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Dynamic patterns in a two-dimensional neural field with refractoriness
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The formation of dynamic patterns such as localized propagating waves is a fascinating self-organizing
phenomenon that happens in a wide range of spatially extended systems including neural systems, in which
they might play important functional roles. Here we derive a type of two-dimensional neural-field model with
refractoriness to study the formation mechanism of localized waves. After comparing this model with existing
neural-field models, we show that it is able to generate a variety of localized patterns, including stationary
bumps, localized waves rotating along a circular path, and localized waves with longer-range propagation. We
construct explicit bump solutions for the two-dimensional neural field and conduct a linear stability analysis
on how a stationary bump transitions to a propagating wave under different spatial eigenmode perturbations.
The neural-field model is then partially solved in a comoving frame to obtain localized wave solutions, whose
spatial profiles are in good agreement with those obtained from simulations. We demonstrate that when there
are multiple such propagating waves, they exhibit rich propagation dynamics, including propagation along
periodically oscillating and irregular trajectories; these propagation dynamics are quantitatively characterized.
In addition, we show that these waves can have repulsive or merging collisions, depending on their collision
angles and the refractoriness parameter. Due to its analytical tractability, the two-dimensional neural-field model
provides a modeling framework for studying localized propagating waves and their interactions.
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I. INTRODUCTION

Localized propagating waves with a variety of names, such
as dissipative solitons, dissipative breathers, traveling spots,
and pulses, have been found in systems ranging from chemical
and physical reaction-diffusion systems [1–6] to biological
cells [7–9] and neural systems [10,11]. Understanding their
formation mechanisms and complex dynamics is a new
frontier in the study of spatiotemporal patterns of these
diverse systems. In neural systems, the dynamics of such
waves may play an essential role in cortical information
processing; recently, it has been suggested that these waves
and their interactions can be used to implement distributed
dynamic computation: Information might be encoded in these
waves, information might be communicated based on their
propagation, and information might be processed when these
waves interact or collide with each other [12].

To study the formation of localized propagating waves,
a simple two-dimensional, spiking neural network model is
developed in [13], in which each neuron has three states,
i.e., the resting, the firing, and the refractory states. In the
model, each neuron in the resting state can be excited by
an above-threshold input; it then becomes refractory, after
which it returns to the resting state and can be excited again.
Such excitable dynamics capture the typical firing behavior
of neurons and similar activity in other excitable systems as
well [14–18]. The model explicitly takes the refractoriness
of neural firing activity into consideration. Refractoriness,
just like the spiking of neurons, is a fundamental part of
neural activity, which results from the intrinsic dynamics
of the active membrane conductance responsible for spike
generation [19,20]. During this refractory period, neurons that
have just fired are unable to produce another spike regardless
of the strength of afferent stimuli [20]. For this reason, one
might think that refractoriness would limit the performance
of neurons. However, it has been shown that refractoriness

plays an essential role in increasing the response reliability
and precision of firing activity of individual neurons and in
increasing their information transfer rates [21]. Theoretical
modeling studies on individual neurons have shown that,
by including refractoriness in widely used rate-based neural
models using Poisson processes, the models better capture the
statistical properties of spike trains of individual neurons than
using Poisson processes alone [22–24] and that refractoriness
can result in periodic neural oscillations [25]. Modeling studies
on spatially extended neural systems with refractoriness have
shown the existence of self-organized spatiotemporal patterns,
particularly spiral waves [26,27], similar to those found in
other spatially extended excitable media with refractoriness
[28,29]. In a two-dimensional spiking neural circuit model
developed recently [13], it has been shown that refractoriness
plays an essential role in the formation of localized propagating
waves; a similar effect of refractoriness in a one-dimensional
continuous neural-field model has been analyzed in [30].

In this study, we apply a mean-field treatment to the
two-dimensional spiking neural network model in [13] to
derive a new type of two-dimensional neural field. We then
show the differences between this model and the existing
neural-field models. Due to its analytical tractability, it
provides insights into understanding the formation of localized
propagating waves and their dynamics in two-dimensional
space. Neural fields with two spatial dimensions have a
far richer repertoire of spatiotemporal patterns than those
with only one dimension, but relatively fewer studies have
focused on the former [31,32]. We show that, by varying a
refractory parameter, our two-dimensional neural field can
produce stationary bumps, crescent-shaped propagating waves
with complex collective dynamics, and localized rotating
waves near the transition between these bumps and waves.
We construct explicit bump solutions for the two-dimensional
neural field and conduct a linear stability analysis to show how
symmetry breaking occurs under different spatial eigenmode
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perturbations; in this analysis, a special treatment involving
two auxiliary fields is applied to deal with the simultaneous
presence of multiplicative nonlinearity and discontinuity at the
bump boundary. We also investigate the complex dynamics of
multiple localized waves and their interactions emerging from
the neural field.

II. FROM SPIKING NETWORK TO CONTINUOUS
NEURAL FIELD WITH REFRACTORINESS

In the three-state, spiking neural network model [13], the
states of individual neurons change at discrete time steps as
follows: (i) A neuron in the resting state remains at rest unless
the total input it receives from other neurons is greater than
a threshold value κ = 1, in which case it fires at the next
time step. (ii) When a neuron is in the firing state, it sends
outputs to other neurons to which it is connected and becomes
refractory at the next time step. (iii) When a neuron is in the
refractory state, it returns to the resting state with a constant
probability p, otherwise remaining unchanged. We consider a
two-dimensional network, where an ith neuron is located on a
square lattice with coordinates (xi,yi). The state of the neuron
at time step n is denoted by sn

i , which takes a value of 1 for
firing state, 0 for resting state, and −1 for refractory state. The
full dynamics of the neural network can be described as

sn
i =

⎧⎪⎨
⎪⎩
H [I n−1

i − κ], if sn−1
i = 0,

−1, if sn−1
i = 1,

0 with probability p, otherwise −1, if sn−1
i = −1,

(1)

where H (x) is the Heaviside step function with H (x) = 1 if
x � 0 and H (x) = 0 otherwise. The total synaptic input I n

i

received by the neuron is

I n
i =

∑
j

wijS
n
j , (2)

where wij is a synaptic coupling function and Sn
j = H (sn

j − 1)
represents the spike train of the neuron.

We now derive a continuous neural-field model based on
this spiking neural network model. First, define the probability
of the ith neuron being in firing, ready, and refractory
state at a discrete time n as f n

i , gn
i , and hn

i , respectively.
A normalization condition requires that f n

i + gn
i + hn

i = 1.
Based on the transition rules of Eq. (1), the evolution of these
probabilities over successive time steps can be described as
follows: ⎧⎨

⎩
f n

i = qn−1
i gn−1

i ,

gn
i = (

1 − qn−1
i

)
gn−1

i + phn−1
i ,

hn
i = (1 − p)hn−1

i + f n−1
i .

