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Solidification of a disk-shaped crystal from a weakly supercooled binary melt
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The physics of ice crystal growth from the liquid phase, especially in the presence of salt, has received much
less attention than the growth of snow crystals from the vapor phase. The growth of so-called frazil ice by
solidification of a supercooled aqueous salt solution is consistent with crystal growth in the basal plane being
limited by the diffusive removal of the latent heat of solidification from the solid-liquid interface, while being
limited by attachment kinetics in the perpendicular direction. This leads to the formation of approximately
disk-shaped crystals with a low aspect ratio of thickness compared to radius, because radial growth is much faster
than axial growth. We calculate numerically how fast disk-shaped crystals grow in both pure and binary melts,
accounting for the comparatively slow axial growth, the effect of dissolved solute in the fluid phase, and the
difference in thermal properties between solid and fluid phases. We identify the main physical mechanisms that
control crystal growth and show that the diffusive removal of both the latent heat released and the salt rejected at
the growing interface are significant. Our calculations demonstrate that certain previous parametrizations, based
on scaling arguments, substantially underestimate crystal growth rates by a factor of order 10–100 for low aspect
ratio disks, and we provide a parametrization for use in models of ice crystal growth in environmental settings.
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I. INTRODUCTION

Ice is a particularly rich example of crystallization, with a
wide range of crystal shapes formed depending on the environ-
mental conditions [1]. It is also environmentally significant: it
forms from the vapor phase in clouds, leading to snow and
sleet, and from the liquid phase in rivers and oceans. We
study so-called frazil-ice formation from the liquid phase in the
environmentally relevant limit of weak supercooling, because
this has received comparatively little attention [2]. It also has
key applications, both in industrial settings where frazil ice
can block the water inlets from rivers and lakes [3] and in
geophysical settings where frazil ice forms under floating ice
shelves and in open areas of the polar oceans called leads and
polynyas [4].

Frazil ice consists of individual crystals as a particulate
suspension in a supercooled liquid from which the ice grows.
This liquid could be freshwater, such as when frazil forms in
rivers, or saltwater, such as when frazil forms in the ocean. We
study crystal growth from a binary alloy as a simple proxy for
saltwater. Crystal growth from a binary alloy has been studied
in a variety of geometries, most extensively for spherical and
axially symmetric cylindrical crystals, where morphological
instability has been shown to be significant leading to dendritic
growth [5,6].

Crystallization is often an inherently anisotropic pro-
cess, and macroscopic anisotropy can arise from crystalline
anisotropy. Anisotropic surface energy is responsible for the
so-called “equilibrium Wulff shape,” and anisotropic kinetic
attachment is responsible for the “kinetic Wulff shape,” as
reviewed by Sekerka [7]. Both these physical effects play an
important role in the faceted growth of snow ice from the
vapor phase, as shown by the numerical study of Ref. [8].
However, a roughening transition can occur for solidification
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with sufficiently small supercooling, leading to the rapid
growth of certain faces with finite curvature rather than planar
faceted faces [9]. For ice growth from vapor, the roughening
transition occurs in prism faces for temperatures above −2 ◦C
[10], while for ice growth from the liquid phase, the roughening
transition occurs above −16 ◦C [11]. Basal facets have been
observed to persist until the melting temperature in both cases
[10,11]. We here consider crystal growth in the liquid phase,
at temperatures above the roughening transition for faces that
grow in the basal plane. We focus on solidification controlled
by the long-range diffusive transport of heat and salt and how
this couples with anisotropic kinetic attachment in determining
bulk crystal growth from the melt. Frazil ice is observed to form
axisymmetric disk-shaped crystals, at least for fairly weak
supercooling [12–14]. Slow attachment kinetics limit growth
perpendicular to the basal plane of the crystal while growth in
the basal plane is limited by diffusion [2,15].

Previous studies make various approximations in order
to determine the growth rate of a disk-shaped crystal in a
pure melt. Some proceed by the well known “electrostatic
analogy” between ice growth limited by thermal diffusion and
electrostatic capacitance [16]. To give an example, Mason
[17] uses this method to estimate the mass growth rate of
a disk from the vapor phase. In this analogy, temperature is
analogous to electrostatic potential, and the crystal growth rate
is proportional to the capacitance of a perfect conductor, the
surface of which will have a constant potential. Thus, knowing
the capacitance of a thin disk and assuming its thickness
evolves slowly, the radial growth rate can be estimated. The
analogy assumes that the disk is perfectly conducting (which is
a good approximation for ice growth from the vapor phase but
not the liquid phase) and infinitesimally thin. We will therefore
assess whether the limits of perfectly conducting and infinitely
thin can be taken independently.

Other studies note that growth controlled by the diffusive
removal of latent heat depends on the ratio of the rate of latent
heat release to the rate of thermal transfer away from the
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interface [15,18]. These rates can in principle be estimated
to within an undetermined dimensionless prefactor using
scaling analysis. The success of a scaling approach relies on
identifying the most appropriate physical scales.

A more detailed study was made by Fujioka and Sekerka
[19], who make the mathematical simplification of assuming
that the material properties of the phases are equal and that
the growth was purely radial. The authors found a separable
solution for the temperature field subject to diffusive heat
transfer. This model has been used by Yokoyama et al. [20]
to explain the experimental observations of Shimada and
Furukawa [21] of the growth and stability of ice crystals from
a pure melt.

