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Creep rupture of fiber bundles: A molecular dynamics investigation
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The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is
investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results
of the virtual testing of fibrous samples consisting of 40 000 particles arranged on Nc = 400 chains reproduce
characteristic stages seen in the experimental investigations of creep in polymeric materials. A logarithmic plot of
the bundle lifetime τ versus load F displays a marked curvature, ruling out a simple power-law dependence of τ

on F . A power law τ ∼ F −4, however, is recovered at high load. We discuss the role of reversible bond breaking
and formation on the eventual fate of the sample and simulate a different type of creep testing, imposing a constant
stress rate on the sample up to its breaking point. Our simulations, relying on a coarse-grained representation of
the polymer structure, introduce new features into the standard fiber bundle model, such as real-time dynamics,
inertia, and entropy, and open the way to more detailed models, aiming at material science aspects of polymeric
fibers, investigated within a sound statistical mechanics framework.
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I. INTRODUCTION

The irreversible deformation and eventual breaking of
materials are paradigmatic phenomena of great practical and
conceptual importance, since they are part of our everyday
experience, play a fundamental role in engineering, and
display a range of properties from cooperativity to extreme
nonlinearity that still challenge our ability to model and under-
stand them. The applied interest and widespread occurrence
have undoubtedly driven early investigations [1,2] of these
phenomena right up to the present day status as a mature field
[3–7]. Over the past couple of decades, the interest in such
phenomena has been revived by the advent of the computer as
a serious research tool [8–10].

The physics community view of fracture has been greatly
influenced by its analogies with phase transitions and critical
phenomena [10]. Thus, universality and scaling relations
provided the first and foremost framework to interpret ex-
perimental results [11–14]. From the theoretical point of view,
these approaches have the additional appeal of providing useful
and concise information without referring to the details of the
molecular structure and interatomic interactions.

Over the past few years, atomistic modeling has matured to
the point where materials may be modelled computationally
from the atomic scale up to the level where continuum theories
get a foothold [15], strengthening the tie between theory or
computer modeling using simple models and experiments.

Technological advances, however, aim at optimizing the
choice and possibly improving the performance of materials.
By necessity, these efforts target system-specific properties
and thus non-universal aspects of mechanical response to
perturbations. Moreover, the recent advent of atomistic mod-
eling provides increasing opportunities for a chemical-physics
analysis of fracture. Models going beyond scaling relations
and universality considerations are required also to investigate
finite and sometimes small systems, whose dimensions might
approach the nanometric scale [16].

We focus here on the fracture of polymeric fibers under a
steady tensile load, partly because of applied interest that is
enhanced by the role of creep. Even more, we are motivated

by the intrinsic interest of highly anisotropic and viscoelastic
materials, whose response to an applied stress depends on
entropy as much as on enthalpy.

The theoretical analysis of the failing of fibrous systems
relies heavily on the so-called fiber bundle model [17–20]
which has proven itself both as a simple but paradigmatic
model for failure in much the same way the Ising model is
for magnetism, and as a model for detailed calculation of the
strength of fiber-reinforced composites [21,22]. Interpreting
the failure of polymers in the context of the fiber bundle
model one combines probability distributions p1 of elementary
processes such as the breaking of an individual intermolecular
link to predict the time evolution of large (ideally infinite)
assemblies of chains. The many-particle behavior is introduced
by defining the redistribution of load upon breaking of chains,
while temperature and material properties only enter the
definition of the probability distribution of the elementary
processes. The final aim is, e.g., the prediction of the bundle
lifetime 〈τ 〉 and of fluctuations of breaking times around 〈τ 〉
[20,23].

Going deeper than these models are capable of requires
investigations at the atomistic level, for which sophisticated
methods are available, up to ab initio simulation [24].
However, the multiscale character of these processes makes
them very difficult to model. Moreover, most of these detailed
models and methods are tuned on near-equilibrium conditions,
and their accuracy and reliability is virtually untested for the
large deformations relevant in this context.