(3)

The transition from the refractory state to the resting state
is determined by a constant probability p ∈ [0,1], whereas
the transition from resting state to firing state is determined
by the probability that the total input I n

i received by the
neuron exceeds a threshold κ = 1, i.e., qn

i = P (I n
i > κ). The

spike train Sn
j is a random variable with a discrete probability

distribution P (Sn
j = 1) = f n

j and P (Sn
j = 0) = 1 − f n

j . In
the spirit of central limit theorem (CLT), the probability

distribution of the synaptic input I n
i , as given by Eq. (2), can

be approximated by a Gaussian distribution with a mean of

un
i =

∑
j

wij

〈
Sn

j

〉 =
∑

j

wijf
n
j (4)

and a variance of[
σn

i

]2 =
∑
j,k

wijwikCov
(
f n

j ,f n
k

)
. (5)

Given the probability distribution of I n
i , the transition proba-

bility from the resting state to the firing state qn
i = P (I n

i > κ)
is

qn
i ≈ 1 − �

(
κ − un

i

σ n
i

)
= �

(
un

i − κ

σn
i

)
, (6)

where �(x) denotes the cumulative distribution of the standard
Gaussian. To further simplify the equations, we approximate
the variance in Eq. (5) with a constant σ 2 for all neurons. This
allows us to approximate qn

i in Eq. (6) using a transfer function
depending solely on un

i ,

qn
i = φ

(
un

i

)
. (7)

For analytical tractability, a sigmoid transfer function is often
used to approximate the cumulative Gaussian distribution.
In the limit as σ → 0, the transfer function approaches a
Heaviside step function, φ(un

i ) = H [un
i − κ], which is used

in this study. This enables us to construct explicit solutions of
localized bumps and to analytically determine their stability.

The next step is to replace the discrete lattice and the
discrete time with a continuum of spatial position r ∈ R2 and
time t ∈ R. The probabilities f n

i , gn
i , and hn

i are then replaced
by the following field variables, f (r,t), g(r,t), and h(r,t),
representing the fraction of firing, resting, and refractory
neurons, respectively. The mean synaptic input [Eq. (4)]
is therefore u(r,t) = ∫

R2 w(r,r′)f (r′,t)dr′. In particular, for
a distance-dependent coupling function, we have w(r,r′) =
w(|r − r′|), and the synaptic input is then a spatial convolution
(denoted by “*”),

u(r,t) = w ∗ f =
∫
R2

w(|r − r′|)f (r′,t)dr′. (8)

We also replace the finite difference in time with a correspond-
ing derivative,

f (r,t) − f (r,t − �t) ≈ τ
∂f (r,t)

∂t
, (9)

and similarly for g(r,t) and h(r,t). The time constant is set to
be τ = 10 ms, typical for cortical neurons. For convenience
during the subsequent mathematical analyses, we rescale the
time using t ← τ t . By applying Eq. (9) to Eq. (3), we obtain a
set of continuous equations as a mean-field approximation to
the original spiking network,⎧⎪⎨

⎪⎩
∂tf = −f + gH (u − κ),

∂tg = −gH (u − κ) + ph,

∂th = −ph + f.

(10)
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By reinforcing the normalization condition g = 1 − f − h,
the neural field is simplified into a pair of equations,⎧⎪⎪⎨

⎪⎪⎩
∂f

∂t
= −f + (1 − f − h)H (u − κ),

∂h

∂t
= −ph + f,

(11)

where u = w ∗ f , as defined in Eq. (8), and κ = 1 is the firing
threshold.

In this study, we consider a lateral inhibitory coupling
constructed from Bessel functions as in [33], due to its
analytical tractability,

w(r) = WEwK (r/σE) − WIwK (r/σI ), (12)

where wK (r) = 2
3π

[K0(r) − K0(2r)] and Kν is the modified
Bessel function of the second kind. The subscripts E and I

denote the excitatory and the inhibitory coupling, respectively.
The function wK (r) approximates the exponential function

1
2π

e−r , and it is normalized such that
∫
R2 wK (r)dr = 1.

The overall strength of the coupling function is there-
fore

∫
R2 w(r)dr = WEσ 2

E − WIσ
2
I . Here we let WE = 144.4,

WI = 73.7, σE = 0.187 mm, and σI = 0.324 mm, resulting
in a Mexican hat coupling with short-range excitation and
longer-range inhibition, whose shape matches approximately
that in the original spiking network model [13]. As in [13], the
spatial scales σE and σI are chosen such that the size of the
localized waves generated by the neural field is similar to that
of cortical waves found in experiments [10,34]. As described in
Eq. (11), the two-dimensional neural field involves two sources
of nonlinearity; one is the discontinuity posed by the Heaviside
transfer function, and the other is the multiplier (1 − f − h)
representing the fraction of resting neurons. The terms f and h

in this multiplier therefore act as nonlinear negative feedbacks
in this neural-field model. In this study, we investigate the
effect of refractoriness on the neural-field dynamics by varying
p, the rate of transition from the refractory state to the resting
state; note that the transition rate p is inversely proportional to
the refractory period.

III. COMPARISON WITH OTHER
NEURAL-FIELD MODELS

Before proceeding to analyzing the neural-field model, we
first compare it with other neural-field models with negative
feedback. The most studied neural field with negative feedback
involves a linear recovery variable [35],{

τ∂tf = −f − h + φ(w ∗ f ),

∂th = −αh + βf.
(13)

This type of neural-field model can produce spatially localized
patterns in both one and two spatial dimensions, including trav-
eling pulses, stationary bumps, and breathers [31,33,36,37].
However, a more biologically plausible description of negative
feedback should be nonlinear [38]. There has been a limited
number of studies on neural fields with nonlinear negative
feedback, which takes the form of synaptic depression [39–
41], spike frequency adaptation [39,42,43], or refractoriness
[25,30,38]. Even fewer studies have extended the analyses
of these types of neural fields to the cases with two spatial

dimensions [40,41]. In the following, we compare our model
to those in [30,40,41].

