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The surface corrugation plays an important role in single polymer diffusion on attractive surfaces. However, its
effect on dynamics of surface adsorption-induced polymer translocation through a nanopore is not clear. Using
three-dimensional Langevin dynamics simulations, we investigate the dynamics of a flexible polymer chain
translocation through a nanopore induced by the selective adsorption of translocated segments onto the trans
side of the membrane. The translocation probability Ptrans increases monotonically, while the mean translocation
time τ has a minimum as a function of the adsorption strength ε, which are explained from the perspective of the
effective driving force for the translocation. With the surface being smoother, τ as well as the scaling exponent
α of τ with the chain length N decreases. Finally, we show that the distributions of the translocation time are
non-Gaussian even for strong adsorption at a moderate surface corrugation. A nearly Gaussian distribution of the
translocation time is observed only for the smoothest surface we studied.
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I. INTRODUCTION

The transport of polymers through a nanopore embedded
in membranes has attracted considerable attention in exper-
iments [1–12], analytical theories and simulations [13–40].
Polymer translocation is a typical nonequilibrium process, and
is also related to many crucial processes in biology, such as
the passage of mRNA through nuclear pores, the translocation
of proteins through the endoplasmic reticulum, and the viral
injection of DNA into a host cell. In addition, the translocation
processes have potential revolutionary technological applica-
tions, such as rapid DNA or RNA sequencing [1,6,7,10], gene
therapy [41], and controlled drug delivery [42].

Due to the loss of a great number of available chain confor-
mations, polymer translocation faces a large entropic barrier
and thus the driving forces are needed. The driving mechanism
for translocation has been a subject of extensive discussions.
One main resource of the driving force both in vivo and in
vitro is the transmembrane electrical potential. In biological
cells, it comes from the transmembrane electrical potential
since biopolymers, such as single-stranded DNA (ssDNA),
are negatively charged. A chemical potential gradient across
the membrane can also provide a driving force. Examples
include different solvent conditions on the two sides of the
membrane [26–28], the binding particles (BPs) existing on the
trans side [29,30], and the selective adsorption of chains on
the trans side of the membrane [31–33]. In addition, polymer
translocation can be driven by the geometrical confinement of
the chain [34]. Theoretically, the tension propagation theory
was proposed and developed to depict the nonequilibrium
aspects for the case of driven translocation [35–37].

As to the translocation induced by the selective adsorption,
Milchev et al. [32] have suggested that the scaling behav-
ior of the mean translocation time with the chain length
depends on the adsorption strength ε. Recently, Yang and
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Neimark [33] have considered the translocation driven by
polymer adsorption to the inner surface of a confining wall
by using the self-consistent field theory. In both studies,
the adsorption strength ε enters as an important parameter
that could medicate the translocation dynamics. Obviously,
the adsorption-induced polymer translocation should strongly
depend on the diffusion dynamics of an adsorbed chain on the
surface. However, the surfaces are assumed to be perfectly flat
in above studies, which is not realistic. Particularly, Mukherji
et al. [43] have reported that the atomic-scale corrugation
breaks in-plane translational Galilean invariance as finite
free-energy corrugation barriers prevent the chains from free
lateral sliding. As a consequence, the in-plane center-of-mass
diffusion of adsorbed chains depends on the extent of the
surface corrugation [43]. Furthermore, a more recent study
by Carr et al. [44] has shown that a change in the atomic
scale surface roughness and its charge density could alter the
Langmuir constant of a small organic molecule by three orders
of magnitude. It implied that subtle variations in the surface
corrugation could give rise to variations of the adsorption
strength along the surface. Thus, the surface corrugation
should have an effect on the dynamics of polymer translocation
induced by surface adsorption, particularly in the case of strong
adsorption where the translocated chains show pancake-like
conformations.

To this end, we investigate how the surface parameters,
including the corrugation and the adsorption strength, affect
the polymer translocation in this work. The outline of this paper
is as follows. We briefly describe our model and the simulation
technique in Sec. II. Our results and corresponding discussions
are presented in Sec. III. Finally, we give a summary in Sec. IV.