The goal of this paper is to quantify the leading order factors
controlling growth of disk-shaped crystals from a binary melt,
accounting for the impacts of diffusive heat and salt transfer
and different material properties in a setting with dominant
radial growth. We also make calculations with an approximate
model of axial growth. None of these generalizations can
be tackled using the methodology of Fujioka and Sekerka
[19]. To isolate the separate physical effects, we build the
complexity of our model in stages. We first consider the
effect of the geometric shape of the crystals and the different
material properties of the phases by considering the growth of
disk-shaped crystals in a pure melt (Sec. II). We then consider
the effect of axial growth (Sec. III) and the effect of salt by
considering a binary alloy (Sec. IV). Finally, we discuss the
physical significance and implications of our results (Sec. V).

II. GROWTH INTO A PURE MELT

A. Governing equations

We first introduce the equations and boundary conditions
used to determine the growth of an isolated crystal into a
pure melt. Consider an isolated axisymmetric disk-shaped
crystal, as shown in Fig. 1, of radius R and half-thickness
H , such that the aspect ratio α = H/R, which we expect
to be small. To aid progress with modeling, we make the
simplifying assumption that crystal growth maintains the
disklike geometry observed in experiments [12–14] with
uniform growth rates across each individual crystal face. This
is a reasonable approximation for radial growth of the thin disk
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FIG. 1. (Color online) (a) Dimensional problem in cylindrical
polar coordinates showing the heat equation inside and outside a disk-
shaped crystal of radius R and half-thickness H . (b) Dimensionless,
quasisteady problem with u = 0 and simplified boundary conditions
for purely radial growth explained in the text. Note that θ = 1 is
applied at (r = 1,z = 0).

edges provided that the disk remains morphologically stable
(discussed further in Sec. V D). Macroscopically uniform
axial growth is consistent with an activated process, where
growth is limited by the difficulty in nucleating a new layer of
molecules somewhere on the face. This is followed by more
rapid spreading of the layer following nucleation such that
the interface remains macroscopically flat [22]. Alternatively,
quasiplanar faces have been maintained in numerical models
with anisotropic surface energy and anisotropic attachment
kinetics [8], where the variation in interfacial temperature
across the crystal face (arising from the so-called Berg effect
[23]) can be offset by weak interfacial curvature. Our treatment
of axial growth is discussed further in Sec. III. We introduce
cylindrical polar coordinates (r,φ,z), where the z axis is
perpendicular to the basal plane and the origin is the center of
the crystal. The temperature T obeys the heat equation

ρscs

∂T

∂t
= ks∇2T , x ∈ D, (1)

ρlcl

(
∂T

∂t
+ u · ∇T

)
= kl∇2T , x /∈ D, (2)

where D denotes the disk-shaped crystal. The density ρ,
specific heat capacity c, and thermal conductivity k take
constant values in each phase, whether solid (subscript s) or
liquid (subscript l), u is the fluid velocity, and t is time. The
thermal diffusivity κ = k/ρc. We assume that T approaches a
uniform temperature T∞ far from the crystal.

We impose a regularity condition at r = 0 and a symmetry
boundary condition at the midplane of the disk (z = 0) so
that we may restrict attention to z � 0. At the boundary
∂D of the disk, suitable boundary conditions result from
heat conservation and a kinetic condition of thermodynamic
disequilibrium, respectively,

ρsLVdim =
[
k
∂T

∂n

]s

l

, x ∈ ∂D, (3)

Vdim = G(n,Tm − Ti), x ∈ ∂D. (4)

The temperature is continuous across the interface and equals
Ti . A discontinuity in the heat flux at the interface is associated
with the latent heat of fusion L associated with crystal growth
at a velocity Vdim normal to the interface. The normal growth
is uniform across each crystal face because we assumed that
the crystal remains disk shaped. In the second equation for
attachment kinetics, the function G depends on the normal
direction to the interface n and the difference between the
equilibrium melting temperature and the interfacial tempera-
ture. The exact form used is not crucial in what follows in this
section where we consider the limit of negligible axial growth
but does impact predictions of weak axial growth in Sec. III,
where we discuss the physical significance of G.

B. Reduced, nondimensional model equations
for purely radial growth

We make a quasisteady approximation in which we ne-
glect the explicit time dependence of the problem in the
heat equations (1) and (2) and justify this approximation a
posteriori in Sec. II E. We neglect externally driven fluid flow
and buoyancy-driven flow and note that the expansion flow
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(caused by the density of ice being lower than that of water) can
be neglected consistently with our quasisteady approximation,
so u = 0. We nondimensionalize lengths with respect to the
instantaneous disk radius R, time with the thermal diffusion
time scale in the liquid R2/κl , and velocities with κl/R.
We define a dimensionless temperature θ = (T − T∞)/�T∞,
where the supercooling is �T∞ = Tm − T∞.