A one-dimensional neural field with refractoriness is
described as [30]{

τ∂tf = −f + (1 − h)φ(w ∗ f ),

h = 1
R

∫ t

t−R
f (x,t ′)dt ′,

(14)

where the variable h(x,t) represents the fraction of neurons in
the refractory state and R is the absolute refractory period. The
premultiplier (1 − h) in Eq. (14) is therefore interpreted as the
fraction of resting neurons. Linear Turing analysis and weakly
nonlinear analysis are used to investigate the emergence of
spatiotemporally periodic waves in this model [30]. There are
three differences between our model and this model. First, the
premultiplier representing the fraction of resting neurons is
(1 − h − f ) in Eq. (11) of our model, instead of (1 − h) in
Eq. (14). This means that our model provides a more exact
description for the fraction of resting neurons by explicitly
excluding the fraction of currently firing neurons from it.
Second, the dynamics of the refractory variable h in our model
is described by an ordinary differential equation [second line of
Eq. (11)], instead of the integral form in Eq. (14), equivalent
to a delay differential equation. This significantly simplifies
some steps in the subsequent mathematical analysis. Last, our
neural field extends to two spatial dimensions, allowing the
formation of complex spatiotemporal patterns that cannot be
formed in one-dimensional models, as shown in later sections.

Another neural field to be compared with ours is a two-
dimensional neural field with synaptic depression [40,41],{

τ∂tf = −f + gφ(w ∗ f ),

∂tg = −βgφ(w ∗ f ) + (1 − g)/α,
(15)

where the premultiplier g(r,t) is the fraction of available
presynaptic resources, which depletes at a rate of βgφ(u) and
regenerates at a rate of (1 − g)/α. It has been shown that the
neural field forms an oscillatory medium due to the nonlinear
feedback in the form of synaptic depression [40]. With a purely
excitatory coupling, this neural field can generate an oscillating
core that periodically emits radially expanding target waves,
and perturbation to this oscillating core results in the formation
of spiral waves.

At first glance, a neural field with synaptic depression
[Eq. (15)] has an entirely different mathematical form as
that with refractoriness [Eq. (14)]. However, the derivation
of our model reveals an intriguing connection between them.
To illustrate this, consider Eq. (10), the set of three equations
used to derive Eq. (11) before imposing the normalization
condition f + g + h = 1. If we choose to eliminate g from
Eq. (10) by using g = 1 − h − f , we obtain a neural field
with refractoriness [Eq. (11)]; if we choose to eliminate h

using h = 1 − g − f instead, we obtain a neural-field model,{
∂tf = −f + gφ(w ∗ f ),

∂tg = −gφ(w ∗ f ) + p(1 − f − g),
(16)

which is in a similar form as Eq. (15) with synaptic depression.
This means that neural-field models with either refractoriness
or synaptic depression are largely equivalent at a mathematical
level. The key to establishing this connection is that a
population of neurons is made up of all three fractions, f ,
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FIG. 1. (Color online) Spatially localized patterns of the neural field. (a) Snapshot of the firing rate f (r,t) at p = 0.5, showing a stationary
bump in the shape of a radially symmetric disk with radius a = 0.33 mm. (b) A rotating wave at p = 0.44 moving clockwise at a period of
T = 0.43 s. The solid line shows its circular trajectory with a radius of A = 0.29 mm. (c) Snapshot of a crescent-shaped wave at p = 0.38
propagating upwards at a speed of v = 78 mm/s. The solid line traces the trajectory of the wave. (d) Speed of a propagating wave (p < 0.43)
and tangential speed of a rotating wave (p > 0.43) versus p. (e) Period of a rotating wave versus p. (f) Radius of the trajectory of a rotating
wave versus p.

g, and h, whereas in both [40] and [30], the fraction of
firing neurons f is neglected. As a consequence, our model
incorporates explicitly the fraction of firing neurons f as part
of the nonlinear negative feedback, which, however, is missing
in other models.

IV. REFRACTORINESS-INDUCED
SYMMETRY BREAKING

Localized patterns including stationary bumps and local-
ized propagating waves can emerge from the continuous neural
field [Eq. (11)]. Figure 1(a) shows a stationary bump in the
shape of a circular disk, which is formed in the parameter
range p > 0.49; such a bump can be elicited by a spatially
localized, transient external input, and it remains persistent
after the input is removed. As p decreases and passes a critical
point, pc ≈ 0.49, spontaneous symmetry breaking occurs, and
the bump evolves to a crescent-shaped, localized propagating
wave [Figs. 1(b) and 1(c)]. Interestingly, the trajectory of the
localized wave (solid trace) is a straight line for p � 0.43
[Fig. 1(c)], but it converges to a circle for 0.43 < p � 0.49
and persists indefinitely [Fig. 1(b)]. The direction of the
circular motion can be either counterclockwise or clockwise,
depending on the initial condition. Note that such a localized
rotating wave traveling in a circular path is not identified in
the original three-state spiking model due to the presence
of noise [13], and similar rotating waves have been found
in a stimulus-driven neural field with linear adaptation [33].
We then numerically calculate the speed of these localized
propagating waves at different p values. As shown in Fig. 1(d),
both the speed of a traveling wave (p < 0.43) and that of
a rotating wave (p > 0.43) decreases as p increases. In

particular, the speed of a rotating wave appears to depend
linearly on p. The speed drops discontinuously at p = 0.43,
as a traveling wave transitions to a rotating wave, and again
at p = 0.49, as it transitions to a stationary bump. For the
rotating wave, we also calculate the period of its rotation and
the radius of its circular trajectory, which are both found to
decrease as p increases [Figs. 1(e) and 1(f)].

We now construct explicit bump solutions to Eq. (11)
and determine their linear stability with respect to different
perturbations. For a stationary bump with radius a, the neural
field satisfies u(r) < κ for r > a and u(r) > κ for r < a. In
this case, Eq. (11) can be reduced to spatially uncoupled linear
equations; for r > a,⎧⎪⎪⎨

⎪⎪⎩
∂f

∂t
= −f,

∂h

∂t
= −ph + f,

(17)

which has a fixed point at (f̄ ,h̄) = (0,0), corresponding to a
stable node, and for r < a,⎧⎪⎪⎨

⎪⎪⎩
∂f

∂t
= −2f − h + 1,

∂h

∂t
= −ph + f,

(18)

which has a fixed point at (f̄ ,h̄) = ( p

1+2p
, 1

1+2p
), corresponding

to a stable focus. Note that f̄ is a monotonic increasing
function of p ∈ [0,1]; when p = 1 the fraction of firing
neurons is at maximum value, f̄ = 1/3, and when p = 0,
all neurons remain in the refractory state.
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FIG. 2. The radius a of a bump solution at different p values. Two
branches of bump solutions exist beyond a critical point p � 0.047
(circle). The lower branch (dashed line) is always unstable. For
p � 0.129, the upper branch is stable with respect to a contraction
and unstable to an expansion (dot-dashed line). For 0.129 < p <

0.470, the upper branch is stable with respect to radially symmetric
perturbations (expansion or contraction), but is unstable to a shift
perturbation (solid gray line). For p � 0.470 the upper branch
corresponds to stable stationary bumps (solid black line).