II. MODEL AND METHODS

The three-dimensional model geometry we consider in
this work is represented in Fig. 1(a), where a coarse-grained
polymer chain is translocating through a nanopore induced
by the selective adsorption of the chain on the trans side of

1539-3755/2015/92(2)/022603(6) 022603-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.022603


XIAOYU ZHAO, WANCHENG YU, AND KAIFU LUO PHYSICAL REVIEW E 92, 022603 (2015)

FIG. 1. (Color online) Schematic representation of a polymer
chain of length N = 64 (a) translocation through a nanopore induced
by the selective adsorption of chain segments on the trans side of
the membrane (b) adsorbed on the trans side of the membrane just
after the translocation.

the membrane. As illustrated in Fig. 1(b), the chain shows
a pancake-like conformation on the membrane just after the
translocation.

In our simulations, the polymer chain is modeled as a
bead-spring chain of Lennard-Jones (LJ) particles, and each
bead represents a segment. Each pair of nonbonded particles
is subjected to the short-range repulsive LJ potential:

ULJ(r)=
{

4ε0[(σ/r)12 − (σ/r)6] + ε0, r � rcutoff

0, r > rcutoff.
(1)

Here, σ is the diameter of a segment. ε0 is the depth
of the potential, and rcutoff = 21/6σ is the cutoff distance.
The connectivity between neighboring segments is achieved
by applying the finite extension nonlinear elastic (FENE)
potential,

UFENE(r) = − 1
2kR2

0 ln
(
1 − r2/R2

0

)
, (2)

where r is the distance between consecutive segments, k is the
spring constant, and R0 is the maximum allowed separation
between connected segments.

The membrane consists of a (111) surface of a face-
centered-cubic solid. Immobile particles in the membrane are
static with a distance of 1.209σ [43]. The nanopore embedded
in the membrane is orthohexagonal with a side length 1.209σ .
At the cis side, the surface is repulsive for a chain. The

interaction between the segment and the membrane surface is
also described by the above short-range repulsive LJ potential
with the interaction strength ε0, the diameter of LJ particle
σsp = σ+σw

2 , where σw is the diameter of the surface particles,
and rcutoff = 21/6σsp. Meanwhile, the trans side of the surface
is attractive for chain segments. In this situation, the interaction
between the segment and the membrane surface is described
by a long-range attractive LJ potential with the interaction
strength ε, the diameter of LJ particle σsp, and rcutoff = 2.5σsp.
By changing the diameter of the surface particles σw, σsp is an
adjustable parameter which mediates the surface corrugation
and ranges from 0.95 to 1.15σ in this work. Larger values
of σsp result in smaller surface corrugation. The range of ε is
1.5–3.3ε0 to characterize different adsorption strengths.

The motion of chain segments is described by the Langevin
equation:

mr̈i = −∇Ui − ξvi + FR
i . (3)

Here, m, ξ , and vi are the bead’s mass, friction coefficient, and
velocity, respectively. −∇Ui and −ξvi are the conservative
and frictional forces exerted on the segments, respectively. FR

i

is the random force that satisfies the fluctuation-dissipation
theorem [45].

In our simulations, the LJ parameters ε0, σ , and the bead
mass m determine the system energy, length, and mass units,
leading to the corresponding time scale tLJ = (mσ 2/ε0)1/2

and force scale ε0/σ , which are of the order of ps and pN,
respectively. The dimensionless parameters in this work are
then chosen to be R0 = 2, k = 7, ξ = 0.7. We set kBT = 1.2ε0

with kBT being the thermal energy. Then the Langevin
equation is integrated in time by the method proposed by
Ermak and Buckholz [46].

Initially, for the chains of length N = 32–128, the first
seven segments are placed at the trans side of the membrane
and kept adsorbed on it to improve the simulation efficiency.
During the relaxation process, the eighth segment is fixed at
the center of the pore with the remaining chain segments being
under thermal collisions described by the Langevin thermostat.
As the chain relaxation completes, the eighth segment is
released and the translocation event begins, which is consid-
ered to be successful when the last monomer exits the pore.
Typically, each data point is obtained by averaging over 1000
successful translocation events to reduce statistical errors.

III. RESULTS AND DISCUSSIONS

A. Effect of the adsorption strength on the translocation
dynamics

After one end of a chain is captured by the nanopore, the
chain needs to overcome the energy barrier for translocation
due to the loss of conformational entropy. In the present
work, the translocation of a chain is induced by the selective
adsorption of translocated segments on the trans side of the
membrane, which decreases the free energy of the chain. The
energy gain of a segment in contact with the surface provides
a driving force for the translocation. Therefore, the adsorption
strength ε is a crucial factor affecting the translocation dynam-
ics. Next, we study this effect by measuring the translocation
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FIG. 2. (Color online) The translocation probability Ptrans as a
function of the adsorption strength ε for two different chain lengths
N = 64 and 128.

probability Ptrans and the mean translocation time τ at a fixed
corrugation σsp = 1.