Growth is much slower in the direction perpendicular to
the crystal basal plane because it is kinetically unfavorable.
Thus, in this section, we introduce a strong form of anisotropy
into the model in a simple limiting form by taking G = 0 at
the top of the crystal z = α and G → ∞ at the edge r = 1.
This limit prevents axial growth and leaves the temperature
Ti at z = α unconstrained, so it can depart from the melting
temperature Tm. By contrast, Ti = Tm at r = 1. We consider
the effect of slow axial growth G > 0 later in Sec. III. The
simplified boundary conditions are

k
∂θ

∂z

∣∣∣∣
z=α−

= ∂θ

∂z

∣∣∣∣
z=α+

, (5)

on the top of the crystal (0 � r � 1), and

SV = k
∂θ

∂r

∣∣∣∣
r=1−

− ∂θ

∂r

∣∣∣∣
r=1+

, (6)

1 = θ |r=1, (7)

on the edge (0 � z � α).
In this quasisteady limit, there are only three dimensionless

parameters in the problem: the aspect ratio α, the conductivity
ratio between the phases k = ks/kl , and the Stefan number

S = ρsL

ρlcl�T∞
. (8)

Thus the problem reduces to solving Laplace’s equation
∇2θ = 0 in the whole domain including the disk subject to
the boundary conditions (5)–(7). Note that V is determined
implicitly as part of the solution. In particular, we calculate a
rescaled growth rate

f (α,k) = SV α, (9)

which is a function of the aspect ratio α and conductivity
ratio k alone. Given that the crystal radius R = 1 in our
nondimensionalization, f is proportional to the growth rate
multiplied by the area of the growing surface.

The boundary conditions contain a subtlety in that Eqs. (6)
and (7) are formally inconsistent. This is evident upon
studying solutions to Laplace’s equation near the “corner”
between the top and edge of the disk (see Ref. [24]). The
inconsistency arises from the simplifying assumption that the
crystal remains perfectly disk shaped. In reality, we might
expect the crystal shape to evolve via nonuniform growth
rates and the regularizing impact of surface energy described
by the Gibbs-Thomson effect (e.g., Ref. [25]), with the
freezing temperature modified by curvature generated near
the “corner” over a length comparable to the capillary length
scale. Our primary interest is in leading order scalings for
the macroscopic relief of supercooling and the volumetric rate
of ice growth, rather than the detailed microstructure of the
crystal edges, which will depend on the poorly constrained
orientation dependence of the anisotropic surface energy and

FIG. 2. (Color online) Example of heat transfer when α = 0.1,
k = 1, with contours θ = 0.2,0.4,0.6,0.8 shown. Note that the
thermal boundary layer scales with the disk radius rather than the
disk thickness. The crystal boundary is shown as a gray line.

growth rate. Hence we simplify the analysis and neglect these
deviations from disk-shaped geometry. We follow Fujioka and
Sekerka [19], imposing (6) on 0 � z � α but only imposing
(7) at z = 0. We will see later that the dominant thermal
gradients driving ice growth scale with the crystal radius R

rather than the disk half-thickness H , and thus we expect the
detailed geometry near the disk edges to have a relatively small
influence on macroscopic ice growth rates for thin discs with
α = H/R � 1. We have also tested the converse approach
of applying Eq. (7) on 0 � z � α but imposing (6) only in
an integral sense. The difference is negligible for α � 1,
suggesting that the detailed microevolution of crystal shape
does not play a very significant role in radial disk growth
from the liquid phase. We discuss our numerical method in
Appendix A and show a typical solution in Fig. 2.

C. Comparison with previous models

The function f represents a crystal growth rate scaled with
the Stefan number. To aid comparison, we define equivalent
growth rate functions below based on previously published
models.

The electrostatic analogy model of Mason [17] gives

fM = 2

π
. (10)

This is consistent with our function f (α,k) → 2/π as k → ∞
and α → 0. Note that the Mason model has no dependence on
aspect ratio.

A commonly applied scaling argument of Daly [15] gives

fD = α
√

2/(1 + 2α),

∼ α
√

2 (α → 0), (11)

which has a strong dependence on aspect ratio and predicts
much smaller growth for thin disks than the Mason model.

For equal thermal conductivities (k = 1), the model of
Fujioka and Sekerka [19] gives

fFS = πα

q0(α)
, (12)
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fM

fD

fFS

FIG. 3. (Color online) The rescaled radial growth rate f (α,k)
in Eq. (9). Symbols show our numerical results for k = 1 (black
squares), k = 4 (blue circles) relevant to a water-ice system, and
k = 1000 (red triangles). Note that the α axis is reversed, motivated
by the aspect ratio decreasing over time for a radially growing crystal.
The red horizontal dashed line shows the Mason [17] model, the solid
curve shows the Fujioka and Sekerka [19] model, and the much lower
dot-dashed curve shows the Daly [15] model.

where

q0(α) = 2
∫ ∞

0

sin(αx)

x
I0(x)K0(x) dx,

∼ α[1 + 3 ln(2) − ln(α)] (α → 0), (13)

is the toroidal integral of order zero in which I0 and K0 are
the modified Bessel functions of order zero. This implies that
the growth rate has only a weak, logarithmic dependence on
aspect ratio.