The neural-field model [Eq. (11)], therefore, has a steady-
state solution in the form of a uniform disk, f̄ (r) = p

1+2p
and

h̄(r) = 1
1+2p

for r < a, and f̄ (r) = h̄(r) = 0 for r > a. The
corresponding synaptic input is

ū(r) = w ∗ f̄ = p

1 + 2p
I(r),

(19)

I(r) =
∫ 2π

0

∫ a

0
w(|r − r′|)r ′dr ′dθ ′.

By imposing the boundary condition ū(a) = κ , we obtain an
existence condition for a radially symmetric bump,

p = κ

I(a) − 2κ
. (20)

Note that for the coupling function used in the model [Eq. (12)],
the integral I(a) can be expressed as a linear combination of
Bessel functions [44],

I(a) = 4a

3
[WEIK (a,σE) − WIIK (a,σI )], (21)

where

IK (a,σ ) = σI1(a/σ )K0(a/σ ) − σ

2
I1(2a/σ )K0(2a/σ ),

(22)

with Iν denoting the modified Bessel function of the first kind
of order ν. The dependence of the radius a of a stationary
bump solution on the refractoriness parameter p, as described
by Eq. (20), is shown in Fig. 2. For p < 0.047, no bump
solution exists; at p = 0.047, a single bump solution exists
with a radius of a = 0.176 mm; for each p > 0.047, there
exists two bump solutions, one with a small radius and another
with a large radius. Simulations show that the smaller bump is
always unstable, whereas the larger bump is stable up until the
critical point of symmetry breaking at pc = 0.49. For neural

fields with linear feedback, the stability is obtained by formally
differentiating the Heaviside step function [33]. However, for
neural fields with nonlinear feedback, this method fails to
correctly identify the instabilities for symmetry breaking at
pc. This is because the eigenvalue for a perturbation near
the bump boundary is different depending on the sign of the
perturbation. The same kind of problem is found in a different
neural-field model [41], where it is overcome by introducing an
auxiliary field to the perturbation, whose sign can be explicitly
described; by deriving an evolution equation for this auxiliary
field and analyzing its linear stability, the stability of the bump
in the original neural field can then be obtained [41].

Here we follow similar steps as in [41] to analyze our
model, but with two modifications. First, the method in [41] is
originally developed for analyzing a piecewise smooth system,
but here we extend it to the case with piecewise continuity.
Second, since our model has nonlinear feedback in both f and
h, we introduce one more auxiliary field, in addition to the one
used in [41]. Let f (r,t) = f̄ (r) + εϕ(r,t) and h(r,t) = h̄(r) +
εψ(r,t), where ϕ(r,t) and ψ(r,t) are small perturbations to the
bump solutions. We also let u = ū + εμ, where ū = w ∗ f̄ and
μ = w ∗ ϕ. Substituting these into Eq. (11), we obtain,⎧⎪⎪⎨

⎪⎪⎩
∂tϕ = −ϕ − (ψ + ϕ)H (ū + εμ − κ)

+ 1

ε
(1 − h̄ − f̄ )H (ū + εμ − κ) − 1

ε
f̄ , (23)

∂tψ = −pψ + ϕ. (24)

The boundary condition after the perturbation satisfies

u(a + ε�,θ,t) = κ, (25)

where �(θ,t) is the perturbation to the bump boundary. By
expanding the above equation up to the first order in ε, we
have

κ = u(a) + ε�u′(a) ≈ ū(a) + εμ(a) + ε�ū′(a) (26)

and use ū(a) = κ to get

�(θ,t) = μ(a,θ,t)

|ū′(a)| . (27)

Note that we have not expanded the Heaviside step function in
Eq. (23) due to the discontinuity of the premultiplier 1 − h̄ − f̄

at the bump boundary. To proceed with the analysis of bump
stability, we define the following pair of auxiliary fields:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(r,t ; �) =
∫ 2π

0

∫ a+ε�(θ ′,t)

0
w(|r − r′|)ϕ(r′,t)r ′dr ′dθ ′,

(28)

�(r,t ; �) =
∫ 2π

0

∫ a+ε�(θ ′,t)

0
w(|r − r′|)ψ(r′,t)r ′dr ′dθ ′.

(29)

The variables � and � incorporate explicitly the dependence
on the sign of the perturbation near the bump boundary,
allowing us to correctly determine the stability of the original
perturbations ϕ and ψ by analyzing the stability of � and �

instead. Applying a spatial convolution to Eq. (23) with respect
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to w and then substituting Eq. (28) into the result, we obtain

∂tμ = −μ − � − � + 1

ε

∫ 2π

0

∫ a+ε�(θ ′,t)

0
w(|r − r′|)(1 − h̄ − f̄ )r ′dr ′dθ ′ − 1

ε
ū. (30)

To obtain an equation describing the dynamics for �, we differentiate Eq. (28) to get

∂t�(r,t) =
∫ 2π

0

∫ a+ε�(θ ′,t)

0
w(|r − r′|)∂tϕ(r′,t)r ′dr ′dθ ′ + εa

∫ 2π

0
w(|r − a′|)ϕ(a′,t)�̇dθ ′, (31)

where a′ = (a,θ ′). We then substitute Eq. (23) into Eq. (31) to get

∂t�(r,t) = −2� − � + 1

ε

∫ 2π

0

∫ a+ε�(θ ′,t)

0
w(|r − r′|)(1 − h̄ − 2f̄ )r ′dr ′dθ ′ + εa

∫ 2π

0
w(|r − a′|)ϕ(a′,t)�̇dθ ′. (32)

Similarly,

∂t�(r,t) = −p� + � + εa

∫ 2π

0
w(|r − a′|)ψ(a′,t)�̇dθ ′. (33)

The next step is to expand the integrals in Eq. (30) and Eq. (32) and then collect the terms of order ε0. Together with Eq. (33),
this gives a system of three equations that involves only μ, �, and �. The expansions of these integrals are∫ 2π

0

∫ a+ε�(θ ′,t)

0
w(|r − r′|)(1 − h̄ − 2f̄ )r ′dr ′dθ ′ = εa

∫
A+

�(θ ′,t)w(|r − a′|)dθ ′, (34)

and, similarly,∫ 2π

0

∫ a+ε�(θ ′,t)