We report here results from the computational exploration
of a particle-based realization of finite chains made of discrete
particles grafted to two parallel rigid clamps. Hence, the
system is related to the equal-load-sharing fiber bundle [17,18].
The results are compared to standard theoretical approaches
and to fracture experiments on protein gels [25].

In our approach, the rate of bond and of chain breaking
is not an empirical input as in the standard fiber bundle
model, but it is implicitly determined by the parameters
entering the definition of the interparticle potential, and by
the thermodynamic conditions. Moreover, the results of our
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simulations based on real-time dynamics, reveal intriguing
cooperative effects and correlations among breaking events. In
this respect, our study differs in an essential way from previous
studies devoted to the simulation of single chains [26–28].

In the next section, we describe in detail our model and its
numerical implementation. In Sec. III, we present our results.
Our main result is that the average lifetime τ of the bundles
scale as F−4 at high F , where F is the load on the rigid plates to
which the chains are anchored. Section IV contains a summary
of our results and the conclusions we draw from them.

II. MODEL AND METHOD

The system under study consists of Nc polymeric chains
attached to two parallel planar surfaces perpendicular to the
z axis, located at za and zb. For the sake of definiteness, we
assume that our system is oriented in such a way that zb � za ,
with Lz = zb − za measuring the instantaneous length of the
bundle.

Each chain is made of Nb regular beads, and two special
beads, representing the opposite end points. These two special
beads are constrained to lay on the boundary planes but
otherwise are free to move along x and y. The link between
each end point and the nearest regular bead is harmonic:

Vw(|rw − r1|) = 1
2Kw|rw − r1|2 (1)

and, as such, it cannot be broken. In the equation above, rw and
r1 are the coordinates of the end point and its first neighbor,
respectively.

Regular beads interact only with their nearest neighbors
along the chain through a truncated Morse potential:

VM (r ≡ |ri − ri+1|)

=
⎧⎨
⎩

D0[e−2a0(r−re) − 2e−a0(r−re)] r < rc

as(r − rc)2 + bs(r − rc)3 rc � r � rc + �

0 r � rc + �

, (2)

where D0 is the potential well depth, re is the equilibrium bond
length at rest, while a0 determines the stiffness of individual
bonds according to V ′′

M (re) = 2a2
0D0. The bead-bead potential

VM is smoothly switched off in between rc and rc + � (rc �
re), with as and bs uniquely determined by the request that
VM (r) and V ′

M (r) are continuous everywhere.
Inspection of the V ′

M (r) derivative shows that a bond along
the chain can withstand a static tension of at most f̃1 =
(a0D0)/2 that is reached at positive elongation δr = log (2)/a0

from the minimum of the potential at an energy that is D0/4
above the bottom of the potential well and 3D0/4 below the
dissociation limit.

The system potential energy, therefore, is given by:

E
[
r(k)

0 ; r(k)
i ; r(k)

Nb+1

∣∣1 � i � Nb; 1 � k � Nc

]
=

Nc∑
k=1

{
1

2
Kw

∣∣r(k)
1 − r(k)

0

∣∣2

+
Nb−1∑
i=1

VM (|ri − ri+1|) + 1

2
Kw

∣∣r(k)
Nb

− r(k)
Nb+1

∣∣2

}
. (3)

Each regular and end-point bead has mass m, and the system
kinetic energy is

Ekin = 1

2
m

Nc∑
k=1

Nb+1∑
i=0

∣∣ṙ(k)
i

∣∣2
. (4)

In what follows, it is assumed that the particle of index 0 of
each chain is the end particle on the plane at z = za , while the
particle of index Nb + 1 is the terminal bead at zb.

According to these equations, particles on different chains
interact with each other only through the clamps. This demands
that the chains are widely separate or, equivalently, that
their density is low. Moreover, even along the chain, only
nearest-neighbor beads interact with each other, reflecting the
predominantly 1D topology of polymeric fibers.