We present our own findings in comparison to these previ-
ous models in Fig. 3. Note that our benchmarked numerical
results for k = 1 agree with Fujioka and Sekerka [19] and
approach the scaling of Mason [17] at high k and small α.
Crucially, there is a significant difference compared to the
scaling of Daly [15]. This difference is strongly linked to
structure of the heat transport, a significant proportion of which
occurs through the flat top and base of the disk. An example
of the corresponding temperature field is shown in Fig. 2. We
return to this issue in Sec. V C. We give approximate fits to
our numerical calculations for practical use in Appendix B.

D. Dependence on thermal conductivity ratio

Interestingly, even quite large changes in the thermal
conductivity ratio have only a modest effect on the radial
growth of crystals, with f (α,k) changing by less than a factor
of 2 as k varies over three orders of magnitude (Fig. 3). While
a higher solid phase conductivity transports latent heat away
from the interface more efficiently, the heat flux through the
solid depends on the product αk, which is typically small,
and the heat must in any case be transported away from the
disk. The Mason [17] model corresponds to large αk and so
represents a limit which is inappropriate for frazil-ice growth
in the ocean, but much more appropriate for ice formation in
clouds (its original purpose) because ice is very much more
thermally conductive than air. Thus the physical processes

FIG. 4. (Color online) The rescaled radial growth rate for
α = 10−3 (red circles) and α = 10−4 (blue crosses) approaches the
Mason [17] model fM = 2/π at high kα.

controlling ice growth differ markedly between growth from
the vapor and the liquid phase. Calculations at very high values
of k, shown in Fig. 4, demonstrate that the Mason [17] model
does indeed obtain the correct limiting behavior, provided
kα � O(1).

E. Validity of the quasisteady approximation

The quasisteady approximation is generally taken to hold
provided the Stefan number S 
 1 [5]. However, while this
standard requirement is appropriate for the growth of a spher-
ical crystal, it must modified for the growth of a disk crystal.
In particular, we may neglect the explicit time dependence in
Eq. (2) if V � 1. Thus using Eq. (9) we first require Sα 
 1,
given that f = O(1) throughout the parameter range of inter-
est. This is another reminder of the differences that arise from
the geometry of crystal growth. Second, the dimensionless
strength of the expansion flow (induced by the density of
ice being lower than that of water) is negligible provided
Sρl/(ρl − ρs) 
 1, because the induced flow is proportional
to solidification rate and the density difference. Third, we may
neglect the time dependence in the heat equation for the solid
phase (1) provided Sακs/κl 
 1. For ice-water disk crystals,
these latter requirements are satisfied automatically provided
Sα 
 1.

III. NONZERO AXIAL GROWTH

We investigate the potential effect of axial growth on
the overall growth characteristics of the crystal by allowing
a nonzero kinetic attachment coefficient for axial growth.
In the previous section, we introduced an extreme, limiting
form of anisotropy into the model by requiring that the
disk remained at constant thickness through imposing a
kinetic attachment coefficient G = 0 on the top of the disk.
In our nondimensionalization of equations (3) and (4), the
dimensionless kinetic coefficient is

ρsLR

kl�T
G(n,Tm − Ti), (14)

which may become O(1) as the crystal radius increases.
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FIG. 5. (Color online) Contours of the axial growth rate f2 for growth laws given by Eqs. (15)–(17) in (a–c), respectively. The contours
have an equal spacing of 0.1. Throughout we take k = 4.

The precise form of G in the axial direction is undercon-
strained, but we here investigate several illustrative cases.
A simple first approach is to assume that the attachment
coefficient is linearly related to the supercooling at the interface
[26], G = G1(Tm − Ti), and also that this temperature differ-
ence should be averaged over the face of the disk, consistent
with assuming disk-shaped growth. A second alternative is
to assume that growth is determined by the maximum, rather
than the average, supercooling [20]. Furthermore, Yokoyama
et al. [20] suggest using a quadratic dependence on the
maximum supercooling G = G2(Tm − Ti)2 (corresponding to
a screw dislocation) on the basis of experimental observations,
as discussed in Yokoyama et al. [27]. An alternatively
proposed [27] dependence of G on the tenth power of the
supercooling (corresponding to two-dimensional nucleation)
results in extremely slow growth for the small supercooling
that we consider, so the results should be well approximated
by the limit of negligible axial growth considered in the
previous section. These mechanisms of crystal growth allow
the interface to remain macroscopically flat in spite of the
variation in Tm − Ti across the face. We define a rescaled axial
growth rate f2(α,k,G) = SW , where W is the dimensionless
axial growth rate. The function f2 is proportional to the product
of the growth rate and the growing surface area. In this section,
we illustrate results relevant to frazil-ice formation from liquid
water, so we fix k = 4. These three alternatives discussed
above give growth rates, in dimensionless form,

f2 = G
∫ 1

0
(1 − θi)2r dr, (15)

f2 = G max(1 − θi), (16)

f2 = G max(1 − θi)
2, (17)

where G = G1ρsLR/kl for the linear laws (15)–(16) and
G = G2�TρsLR/kl for the quadratic law (17). There are
some differences between the resulting axial growth rates for
each law as shown in Fig. 5. Growth based on the maximum
supercooling (16) is necessarily faster than that based on the
average (15) and does not vary smoothly with α andG, because
the position of the maximum supercooling jumps. For small
α, the maximum supercooling is always in the center of the
disk, but begins to move out as α increases, before jumping to

the edge of the disk when α ≈ 0.1. The quadratic law (17) is
qualitatively similar to (16), but gives slower growth.