The translocation probability Ptrans is defined as the ratio
of the successful translocation events to all attempts in the
simulations. Figure 2 shows that Ptrans increases rapidly first
and then saturates gradually with increasing ε. This can be
well understood from the perspective of the effective driving
force Feff written as

Feff = Fad(ε) − Fcis,en(s) − Ftrans,en(s,ε). (4)

Here, Fad(ε) is the force from adsorption, which increases
with ε. Fcis,en(s) and Ftrans,en(s,ε) is the entropic force
from the cis and trans sides with s being the translocation
coordinate, respectively. With increasing ε, Fad(ε) dominates
the translocation process, leading to the observed behavior of
Ptrans .

However, is the increase of ε always beneficial to the
translocation process? An obvious fact is that the diffusivity of
translocated segments relies on ε. When the adsorption is too
strong, these segments cannot diffuse away from the pore in
time. This crowding effect leads to a resistance force hindering
the translocation Ftrans,en(s,ε), as reflected by Eq. (4). With the
adsorption being stronger, Ftrans,en(s,ε) should get larger. With
increasing ε, the interplay between Fad(ε) and Ftrans,en(s,ε)
leads to a nonmonotonic dependence of Feff on ε. As shown
in Fig. 3, the mean translocation time τ does have a minimum
as a function of ε for the studied two chain lengths. Similar
behaviors of τ with varying ε were observed by Yang and
Neimark [33].

The chain length dependence of τ (τ ∼ Nα) for different ε

is plotted in Fig. 4. We observe that α equals to 1.62 ± 0.02
for ε = 1.6 and 2.2, and crosses over to 2.53 ± 0.03 for ε =
3.3. The scaling exponent α = 1.62 ± 0.02 for ε = 1.6 and
2.2 is in agreement with the scaling prediction τ ∼ N1+2ν−ϕ

by Milchev et al. [32] within the statistical errors, where
ν = 0.588 is the Flory exponent in three dimensions (3D),
and ϕ = 0.50 is the crossover exponent [32]. In addition,
this scaling exponent is also close to 1 + ν for driven
translocation under a chemical potential difference across
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FIG. 3. (Color online) The mean translocation time τ as a func-
tion of the adsorption strength ε for two different chain lengths
N = 64 and 128.

the membrane [20]. As ε increases to 3.3, the translocated
segments are strongly adsorbed on the membrane and thus
the translocation dynamics is dominated by the in-plane chain
diffusion. The corresponding scaling relation τ ∼ N2.53±0.03

is consistent with the scaling behavior of the Rouse relaxation
time for a chain in two dimensions (2D), τR ∼ N1+2ν2D =
N2.50, with ν2D = 0.75 being the Flory exponent in 2D.

B. Dependence of the translocation dynamics
on the surface corrugation

Besides the adsorption strength ε, it has been suggested in
the previous work by Mukherji et al. [43] that the diffusivity
of a strongly adsorbed chain is significantly affected by the
surface corrugation. Therefore, the surface corrugation should
play an important role in the translocation dynamics of a
chain, which has not yet been studied. In the following, the
surface corrugation is tuned by varying the LJ radius σsp used
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FIG. 4. (Color online) The chain length dependence of the mean
translocation time τ , τ ∼ Nα , at different adsorption strengths.
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FIG. 5. (Color online) Influence of the surface corrugation σsp on
the mean translocation time τ for chains of different lengths. The inset
shows the dependence of the chain surface diffusion coefficient D on
σsp. Here, the adsorption strength is kept at ε = 3.0.

in the potential between segments and surface particles from
0.95 to 1.15, as has been done previously [43]. Note that the
corrugation is reduced with increasing σsp. The adsorption
strength is kept at ε = 3.0 unless otherwise stated.