The z component of the force on each of the end points
located on the plate at z = za is given by:

f
(k)
0 = Kw

(
z

(k)
1 − za

)
. (5)

We want the total force on the plate to be F , i.e., the plate on
the left will pull the bundle with a constant force −F :

F = Kw

Nc∑
k=1

(
z

(k)
1 − za

) = Kw

(
Nc∑
k=1

z
(k)
1

)
− NcKwza. (6)

The constraint on the force, therefore, is identically satisfied
if, at any given time, we set za to be

za = 1

Nc

[(
Nc∑
k=1

z
(k)
1

)
− F/Kw

]
. (7)

Similar equations hold for the other side of the bundle,
whose reference plane is z = zb. In other terms, we treat the
two plates as zero-mass objects, adjusting instantaneously to
the force from the bundle, in such a way that the tension
imposed from outside is constant.

In a series of preliminary simulations at F = 0 we observed
that, as expected, the simulated sample forms an approxi-
matively Gaussian coil. However, the equilibrium, separation
of the two planar clamps at z = za and z = zb, is much shorter
than the �z = re

√
Nb/3 end-to-end distance predicted by the

Gaussian model for individual chains [29]. This somewhat
unexpected observation is apparently due to the confinement
of the end-chain beads on the two parallel planes at z = za

and z = zb, and we verified that removing this constraint
restores the Gaussian value for the end-to-end distance in each
of the noninteracting chains. Moreover, the short separation
of the clamps is apparently made possible by the absence of
bead-bead and bead-clamp interactions that allows the two
clamps to sit well within the blob, as regular beads can be
found on either side of the z = za , z = zb planes.

Although intriguing, we did not analyze this short separa-
tion of the clamps in further detail, but considering that the
original model did not provide a realistic representation of
polymeric bundles joining two opposite surfaces, we slightly
modified it to include a soft repulsive potential confining beads
inside the portion of space delimited by the two parallel plates
at z = za and at z = zb. The analytical expression of the added
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potential is

Usoft = 1

2
Ks

Nc∑
k=1

Nb−1∑
i=2

[
φa

(
z

(k)
i

) + φb

(
z

(k)
i

)]
, (8)

where

φa(z) =
{

(z − za)2 z < za

0 z � za
(9)

and

φb(z) =
{

(z − zb)2 z > zb

0 z � zb
. (10)

We do not include the contributions for particles 1 and
particle Nb to avoid straining bonds that by necessity are
located close to the boundary planes and are the most affected
by any sudden displacement of these planes.

For the sake of simplicity, we set Ks = Kw. This represents
a moderately repulsive potential that does not strictly prevent
particles to enter the “external” portion of space, but it is
certainly sufficient to drastically reduce the spill out of beads,
thus enforcing the role of the plates as the exterior boundary
of the simulated bundle.

Upon adding the soft-wall potential, the (zb − za) separa-
tion increases beyond the Gaussian chain end-to-end separa-
tion �z = re

√
Nb/3 because of the inside pressure exerted by

the particle on the boundary walls. The wall-bead interaction is
included in the computation of the stress on the za , zb boundary
planes. Because of the piecewise definition of the two functions
φa(z), φb(z) at z = za and z = zb, the relation between F and
za or zb can no longer be solved analytically, but a simple
iteration scheme achieves convergence within a few steps.

To prevent the breaking of bonds during the long runs that
are needed to equilibrate our samples, a confining potential
has been added to every pair of interacting particles:

Vconf(|ri − ri+1|)

=
{

0 |ri − ri+1| � Rconf
1
2kconf(|ri − ri+1| − Rconf)2 |ri − ri+1| > Rconf

.

(11)

A nonvanishing kconf force constant will be used for equilibra-
tion and set smoothly to zero at the beginning of the production
stage of our simulations, opening the way to the breaking of
bonds.

Most of the computational time is required to evaluate the
Morse potential between nearest-neighbor beads. In compari-
son, the iterative determination of the za , zb coordinates of the
end blocks requires negligible effort.