Axial growth is coupled nonlinearly to radial growth,
through latent heat release associated with axial growth. De-
spite some quantitative differences in axial growth illustrated
in Fig. 5, the differences between the three growth laws do not
change the qualitative effect on radial growth. Therefore, we
focus on law (15) as a representative example. The rescaled
radial growth function f1(α,k,G) = SV α depends on G. Note
that f1(α,k,0) = f (α,k) as defined previously.

First, axial growth inhibits radial growth. Thus f1 decreases
as G increases across the whole parameter space [Fig. 6(a)].
Axial growth releases latent heat, which increases the temper-
ature of the top of the disk and so reduces conduction through
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FIG. 6. (Color online) Contours of (a) the radial growth rate f1

and (b) the rate of change in aspect ratio α̇. In the latter, we highlight
the critical curve G = Gc(α,k) on which the aspect ratio is constant
(α̇ = 0). Throughout we take k = 4.
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the disk interior away from the radially growing edge of the
disk. This is especially significant because the disk is a good
thermal conductor and a significant fraction of the removal
of latent heat for solidification at the disk edges occurs via
transport through the solid disk interior.

Second, the dimensionless axial growth increases with G,
and this effect is stronger at moderately large aspect ratios
[see Fig. 5(a)] because the faces are further from the melting
temperature.

Third, we can compare axial and radial growth by consid-
ering the rate of change of aspect ratio. Using our quasisteady
predictions of heat transfer to predict instantaneous growth
rates V and W for given values of R and H , we derive a simple
autonomous system for the dimensionless kinetic coefficient
G and the aspect ratio α = H/R,

Ġ = Gf1/α, (18)

α̇ = f2 − f1, (19)

where a dot represents a derivative with respect to the slow time
scale τ = t/S. In Fig. 6(b), we highlight the critical curve
α̇ = 0, which, for aspect ratios 10−2 < α < 10−1 typical of
frazil ice, corresponds in order of magnitude to 1 < G < 10.
Below the critical curve the aspect ratio decreases, and so
the crystal becomes more elongated. Conversely above the
critical curve the aspect ratio increases. There is an important
qualitative difference between G = 0 and G > 0. When G = 0,
α̇ < 0 for all α (the thickness is fixed but the radius increases
so the aspect ratio decreases). However, when G > 0, there is
a critical aspect ratio below which α̇ > 0. This can be used to
interpret crystal size evolution. Soon after a crystal nucleates,
G will be small but the aspect ratio will be O(1). As the
crystal radius increases, the aspect ratio decreases towards
the critical curve, but G will increase. Thus, at sufficiently
late time, the aspect ratio will eventually start to increase.
Some such trajectories are shown in Fig. 7. It is important to
note that the time scale used in the nondimensionalization is

10-3 10-2 10-1 100
10-2

10-1

100

101

G

FIG. 7. (Color online) Phase portrait showing trajectories in pa-
rameter space of crystal aspect ratio α and kinetic coefficient G
when k = 4. The thick dark red curves with arrows show trajectories,
and the dashed light gray curves are contours of α̇. If the material
properties of the crystal are held fixed, then variation in G directly
corresponds to variation in the dimensional crystal radius R to within
a constant proportionality factor.

proportional to R2 and so the evolution of a crystal in phase
space slows down as the crystal radius R increases.

The autonomous system of Eqs. (18)–(19) significantly
simplifies the parameter space. For example, we have scaled
out the dependence on supercooling for the linear growth
laws, which is hard to hold constant experimentally. Thus
this is a potentially powerful way to interpret experimental
data by plotting time series of experimental observations in
this parameter space. Observing a minimum aspect ratio and
the radius at this aspect ratio could be used to infer the
dimensional kinetic coefficient G1. We show a phase portrait
of this autonomous system in Fig. 7.

Numerically, we observe that the critical curve, G =
Gc(α,k), on which α̇ = 0, approaches zero as α → 0. In the
particular case k = 1, we can average the solution [Eq. (7a)
of Fujioka and Sekerka [19]] over the surface of the disk, to
show that

Gc ∼ π

log(α−1) − 3(1 − log 2)
. (20)

Convergence is exponentially slow as α → 0, but this never-
theless illustrates the important result that Gc → 0 as α → 0,
which affects the range of possible trajectories in phase space.

IV. COMBINED HEAT AND SALT TRANSFER

The bulk diffusion of salt can play a leading order role
in growth from the liquid phase through two related physical
mechanisms. First, the presence of salt reduces the freezing
temperature of the solution, resulting in a smaller imposed far-
field supercooling for a given far-field temperature. Second,
the ice crystal rejects salt during growth, which can build
up locally at the interface, so further inhibiting growth by
depressing the interfacial temperature. We here focus on their
impacts on disk shaped crystal growth, noting that in certain
circumstances these effects may also promote morphological
instability. We return to the latter possibility in the concluding
discussion.