0
w(|r − r′|)(1 − h̄ − f̄ )r ′dr ′dθ ′ = ū + εa

∫
A+

�(θ ′,t)w(|r − a′|)dθ ′ + εa
p

1 + 2p

∫
A−

�(θ ′,t)w(|r − a′|)dθ ′,

(35)
where �(θ,t) is given by Eq. (27) and A± = {θ |μ(a,θ,t) ≷ 0} denotes the set of points on the bump boundary with positive
or negative perturbations, respectively. Note that we have used the property 1 − h̄ − 2f̄ = 0 and 1 − h̄ − f̄ = f̄ for r < a to
simplify the integral over the integration range r ∈ [0,a). Combining these results and collecting terms of order ε0, we have⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂μ

∂t
= −μ(r,t) − �(r,t) − �(r,t) + I+(r,t) + p

1 + 2p
I−(r,t),

∂�

∂t
= −2�(r,t) − �(r,t) + I+(r,t),

∂�

∂t
= −p�(r,t) + �(r,t),

(36)

where

I±(r,t) = a

|ū′(a)|
∫
A±

μ(a,θ ′,t)w(|r − a′|)dθ ′. (37)

The bump stability can therefore be obtained by analyzing the linear stability of Eq. (36). To proceed with the analysis, we have
to restrict ourselves to the case where perturbations do not change the sign over time, that is, A± is constant over time. Under this
condition, we can express a general perturbation in the form μ(r,t) = eλtμ(r), �(r,t) = eλt�(r), and �(r,t) = eλt�(r), with λ

being real valued. If we substitute them into Eq. (36), we obtain the following “eigenvalue” problem,⎡
⎣λ + 1 1 1

0 λ + 2 1
0 −1 λ + p

⎤
⎦

⎡
⎣μ(r)

�(r)
�(r)

⎤
⎦ =

⎡
⎣I+ + p

1+2p
I−

I+
0

⎤
⎦. (38)

The matrix on the left-hand side is not invertible if its
determinant is zero; that is,

(λ + 1)[λ2 + (2 + p)λ + 2p + 1] = 0. (39)

Solutions to this equation are λ = −1, 1
2 [−2 − p ±√

p(p − 4)], which have negative real parts for all 0 � p � 1,
and they do not incur instability to the bump. In order to
determine the bump stability, we now consider the case that

the matrix in Eq. (38) is invertible. Solving Eq. (38) for μ(r)
leads to

(λ + 1)μ(r) = [1 − k(λ)]I+ + p

1 + 2p
I−, (40)

where

k(λ) = λ + p + 1

λ2 + (2 + p)λ + 2p + 1
. (41)
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Now consider the bump boundary by setting r = a. The spatial
integrals are simplified to [41]

I±(a,θ ) = a

|ū′(a)|
∫
A±

μ(a,θ ′)w
(

2a sin
θ − θ ′

2

)
dθ ′. (42)

The stability of the bump depends on the sign of the
perturbation �(θ ) to the bump boundary at r = a, which,
in turn, depends on μ(a,θ ). There are three general cases
to be considered, namely, a radially symmetric contraction,
a radially symmetric expansion, and radially asymmetric
perturbations to the bump boundary. The stabilities for radially
symmetric perturbations, i.e., contraction and expansion, can
be obtained analytically, whereas those for radially asym-
metric ones require a numerical approximation scheme as in
[41]. First, consider a radially symmetric contraction, with
μ(a,θ ) = μ(a) < 0, A+ = ∅, and A− = [0,2π ). Under these
conditions, Eq. (40) becomes

λ = −1 + p

1 + 2p
J (a), (43)

with

J (a) = 2a

|ū′(a)|
∫ π

0
w(2a sin θ )dθ. (44)

For the coupling function used here, J (a) has an explicit
analytical expression [41],

J (a) = 1 + 2p

p

WEJ0(a,σE) − WIJ0(a,σI )

WEJ1(a,σE) − WIJ1(a,σI )
, (45)

with

Ji(a,σ ) = Ii(a/σ )Ki(a/σ ) − Ii(2a/σ )Ki(2a/σ ). (46)

Next we consider a radially symmetric expansion, with
μ(a,θ ) = μ(a) > 0, A− = ∅, and A+ = [0,2π ). Under these
conditions, Eq. (40) becomes

λ + 1 = [1 − k(λ)]J (a), (47)

which gives a quadratic equation,

λ2 + (2 + p − J )λ + 1 + 2p − Jp = 0. (48)

The results for perturbations corresponding to radially sym-
metric contraction and expansion are shown in Fig. 3. The
lower branch of Fig. 2, as shown in Fig. 3(a), has positive
eigenvalues for both contraction (dashed) and expansion
(solid) for all p values for which a bump exists. The upper
branch of Fig. 2, as shown in Fig. 3(b), is stable with respect to
contraction (dashed) for all p values, but unstable with respect
to an expansion for p < 0.129. For p > 0.129, the analysis
does not indicate the stability of an expansion, due to nonzero
imaginary parts of the eigenvalues violating the assumption
that the perturbations do not switch signs. Nonetheless,
numerical simulation shows that the bump appears to be stable
over this range.

Finally, we consider general cases with radially asymmetric
perturbations with A± 	= ∅. There is no systematic way
to obtain analytical solutions to the eigenvalue problem
[Eq. (38)], which has to be solved numerically. Nonetheless,
due to the translational invariance of the neural field, we expect
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FIG. 3. (Color online) The eigenvalue λ of the linearized system
with respect to radially symmetric perturbations. (a) A bump solution
with a small radius is unstable (λ > 0) to both contraction (dashed)
and expansion (solid) for all p values. (b) A bump solution with a
large radius is stable to contraction (dashed) for all p, but it is unstable
to expansion (solid) for p < 0.129. Stability about expansion for
p > 0.129 cannot be inferred, but simulation nonetheless indicates
that it is stable.

the existence of a zero eigenvalue for a shift perturbation,
which can be verified analytically. Following the steps in [41],
we set λ = 0 and μ(a,θ ) = eiθ in Eq. (40) and get

1 = p

1 + 2p

2a

|ū′(a)|
∫ π

0
e2iθ ′

w(2a sin θ ′)dθ ′. (49)

The integral on the right-hand side is real, since

Im

{∫ π

0
e2iθ ′

w(2a sin θ ′)dθ ′
}

=
∫ π

0
sin 2θ ′w(2a sin θ ′)dθ ′

= 0, (50)

due to the integrand being odd symmetric about π/2. For
the Mexican hat coupling function used here, the real part of
the integral can be expressed explicitly by using the identity∫ π

0 K0(2a sin θ ) cos 2θdθ = πI1(a)K1(a). Finally, by using

|ū′(a)| = 4a

3

p

1 + 2p
[WEJ1(a,σE) − WIJ1(a,σI )], (51)

we find that Eq. (49) is satisfied; that is, there exists an
eigenvalue λ = 0.