Figure 5 shows that τ monotonically decreases with
decreasing surface corrugation for chains of different lengths.
In order to understand this behavior, we calculate the in-
plane diffusion coefficient D of a chain strongly adsorbed
onto the surface by measuring the slope of the mean-square
displacement (MSD) of its center of mass at a long time
limit. As shown in the inset of Fig. 5, D increases with
increasing σsp, indicating that a smoother surface is in favor
of the in-plane chain diffusion. This phenomenon was also
observed by Mukherji et al. [43]. As mentioned above, for
strong adsorption, the surface diffusion of a chain is of essential
importance to the translocation dynamics. It is the faster
surface diffusion of the chain that accelerates the translocation.

Figure 6 shows the effect of the surface corrugation on
the scaling behaviors of τ ∼ Nα with the extracted scaling
exponent α being plotted in the inset. As σsp increases from
0.95 to 1.15, α decreases from 2.39 ± 0.06 to 1.34 ± 0.01.
Longer chain lengths give rise to smaller in-plane diffusion
coefficient D, and thus the increase of D due to the smoother
surface appears to be relatively favorable for the translocation
of longer chains. As shown in Fig. 5, we observe a faster decay
rate of τ with increasing σsp for longer chains. These different
decay rates explain the decrease of α as a function of σsp.

C. Translocation time distribution

Finally, we turn to the distributions of the translocation
time normalized by their average value t/τ . As plotted in
Fig. 7(a), compared to the translocation driven by a strong
transmembrane electric field [20,38,39] or a large pulling force
exerted on the first segment [40], we find that even for the cases
of strong adsorption, the distributions are still non-Gaussian,
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FIG. 6. (Color online) The scaling behaviors of τ ∼ Nα for
different surface corrugations σsp. The extracted scaling exponent
α as a function of σsp is plotted in the inset. Here, the adsorption
strength is kept at ε = 3.0.

reflecting that the translocation induced by strong adsorption
is a weakly driven process due to the crowding effect near
the pore. The standard deviation (SD) of the distribution has a
minimum SDt/τ = 0.246 at ε = 2.5 when the translocation is
the fastest.

Figure 7(b) shows that the distribution gets narrower
with SDt/τ decreasing monotonically as the surface becomes
smoother. Moreover, a nearly Gaussian distribution of the
translocation time is observed at σsp = 1.15. In this case,
the surface diffusion of the chain is fast enough so that the
crowding effect near the pore is of marginal importance for
the translocation.

0

60

120

180

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

60

120

180 (b)

sp=1.0

N
um

be
r o

f e
ve

nt
s =1.7 SDt/ =0.335

=2.5 SDt/ =0.246
=3.0 SDt/ =0.419

(a)

=3.0

sp
=0.95  SDt/

sp
=1.05  SDt/

sp
=1.15  SDt/

N
um

be
r o

f e
ve

nt
s

t/

FIG. 7. (Color online) Distributions of the translocation time
normalized by their average value t/τ under (a) different adsorption
strengths ε and (b) different surface corrugations σsp. Here, the chain
of length is N = 64.
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IV. CONCLUSIONS

To summarize, we have investigated the dynamics of a flex-
ible polymer chain translocation through a nanopore induced
by the selective adsorption of translocated segments onto the
trans side of the membrane by using 3D Langevin dynamics
simulations. We find that the translocation probability Ptrans

increases monotonically, while the mean translocation time
τ has a minimum as a function of the adsorption strength ε.
These effects of ε on the translocation dynamics are understood
from the perspective of the effective driving force for the
translocation. As to the effect of the surface corrugation on
the translocation dynamics, we show that τ as well as the
scaling exponent α of τ ∼ Nα decreases with the surface being
smoother. Finally, the distributions of the translocation time
are non-Gaussian even for the case of strong adsorption at a
moderate surface corrugation σsp = 1.0. For the smoothest
surface we studied, a nearly Gaussian distribution of the
translocation time is observed.

We have noticed several experimental works about the
effects of surface properties on the translocation process of
a polymer chain. A recent work by Shankla and Aksimen-

tiev [11] has shown that the electrically biased graphene
membranes exhibit exquisite control over the adsorption
of ssDNA. This property has an obvious impact on the
conformations of the translocating ssDNA, which can be used
to realize stop-and-go nanopore translocation of ssDNA [11].
Furthermore, Banerjee et al. [12] have reported that by using
multiple stacked graphene layers, the translocation of ssDNA
is slowed down due to the variations in the interaction between
ssDNA and the membrane. Therefore, it is possible to realize
the translocation of a polymer chain induced by asymmetric
surface adsorption in experiments through adopting proper
membrane structures and/or varying the surface properties of
the membranes.
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