A. Extended problem formulation

We extend our method by additionally solving for the
solute concentration field C outside the disk, assuming that the
concentration inside the disk Cs is constant because diffusion
of salt through the solid phase is slow relative to diffusion
through the liquid phase. We outline the method more briefly.
The main difference is that we require a condition relating
the interfacial temperature Ti to the concentration Ci at the
interface to couple the heat and salt problems. Thus on the
growing edge we impose

Ti = TL(Ci) ≡ Tm − m(Ci − Cs), (21)

where m is the gradient of the (assumed linear) liquidus re-
lationship TL(C) and Tm = TL(Cs) is the melting temperature
of solid with concentration Cs . We assume C approaches a
uniform concentration C∞ far from the crystal.

We use a dimensionless concentration � = (C − C∞)/
�C∞, where �C∞ = Ci − C∞. Note that the nondimen-
sionalization involves Ci , which must be determined as part
of the solution. In the coupled problem we must redefine
θ = (T − T∞)/(Ti − T∞) andS = ρsL/ρlcl(Ti − T∞), which
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FIG. 8. (Color online) The growth rate for salt diffusion problem
g(α) (green triangles), and the combined problem g(α)/f (α,k=4)
(red squares). We present approximate fits to these results in
Appendix B.

depend on (Ci − Cs) through the liquidus relationship (21). We
define C = (Ci − Cs)/(Ci − C∞) which is the compositional
analog of the Stefan number and again must be large for
the quasisteady approximation to hold (Sec. II E). Note that
the thermal problem takes the same form as before, but with
S = S(C).

Thus we must additionally solve ∇2� = 0 outside the
disk subject to the following boundary conditions, which are
analogous to Eqs. (5)–(7),

∂�

∂z

∣∣∣∣
z=α+

= 0, (22)

on the top of the disk (0 � r � 1) where we set G = 0, and

Le CV = − ∂�

∂r

∣∣∣∣
r=1+

, (23)

�|r=1+ = 1, (24)

on the growing edge (0 � z � α). As before, Eq. (24) is
applied only at z = 0. The Lewis number,

Le = κl/Dl, (25)

is the ratio of diffusivity of heat κl to solute Dl in the liquid
phase.

We calculate a rescaled growth rate g(α) = Le CV α for the
salt diffusion problem (shown in Fig. 8) and eliminate V using
(9) from the thermal problem to obtain

Le C = g(α)

f (α,k)
S(C). (26)

B. Results

There are three independent temperature scales in the
problem

�T∞ = Tm − T∞,

�TL = ρsL/ρlcl,

�TC = m(C∞ − Cs).

The remaining parameters appear only in the group
g(α)/f (α,k)Le. In order to group separately what might
be considered material and geometry-dependent parameters
versus experimental parameters, we define

Ŝ = �TL

�TC

1

Le

g(α)

f (α,k)
, (27)

representing the importance as the crystal grows of the
diffusive removal of the latent heat released during crystal
growth to the diffusive removal of rejected solute and the
resulting freezing point depression. When k = 4, the ratio
g(α)/f (α,k) shows only weak variation with α, as shown
in Fig. 8. Thus Ŝ could reasonably be treated as a material
constant during disk growth, to leading order.

We also define the dimensionless supercooling β through

�T∞ = �TC(1 + β), (28)

where β > 0 ensures supercooling in the far field. Indeed,
there is supercooling everywhere in the liquid, and equilibrium
is achieved only on the growing ice-liquid interface. (This
follows by noting that the liquidus relation TL(C) is linear so
∇2[T − TL(C)] = 0 and then applying the maximum principle
for Laplace’s equation.) Using Eqs. (27) and (28), to express
Eq. (26) in terms of C yields a quadratic equation with solution

C = 1 +
1 + Ŝ − β +

√
(1 + Ŝ − β)2 + 4β

2β
, (29)

where we take the positive square root since C > 1 from
the definition. Note that we actually require C 
 1 for the
quasistationary approximation to hold, consistent with weak
supercooling β � 1.

To gain insight into the impact of solute on the growth
rate, we investigate the factor V by which salt modifies crystal
growth relative to growth into a pure melt with supercooling
adjusted for the salt

V = V

[f (α,k)/h] · [TL(C∞) − T∞]/�TL

= Ŝ
βC . (30)

In the physically relevant limit of small supercooling β → 0,

V ∼ Ŝ
1 + Ŝ

− β
Ŝ

(1 + Ŝ)3
+ β2 Ŝ(1 − Ŝ)

(1 + Ŝ)5
+ O(β3). (31)

We can subsequently take limits of the leading order term for
small and large Ŝ:

V ∼ Ŝ (Ŝ → 0), (32)

V ∼ 1 (Ŝ → ∞), (33)

which we interpret in the discussion below.

V. DISCUSSION AND CONCLUSIONS

We now apply the theoretical results from the preceding
sections to infer the physical consequences for predictions of
crystal growth and evaluate some previous more approximate
parametrizations.
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A. Dimensional results for purely radial growth

The purely radial growth rate of a disk-shaped crystal into
a pure melt, in dimensional terms, is

Vdim = 1

H

kl�T∞
ρsL

f (α,k). (34)

For a binary alloy, we recover the pure melt case in the limit
of large Ŝ [Eq. (33)] with an adjusted driving temperature
difference �Te = TL(C∞) − T∞, so

Vdim ∼ 1

H

kl�Te

ρsL
f (α,k). (35)

This means that if the dimensionless group Ŝ is sufficiently
large, a good modeling assumption is to use formulas appro-
priate to a pure melt but adjust the freezing temperature when
calculating supercooling to account for the solute impurity.
Growth is controlled by the diffusive removal of the latent heat
released during solidification. However, for small Ŝ [Eq. (32)]
we find

Vdim ∼ 1

H

Dl�Te

�TC

g(α) = 1

H
Dlβg(α), (36)

which means that growth is no longer controlled by the thermal
diffusion of latent heat released at the interface but rather by
the slow diffusion of solute rejected there.