To find other solutions to the eigenvalue problem [Eq. (38)],
we apply the following numerical scheme [41]. Discretize
the spatial coordinate as θj = 2π

j

N
, j = 0,1, . . . ,N − 1, and

consider perturbations such that A± is the union of n � 1
disconnected, evenly distributed, and equally sized subregions
with μ(a,θi) >< 0. To fully characterize the set of possible
eigenmodes for each n, the size l of each subregion of A+
is taken to be anywhere from 1 to N/n − 1. For a radially
symmetric perturbation, denoted n = 0, we have l = 0 for a
contraction and l = N for an expansion. Let

wjk = w

(
2a sin

θj − θk

2

)
(52)

and approximate the integral of Eq. (42) using

I±(a,θj ) ≈ a

|ū′(a)|
2π

N

∑
A±

μ(a,θk)wjk. (53)
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FIG. 4. (Color online) The eigenvalue λ of the linearized system
with respect to radially asymmetric perturbations. (a) Eigenvalues of
different modes of perturbations with order n = 0,1,2,3, colored in
blue, red, green, and yellow, respectively (with increasing brightness).
The dominant mode has order n = 1 (red), corresponding to a shift
perturbation. The shift perturbation has a zero eigenvalue, as expected
from the translational invariance of the system; for p � 0.470,
positive eigenvalues emerge, indicating that the shift perturbation
is unstable. A number of N = 120 points is used to discretize the
angular coordinate θ . (b) Magnification of the eigenvalue for shift
perturbation (n = 1) near the critical point, with higher accuracy
using N = 480 points for discretizing θ .

Applying this approximation to Eq. (38), we obtain a matrix
eigenvalue problem, conveniently written in block matrix
form, ⎡

⎣W+ + p

1+2p
W− − I −I −I

W+ −2I −I

0 I −pI

⎤
⎦

⎡
⎣μ(r)

�(r)
�(r)

⎤
⎦

= λ

⎡
⎣μ(r)

�(r)
�(r)

⎤
⎦, (54)

where I is the N -by-N identity matrix. The matrix W± is an
N -by-N matrix whose entries are given by

W±
jk = a

|ū′(a)|
2π

N
wjk1±

k , (55)

where the indicator function 1±
k is equal to 1 if θk ∈ A± and 0

otherwise, and |ū′(a)| is given by Eq. (51). For each mode n,
we solve the eigenvalue problem of Eq. (54) numerically for
every l and find the corresponding eigenfunctions μ(a,θ ). A
valid solution to the eigenfunction is found if either μ(a,θ ) or
−μ(a,θ ) satisfies the initial assumption about the signs of the
perturbations. It turns out for each n, only one or two valid
solutions are found for a given p value.

Since we have shown analytically that the lower branch in
Fig. 2 is always unstable for perturbations of order n = 0, we
now focus on the upper branch. We calculate the eigenvalues
for modes n = 0,1,2,3 for the upper branch in Fig. 2, which
are shown in Fig. 4. Note that only those eigenvalues that are
real valued are shown. The dominant order corresponds to a
shift perturbation, shown in red. It contains a zero eigenvalue
due to the translational invariance of the system. However, an
asymmetric shift perturbation incurs instability below a critical
point, p = 0.47, which approximately coincides with the point
of symmetry breaking, p = 0.49, found by direct numerical
simulations. Our analysis suggests that the transition from
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|
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FIG. 5. (Color online) Shapes of eigenmode perturbations.
(a) The fraction of the region over which the eigenmode perturbation
is positive along the bump boundary. Spatial modes n = 1,2,3 are
colored in red, green, and yellow, respectively (with increasing
brightness). Solid (dashed) curves corresponds to stable (unstable)
modes. (b)–(d) Examples of stable (solid) and unstable (dashed)
eigenmodes for n = 1,2,3. The gray circle represents the boundary
of the unperturbed bump.

radially symmetric bumps to localized propagating waves is
due to this shift instability. The result of our analysis is also
consistent with the critical point for symmetry breaking found
in the spiking network model [13,45], from which this neural
field is derived. The spatial eigenmodes are characterized by
the fractions of the bump boundary with positive perturbations,
|A+|, as shown in Fig. 5(a). Examples of stable and unstable
eigenmodes for n = 1,2,3 are shown in Figs. 5(b)–5(d).

V. PROPAGATING WAVE

Localized propagating waves that emerge from our neural-
field model can be characterized by a homoclinic orbit by
considering the system in a comoving frame. Letting ξ =
x/c − t , where c is the wave speed, a steady-state solution
[F (ξ,y),H (ξ,y)] of the wave in the comoving frame satisfies{−∂ξF = −F + (1 − H − F )φ(cw ∗ F ),

−∂ξH = −pH + F,
(56)

where w ∗ F is a spatial convolution with respect to (ξ,y).
When φ(u) = H (u − κ), we expect a solution such that U =
cw ∗ F > κ for a region A+ and U < κ for a region A−. For
the region A+, the equations for the steady state reduces to{−∂ξF = −2F − H + 1,

−∂ξH = −pH + F.
(57)

This set of equations has an unstable focus at (F̄ ,H̄ ) =
( p

1+2p
, 1

1+2p
). For the region A−, the equations for the steady
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state are {−∂ξF = −F,

−∂ξH = −pH + F,
(58)

which have an unstable node at (F̄ ,H̄ ) = (0,0). Sup-
pose that the A+ is a simply connected region

defined by the set A+ = {(ξ,y)|σ−(y) < ξ < σ+(y),y ∈
[−b,b]}. By imposing a continuous boundary condi-
tion, such that F (σ+(y),y) = 0 and limξ→σ−(y)+ F (ξ,y) =
limξ→σ−(y)− F (ξ,y), we can solve the linear equations given
by Eqs. (57) and (58) and construct a homoclinic orbit. The
solution is

