expects to see
long-length-scale fluctuations of nucleosome occupancy. This
conclusion agrees with empirical data on occupancy of nucle-
osomes. Moreover, the derived large-length-scale occupancy
profile, derived from an effective energy landscape and interac-
tion potential which is sufficient to position the nucleosomes,
is similar to the empirical one. We also analyze the robustness
of positioning to parameters of the model. The parameters can
vary with time and be different on different parts of the genome.
In fact, as we demonstrate, tuning some parameters one can
dramatically change the distribution of nucleosomes. In sum,
our study emphasizes an important role of interaction between
the nucleosomes and indicates the range of parameters needed
for it. We expect this knowledge to be important for better
understanding of organization of our epigenome.

APPENDIX: NON-GAUSSIAN ENERGY LANDSCAPES

The distribution of the binding energies along the DNA
does not have to be Gaussian. Here, we analyze two other
possible scenarios for the energy landscapes.

1. Positioning of one nucleosome

Here, we discuss positioning of a single nucleosome on
up-exponential and down-exponential energy landscapes.

a. Disordered energy landscape with down-exponential
distribution

Consider the scenario with what we denote as down-
exponential distribution:

Pr(Ei) = 1

E e
Ei
E ; −∞ < Ei � 0 ; E > 0. (A1)

In this case the typical minimal energy can be estimated using
Eq. (11) to be

Eo
1 	 −E ln L. (A2)

The partition function can be estimated separately in two
regimes (two phases in the thermodynamic limit): in the
nonfrozen regime E � 1 the partition function is given by

Z 	 L

∫ 0

−∞
e−E Pr(E)dE = L

1 − E . (A3)

The positioning parameter in this case is given by

P 	 LE−1 � 1, (A4)

such that the positioning is poor for E � 1.
In the opposite regime E � 1, the integral in Eq. (A3)

diverges and the partition function is dominated by the deepest
wells. Thus, it can be estimated using k-minimal energies,
given by

Eo
k 	 E ln

L

k
. (A5)

Therefore,

Z 	
∞∑

k=1

(
L

k

)E
= LEζ (E), (A6)

such that the positioning parameter in this regime is given by

P 	 1

ζ (E)
(A7)

and is larger than 1
2 and close to 1 for

E � ζ−1(2) 	 1.7. (A8)

In sum, for down-exponential distribution of energies the only
requirement for a good positioning is that the parameter E is
larger than one for any length of the DNA.

b. Disordered energy landscape with up-exponential distribution

Consider another scenario with what we denote as up-
exponential distribution:

Pr(Ei) = 1

E e− Ei
E ; 0 � Ei < ∞ ; E > 0. (A9)

In this case, there are many energies which are close to
zero, Eo

1 	 Eo
2 	 Eo

3 	 . . . 	 0. Positioning is impossible for
such energy landscape; for any value of E one has P � 1.
However, as we show in the following, interaction between
nucleosomes can induce reasonable positioning even on such
an energy landscape.

2. Positioning of multiple nucleosomes
with only hard-core interactions

Here, we consider positioning of nucleosomes with hard-
core interactions on up-exponential and down-exponential
energy landscapes.

a. Disordered energy landscape with down-exponential
distribution

Consider positioning of N nucleosomes on uncorrelated
disordered energy profile down-exponentially distributed with
some parameter E [see Eq. (A1)]. In the regime E � 1, the
nucleosomes are poorly positioned, while in the opposite
regime E � 1, the positioning is good.

The derived requirement for positioning may sound weak.
However, in fact it means that, say, for ρ = 70% and E =
1.5kBT (moderate positioning regime, P 	 0.6) the typical
energy well for a nucleosome is 7.5 ± 2kBT deep [see Eq. (A2)
with L replaced by L/N], relative to a random DNA sequence.

b. Disordered energy landscape with up-exponential distribution

Consider positioning of N nucleosomes on uncorrelated
disordered energy profile up-exponentially distributed with
some parameter E [see Eq. (A9)]. In this case, as for a single
nucleosome, the positioning is poor for any value of E .

3. Positioning of strongly interacting nucleosomes

Here, we discuss positioning of strongly interacting nu-
cleosomes on up-exponential and down-exponential energy
landscapes.
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FIG. 15. Positioning of nucleosomes with interactions on down-
exponential energy landscape. Positioning parameter P for the DNA
with length L = 104 × W and W = 147 for the coverage fraction
ρ = nW/L smaller than 80% is plotted vs disorder strength (left
axis) and interaction strength (bottom axis) with preferable distance
of R = 148. On the top one can see the average size of the crystallized
cluster of nucleosomes, derived from Eq. (29). On the right the typical
binding energy of a nucleosome (relative to the average energy)
is shown. The lines represent the analytic conditions for a good
positioning [Eqs. (A8) (dotted line) and (A11) (solid line)].

a. Disordered energy landscape with down-exponential
distribution

Consider positioning of N nucleosomes on uncorrelated
disordered energy profile down-exponentially distributed with
some parameter E [see Eq. (A1)]. In this case, a cluster of m �
1 crystallized nucleosomes has a Gaussian energy landscape
with a standard deviation of

√
mE . Using the same arguments

as for the Gaussian disorder one can derive two conditions
for a good positioning. The first is for positioning of weakly
interacting nucleosomes, such that M 	 1. In this case, the
condition is given by Eq. (A8).

If this condition is not satisfied, one needs strongly
interacting nucleosomes, such that

√
ME �

√
2 ln R (A10)

or, using Eq. (29),

κ � 4

E4

L

N
ln2 R. (A11)

FIG. 16. Positioning of nucleosomes with interactions on up-
exponential energy landscape. Positioning parameter P for the DNA
with length L = 104 × W and W = 147 for the coverage fraction
ρ = nW/L smaller than 80% is plotted vs disorder strength (left
axis) and interaction strength (bottom axis) with preferable distance
of R = 148. On the top one can see the average size of the crystallized
cluster of nucleosomes, derived from Eq. (29). On the right the typical
energy peak (not well) is shown on the length of L/N . The line
represents the analytic conditions for a good positioning [Eq. (A12)].

In Fig. 15 one can see that Eqs. (A8) and (A11) predict
the border between the two regimes, with good and bad
positioning.

b. Disordered energy landscape with up-exponential distribution

Consider positioning of N nucleosomes on uncorrelated
disordered energy profile up-exponentially distributed with
some parameter E [see Eq. (A9)]. In this case, as for a single
nucleosome, the positioning is poor for any value of E and one
needs strongly interacting nucleosomes for a good positioning.

If nucleosomes strongly interact and form crystallized
clusters of M � 1 nucleosomes on average (and this happens
when κ � L

N
), the positioning condition is given by Eq. (A11).

Thus, the condition for positioning in this case is

κ � L

N
and

4

E4

L

N
ln2 R. (A12)

In Fig. 16 one can see that Eq. (A12) predicts the border
between the two regimes, with good and bad positioning.
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