B. A simple way to account for the presence of salt

Salt significantly affects frazil ice growth in the ocean.
To see this, we estimate typical values �TL = 80 ◦C,
�TC = 2 ◦C, and Le = 200 to 1 significant figure, using
material properties estimated at 0 ◦C, ocean water of salinity
C∞ = 35 g kg−1 and pure ice with Cs ≈ 0. Thus Ŝ ≈ 0.16
which is is an intermediate case with Ŝ � O(1), but rather
closer to the limit dominated by solute rejection. Thus both
the dependence of freezing temperature on salinity and solute
rejection are important, and significant errors result from
neglecting either. There is large error in assuming that growth
is controlled by the removal of released latent heat alone.

In larger scale models that parametrize frazil-ice growth,
it is very common to adjust the freezing temperature with
salinity, and some models also investigate the effect of salt
rejection and diffusion. For example, Holland and Feltham
[28] multiply the growth rate by 0.2 as a way of testing for the
sensitivity to salt. Galton-Fenzi et al. [29], extending Holland
and Jenkins [30], multiply their growth rate by a factor of
1/(1 + Le�TC/�TL) which is typically about 0.2. Now at
small supercooling, Eq. (31) gives

V ∼
[

1 + Le
�TC

�TL

f (α,k)

g(α)

]−1

, (37)

which is a similar expression since the ratio g(α)/f (α,k) is of
order 1. Therefore, the approach of Galton-Fenzi et al. [29] is
likely to capture correctly the leading order behavior for the
salinity dependence of growth, although using Eq. (37) with
the numerical dependence on aspect ratio from Eq. (B4) could
give slightly better results.
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FIG. 9. (Color online) The dimensionless crystal mass growth
rate m into a pure melt when k = 4, relevant to water-ice systems.

C. Growth rate of crystal mass and scaling analysis

An instructive way to express disk crystal growth when the
crystal grows both radially and axially is in terms of growth
rate of crystal mass. We write

L
dM

dt
= A

kl�T∞
R

m(α,k,G), (38)

where M is the mass of the crystal, A is the total
surface area, and the effective total growth rate factor
m = (2f1 + f2)/(1 + 2α) = O(1), as shown in Fig. 9. These
results do not depend significantly on the choice of axial
growth law. As a crude simplification, it is possible to take
m = 1 independent of α and G, so that the inclusion or
exclusion of weak axial growth does not strongly impact
the leading order scalings. If the aspect ratio is small, then
A ≈ 2πR2, so a simple formula for frazil-ice growth in a pure
melt is

L
dM

dt
≈ 2πRkl�T∞, (39)

which can also be modified for salt as discussed previously. To
within a factor of 4/π , Eq. (39) yields the same growth rate as
Eq. (2) of Mason [17].

Equation (38) has a simple physical interpretation in terms
of the scaling arguments introduced in Sec. I. First, heat
transfer occurs across the whole surface area A. For example,
even when only the edges of the disk are growing, there is
still a key contribution to the removal of latent heat from
conduction through the solid from the growing edge and
escaping through the crystal faces. Indeed the transfer through
the faces dominates when kα 
 1. Second, the length scale
of the thermal boundary layer scales with the radius of the
crystal, not its thickness (see Fig. 2), since kl�T∞/R is a heat
flux. These conclusions hold independently of the details of
the axial growth.

In our opinion, the physical implications of the work of
Fujioka and Sekerka [19] have not been fully appreciated,
because these scales could have been inferred from their
mathematical model. We have extended their work to in-
vestigate the effect of different thermal conductivity ratios,
an approximate description of axial growth, and salt. Many
papers incorrectly estimate these scales controlling crystal
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growth. In some papers, for example, Refs. [18,28,29,31,32],
the area for heat transfer A is taken to be the area of the
edge of the crystal A ∼ 4πRH rather than the total surface
area, while the thermal boundary layer is correctly assumed to
have thickness proportional to R. The resulting heat transfer
thereby significantly underestimates crystal growth by a factor
between 10 and 100. Alternatively, in other earlier papers, for
example, Ref. [33], the correct order of magnitude for the
growth rate is obtained by erroneously using the area of the
crystal edge A ∼ 4πRH combined with a thermal boundary
layer thickness proportional to H , two errors in the derivation
that canceled to produce the correct order of magnitude for
the final result. Moreover, in models that use a distribution of
crystal sizes following Ref. [31], our results suggest that there
has been an underestimation of evolution towards the larger
crystal sizes, an area of research we are actively pursuing.