F (ξ,y) =

⎧⎪⎪⎨
⎪⎪⎩

0, for ξ > σ+(y),
p

1+2p
{1 − eα(ξ−σ+)[cos β(ξ − σ+) + A sin β(ξ − σ+)]}, for σ−(y) � ξ � σ+(y),

F−(y)eξ−σ− , for ξ < σ−(y),

(59)

where α = (2 + p)/2, β = √
p(4 − p)/2, F±(y) = F (σ±(y),y), and A = 2−a+1/p

β
, and

H (ξ,y) =

⎧⎪⎪⎨
⎪⎪⎩

0, for ξ > σ+(y),

1
1+2p

{1 − eα(ξ−σ+)[cosβ(ξ − σ+) + B sin β(ξ − σ+)]}, for σ− � ξ � σ+,[
H−(y) + F−(y)

1−p

]
ep(ξ−σ−) − F−(y)

1−p
eξ−σ− , for ξ < σ−(y),

(60)

where B = a−2−p[(α−2)2+β2]
β

. The boundary of the excited
region A+ satisfies the threshold condition u(ξ,y) = κ ,

κ = c

∫ b

−b

∫ σ+(y ′)

−∞
w(|a − r′|)F (ξ ′,y ′)dξ ′dy ′, (61)

where a = (cσ±(y),y) and r′ = (cξ ′,y ′). There is no simple
way to analytically solve the above equation and to deter-
mine the boundary or the wave speed. Nonetheless, by using
the boundary obtained from simulation, we can then deter-
mine the homoclinic orbit described by Eqs. (59) and (60).
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FIG. 6. (Color online) Spatial profile of propagating waves.
(a) Longitudinal profile of a wave corresponds to a piecewise
smooth homoclinic orbit on the F -H plane at p = 0.35. The
sections of the orbit corresponding to the front and the tail of
the wave are shown in red (darker shade) and green (lighter
shade), respectively. For the red section, the synaptic input satisfies
u > κ , and the orbit spirals from the origin towards the un-
stable focus at (F,H ) = ( p

1+2p
, 1

1+2p
) in the −ξ direction. For the

green section, u < κ , and the orbit decays exponentially towards the
origin in the −ξ direction. (Inset) Magnification near the unstable
focus (marked with a circle). Note that the orbit does not connect
the circle, but has a sharp bend at the boundary specified by u = κ .
(b) Longitudinal section of a wave propagating to the right, with
a numerically measured speed of c = 84.2 mm/s at p = 0.35. The
wave profile obtained from the simulation (dots) is in agreement with
the analytical solution (solid curve).
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FIG. 7. (Color online) Dynamics of multiple localized patterns.
(a) Snapshots of f (r,t) with N = 10 stationary bumps at p = 0.49
arranged on a square lattice (top) and their corresponding trajectories
(bottom). (b) Rotating waves with irregular interactions at p = 0.44.
(c) The velocity time series of a rotating wave (top) and its
ACF (bottom). The ACF shows a sinusoidal oscillation with an
exponentially decaying envelope.
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FIG. 8. (Color online) Multiple waves with complex interac-
tions. (a) Snapshot of f (r,t) with N = 10 waves with complex
interactions at p = 0.38 (top) and the irregular trajectory of one of
the waves (bottom). The arrows indicate the propagation direction of
the waves. (b) The velocity of the waves with complex interaction
(top) and the corresponding ACF (bottom).

Figure 6(a) shows the homoclinic orbit corresponding to the
longitudinal profile of the wave through its central axis (y =
0), with refractoriness parameter p = 0.35. The red curve cor-
responds to the front of the wave, where σ−(0) < ξ < σ+(0) =
0, and the green curve corresponds to the tail of the wave, where
ξ < σ−(0). The inset in Fig. 6(a) is a magnification showing the
shape of the orbit near the unstable focus of Eq. (57) (marked
with a circle). Note that the red curve intersects with the green
curve without connecting the unstable focus. By using the
wave speed c measured from the simulation, we can also deter-
mine the longitudinal profile of the wave, as shown in Fig. 6(b).
The profile derived analytically (solid line) is in agreement
with the simulation result (dots). The derivation above can be
naturally extended to a rotating wave by considering the neural
field in a rotating polar coordinate, F (r,ξ ), where ξ = θ/ω − t

and ω is the angular speed.

VI. COLLECTIVE DYNAMICS OF MULTIPLE
LOCALIZED PROPAGATING WAVES

Having analyzed the dynamics of a single localized pattern,
we now consider the collective dynamics of multiple such
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FIG. 9. (Color online) Regularly propagating waves. (a),(b) Snapshots of f (r,t) of N = 10 propagating waves (top) and their trajectories
(bottom) at p = 0.35 and p = 0.33, respectively. The propagation involves a net drift in a fixed direction, superimposed by period-2 (a) and
period-1 (b) oscillations. For clarity, the trajectory of only one of the waves is shown for each case. (c) For p = 0.3, the waves traveling
uniformly in a fixed direction. (d),(e) Velocity and the corresponding ACF for p = 0.35 and p = 0.33, respectively.
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patterns, which can be evoked when transient external inputs
are added to different locations of the neural-field model. We
simulate multiple patterns on a 6 × 6-mm square domain with
periodic boundary conditions. When these patterns are close
to each other, they have repulsive interactions due to the lateral
inhibition [Eq. (12)]. For p > 0.48, multiple stationary bumps
can be generated, and they eventually arrange themselves to
a square lattice, as shown in Fig. 7(a). As p decreases, the
bump destabilizes and evolves to localized propagating waves
as p � 0.48. As demonstrated above, depending on the value
of p, a single wave can move along a circle or a straight
line. However, complex dynamics occurs for multiple waves
due to their repulsive interactions. For 0.42 < p � 0.48, each
wave tends to rotate around a confined area, as expected from
a single, isolated rotating wave, but with visible irregularity
due to interactions with other waves; as shown in Fig. 7(b),
their trajectories no longer follow perfect circular paths as
an isolated rotating wave in Fig. 1(b). To characterize the
irregular interactions, we trace the individual trajectories of
the waves and calculate the autocorrelation functions (ACFs)
of their velocities. Figure 7(c) shows the velocity along the
x axis of one of the multiple rotating waves at p = 0.44
and its ACF (bottom panel). The velocity ACF shows a si-
nusoidal oscillation with an exponentially decaying envelope,
with a decay constant τ ≈ 0.382 s. This indicates that the
multiple rotating waves have periodic oscillations embedded
with irregular fluctuations due to interactions with other
waves.