D. Implications and limitations

We have identified order of magnitude errors in predictions
of ice growth controlled primarily by thermal and solutal
diffusion, or equivalently the time scale over which the initial
supercooling of a melt is relieved. Turbulent heat transfer
will play a role when the crystal radius is larger than the
Kolmogorov length, because the thermal boundary layer
scales like the crystal radius. While all of our analysis is
confined to diffusive growth, much carries through relatively
straightforwardly to the case of relatively weak turbulence
by multiplying the diffusive growth rate by a modified
heat transfer coefficient [15,34]. It is therefore important to
characterize correctly the diffusive growth of crystals, and our
calculations have rationalized this process and allowed us to
test the assumptions inherent in models of frazil-ice dynamics.
Our calculated growth rates are likely to be important in more
detailed models of frazil-ice population dynamics that account
for evolution in crystal-size distribution [31].

The assumption of small supercooling has entered this
analysis at a number of stages. The quasisteady approxi-
mation requires that the supercooling is small compared to
�TL ≈ 80 ◦C for growth from pure water, and, for the case of
ocean water of salinity C∞ = 35 g kg−1, the supercooling must
be small compared to �Tc ≈ 2 ◦C. Small supercooling inhibits
morphological instability since experimental observations
and stability analyses suggest that disk-shaped crystals are
morphologically stable provided the thickness is less than
about 100 times greater than the nucleation length [20,21],
and this length is inversely proportional to the supercooling.
The supercooling observed in lakes and oceans is typically
rather small (for example, the largest supercooling recorded
by Skogseth et al. [35] in an Arctic polynya was 0.037 ◦C), and
so our assumption to neglect morphological instability appears
to be appropriate for frazil ice. For stronger supercooling, a
range of crystal morphologies occur, and a more complex study
of heat transfer is required.

The long-range, diffusive transport of heat and salt plays
an important role in the solidification of disk-shaped crystals
from a binary melt. We have identified the physical scales that
determine the bulk growth rate. We used a simple, thermody-
namically motivated, anisotropic kinetic coefficient consistent
with a disk-shaped morphology, and neglected anisotropic

surface energy. In doing so we provided a complementary
perspective on crystal growth to that of “kinetic Wulff shapes”
relevant to faceted snow ice growth, which allowed us to
highlight the role of diffusion in the growth of disk-shaped
frazil ice in oceans and rivers.
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APPENDIX A: NUMERICAL METHOD

We adopt a straightforward numerical method. We solve
the axisymmetric form of Laplace’s equation in (r,z) space
using a Finite-Element-Method with adaptive meshing, which
concentrates the mesh near the disk corner, where most
resolution is needed. We used the MATLAB Partial Differential
Equation Toolbox. We use linear basis functions on triangular
elements. We truncate our domain at spherical radius r̃ = R̃,
following the method of Bayliss et al. [36]. Setting θ = 0 on
this outer boundary gives an O(1/R̃) error. Thus, motivated
by the well-known multipole expansion for far-field behavior
of the solutions of Laplace’s equation, we instead set

∂θ

∂r̃
+ θ

r̃
= 0, (r̃ = R̃), (A1)

which has an O(1/R̃2) error.
In order to implement the jump boundary condition equa-

tion (6), we introduce a notch of thickness ε at the growing
edge of the disk, in which we impose a volumetric heat source.
The notch becomes a line source in the limit ε → 0. We
investigated the dependence of f (α,k) and hence the growth
rate on ε and R̃. We ensure convergence to a relative error of
less than 0.2% across the entire parameter space considered by
using R̃ = 32, ε = 2 × 10−7. Our results were benchmarked
against the analytical solution of Fujioka and Sekerka [19] for
the case k = 1, as illustrated in Fig. 3.

In terms of axial growth (Sec. III) the nondimensional
boundary conditions on the disk face are

SW =
[
k
∂θ

∂z

]s

l

, (A2)

W = G
∫ 1

0
2(1 − θi)r dr (A3)

from Eqs. (3) and (4) using the first axial growth law (15)
as an example. We solve Eq. (A2) in the same way as (6),
by introducing a notch. The crucial difference to the purely
radial growth case is that Eq. (A3) introduces a nonlinearity
into the system of equations, which we solve iteratively, using
a Newton-Raphson method.
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APPENDIX B: PRACTICAL FORMULAS DERIVED
FROM FITS TO NUMERICAL CALCULATIONS

Motivated by the asymptotic form of the toroidal integral
[Eq. (13)], we look for fits of the form 1/[b − c log(x)], for
b,c constant, to the numerically calculated results presented in
Figs. 3 and 8. We obtain

f (α,k = 1) ≈ 1/[0.9675 − 0.3160 log(α)], (B1)

f (α,k = 4) ≈ 1/[0.9008 − 0.2634 log(α)], (B2)

g(α) ≈ 1/[1.100 − 0.4146 log(α)]. (B3)

The absolute errors in these formulas are typically very
small and are entirely negligible compared to the modeling

uncertainties. Depending on the range of α of interest,
different formula can be obtained, but these are practical for
10−3 < α < 1.

For the ratio g(α)/f (α,k = 4) important to the combined
heat and salt calculation, a very accurate formula is

g(α)

f (α,k = 4)
= 0.9457α2 + 2.775α + 18.08

α2 + 1.574α + 21.79
. (B4)

A simpler alternative with slightly diminished accuracy is to
use a constant value as mentioned in the main text, for example,
0.73.
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