For 0.36 < p � 0.42, each crescent-shaped wave tends
to move in a straight line by itself, but change direction
upon colliding with other waves, resulting in complex and
irregular trajectories, as shown in Fig. 8(a). For p = 0.38, the
velocity ACF decays towards zero as the time lag increases,
consistent with the irregular motion of the waves. The velocity
ACF is also strictly positive, consistent with that the waves
move in straight lines and change directions only if they
collide with each other. Interestingly, the ACF does not decay
monotonically, but it has a local minimum at �t ≈ 0.165 s
and a peak at �t ≈ 0.28 s. The velocity of the wave is the
least correlated with itself at the time lag corresponding to
this local minimum. To understand this point, we calculate the
average intercollision interval of individual waves; a collision
is considered to occur when the distance between two waves
becomes less than a threshold r = 1.65 mm. We find that the
average intercollision interval of each wave is approximately
�t = 0.16 s. This therefore indicates that the extrema in
the velocity ACF approximately corresponds to the average
intercollision interval.

As p further decreases, however, the motion of the waves
converges towards the same direction. Closer inspection
reveals periodic oscillations in the trajectory of each wave,
superimposed on a uniform linear motion. These periodic
oscillations are originated from the periodic collisions between
the waves. Snapshots of these uniformly traveling waves
with periodic collisions at p = 0.35 and p = 0.33 and their
corresponding trajectories are shown in Figs. 9(a) and 9(b),
where small amplitude oscillations are clearly visible. For
both p = 0.35 and p = 0.33, the velocity shows periodic
oscillations around a constant value [see Figs. 9(d) and 9(e)].
For p = 0.33, the velocity ACF shows sinusoidal oscillations
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FIG. 10. (Color online) Inelastic repulsive collision of two
waves. (a) Trajectories of two waves colliding with various angles
at p = 0.3. (b) Outgoing angle versus incoming angle. The outgoing
angle is smaller than the incoming angle, indicating that the collision
is inelastic. (c) Outgoing angle versus p. The outgoing angle of the
collision decreases as p decreases, indicating that the collision is
more inelastic for smaller p. The dashed lines indicate the incoming
angle.

with a decaying envelope, indicating a period-1 oscillation,
whereas for p = 0.35, the ACF shows oscillations with
alternating amplitudes, indicating a period-2 oscillation. This
doubling of the period in the trajectory reflects the change in
the collision patterns of the waves. For p � 0.3, the waves
converge towards a motion in a straight line [Fig. 9(c)], the
same as a single isolated wave in this parameter range.

To illustrate the repulsive interactions of the localized
propagating waves, we trace the trajectories of two waves
colliding symmetrically at different angles [Fig. 10(a)]. It is
found that the outgoing angle of the collision is less than
the incoming angle, suggesting that the collision is inelastic
[Fig. 10(b)]. Interestingly, for a collision with a fixed incoming
angle, its outgoing angle becomes smaller as p decreases,
suggesting that refractoriness contributes to strong inelastic
collisions [Fig. 10(c)]. We also consider a special case of
a perfectly aligned, head-on collision between two identical
waves. Under this scenario, the waves may either bounce
straight back to the opposite direction or merge with each
other depending on the refractory parameter p. A series of
snapshots of the temporal process of the head-on collision
under each of these conditions is shown in Fig. 11. For p = 0.1,
the waves physically touch each other and merge to a single
transient bump. This bump is unstable, as expected by our
stability analysis from previous sections, and it splits into
two localized waves propagating in directions perpendicular
to that of the incoming waves. For p = 0.2, corresponding
to a relatively shorter refractory period, the waves do not
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FIG. 11. (Color online) Head-on collisions between two waves. Snapshots of f (r,t) of two localized propagating waves undergoing
perfectly aligned head-on collision. At p = 0.1, the waves collide and merge with each other to form a single transient bump, which then splits
into two waves along the direction perpendicular to the incoming waves. At p = 0.2, the waves collide and bounce straight back in the opposite
directions.

touch each other, but bounce straight back to the opposite
directions. These results show that refractoriness alone can
influence the outcome of the head-on collision between two
waves without changing the range or the strength of the lateral
inhibition.

VII. CONCLUSION AND DISCUSSION

In this study, we have derived a two-dimensional neural field
with nonlinear negative feedback in the form of refractoriness;
the neural field is able to generate a range of localized
patterns including stationary bumps and localized rotating
and propagating waves. We have found refractoriness-induced
symmetry breaking of stationary bumps into crescent-shaped
propagating waves. To understand the mechanism underlying
this symmetry breaking, we have constructed explicit bump
solutions to the neural field and analyzed their linear stability
under different eigenmode perturbations. The analysis shows
that the symmetry breaking occurs through the instability of
an asymmetric shift perturbation. When multiple localized
waves are present, the two-dimensional neural-field model
generates rich collective dynamics, including periodic and
irregular interactions between them.

Refractoriness has appeared in the neural-field model
originally proposed by Wilson and Cowan [38], but very
few studies have investigated its effect on the dynamics of
spatially extended neural fields. Very recently, the generation
of spatiotemporally periodic pulses through Turing instability
has been analyzed in a one-dimensional neural field with
refractoriness [30]. To the best of our knowledge, the analysis
in the present paper is the first to investigate refractoriness-
induced symmetry breaking of two-dimensional bumps in
a neural field. We find that refractoriness induces a shift
instability that causes a radially symmetric bump to evolve

into a localized propagating wave in response to small
perturbations. The refractoriness happens immediately after a
spike and its period ranges from 1 to 8 ms [20]; thus, it occurs
faster as compared with spike frequency adaptation or synaptic
depression considered in other neural-field models [39–41].
Given that refractoriness is a fundamental biophysical feature
common to all neurons in the brain, one would expect that
refractoriness-induced symmetry breaking might be widely
applicable in understanding the formation of traveling waves
in neural systems.

Neural fields with two spatial dimensions exhibit a range
of dynamic patterns, including spiral waves and target waves,
and localized propagating waves. Localized propagating waves
formed in two-dimensional spiking neural networks have
been recently studied as a mechanism for generating spike
sequences [46–49] and for accounting for variability in neural
dynamics [50]. Our present study may provide theoretical
insight into understanding the dynamics of these models.
Our neural-field model also generates multiple localized
waves with rich collective dynamics due to their interactions.
Depending on the strength of the refractoriness, such wave pat-
terns can move along linear trajectories, period-1 or period-2
oscillating trajectories, or irregular trajectories. The dynamics
of these waves with complex interactions exhibit nontrivial
correlations. Our results of multiple waves with complex
interactions thus advances the existing studies of neural fields
that have mainly focused on a single wave or multiple waves
with regular dynamics [30,40,41]. As recently proposed in
[12], multiple localized propagating patterns appear to be
well suited for performing distributed dynamic computation in
neural systems. The analytical tractability of our neural-field
model and the complex wave dynamics emerging from it could
potentially provide further insights into understanding the
computational roles of multiple interacting waves in the future.
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