The majority of our simulations have been carried out
at constant temperature conditions, coupling all beads to a
Langevin thermostat, implemented according to the prescrip-
tions of Ref. [30]. Newton’s equations of motion are replaced
by the Langevin expression:

ṙi = vi, (12)

mv̇i = fi − ηvi + βi(t), (13)

where fi are the forces derived from the potential energy, η is
the friction coefficient, while βi are random forces, satisfying
the relations:

〈βi(t)〉 = 0, (14)

〈βi(t)βj(t
′)〉 = 6ηkBT δi,j δ(t − t ′). (15)

In these last relations, kB is the Boltzmann constant and T is
the target temperature of the simulation. In our computer code,
we faithfully implemented Eq. (18) and Eq. (21) to Eq. (23)
of Ref. [30], slightly modifying the velocity Verlet algorithm
used in the η = 0 case. In our choice of units, kB = 1, and
temperature is measured in energy units.

To assess the role of the Langevin thermostat and dynamics,
a series of simulations have been carried out upon disconnect-
ing particles from the thermal bath, i.e., setting η = 0 and
excluding random forces. As mentioned in the Introduction,
the Langevin simulations correspond to systems in a thermally
conducting environment such as a solution, while simulations
at η = 0 approach the condition of experiments in which
polymeric bundles are broken at high speed [31].

Because of the relatively large number of parameters, it
might be useful to provide an overview of their role. D0, re,
and a0 determine the Morse portion of the nearest-neighbor
bead-bead potential, representing energy, length, and elastic
spring constant of nearest-neighbor (covalent) bonds along
the polymer backbone. The bead-bead potential has finite
range vanishing beyond rc + � and starts to deviate from
the Morse function for r > rc. Both rc and � are auxiliary
parameters, whose choice (re � re, �/re < 1) ideally should
not affect significantly the result of the simulation. The link
from the first and last bead to the clamps is harmonic (force
constant Kw), and a piecewise continuous, harmonic potential
of force constant Ks has been added to (softly) confine beads
in between the clamps. The Kw and Ks values have been set
fairly low to ease the iterative solution of the equations for
za and zb. Since the force acting between the clamps and the
bundle is fixed from the outset, the choice of Kw and Ks does
not affect the results. Selecting a stiffer force constant would
be equivalent to somewhat displace inwards the clamps. The
confining potential Vconf [Eq. (11)] is a transient feature of our
model, used only during equilibration to prevent the untimely
breaking of bonds. Once again, its parameters are meant to
influence the result as little as possible.

It would be tempting to see the limiting force f̃1 =
(a0D0)/2 that can be sustained by individual bonds as a natural
scale of force on single chains [F̃1 = (Nca0D0)/2 on bundles].
This force, however, is sufficient to break each chain almost
instantaneously and is therefore one order of magnitude higher
than the loads considered in our simulations that concern
instead thermally activated creep. Because of this, our results
are not a unique function of F/F̃1.

At equilibrium, temperature and energy scale D0 would not
be independent variables, and all average results would depend
on D0/T only. Under nonequilibrium conditions, this is not
strictly true, but the conditions of our simulations are never far
from short-term equilibration, and we verified that fast relaxing
properties (time-dependent energies and energy fluctuations,
for instance) are indeed functions of D0/T . We anticipate that
the irreversible kinetics of our system is primarily activated,
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hence the rate of events such as bond and chain breaking
follows an Arrhenius law, i.e., they scale like exp [−�/T ],
where � is the activation free energy for the event under
consideration, which, to first order, is expected to scale like
∼D0.

At zero applied force, and excluding the thermostat (i.e.,
η = 0), energy is conserved. We verified that even in the η = 0
case, the interchain coupling through the leads is sufficient for
an effective equilibration among chains. On the other hand,
when η > 0 and F = 0, the sample temperature equilibrates
at the set temperature T on a time scale that depends on the η

value.
The fiber bundle model is sometimes applied to the

investigation of soft fibrous materials such as paper or wood.
The structure and local properties of these systems are
characterized by quenched disorder, whose amplitude and
distribution affect the creep evolution through the formation
of weak links. Polymeric samples, instead, are far more
homogeneous, and our model accounts only for annealed
disorder, due to a nonvanishing temperature of the sample
during the creep simulation. Quenched disorder, however,
could easily be reintroduced by considering a statistical
distribution of the potential well depth D0 [see Eq. (2)]
attributed to individual bonds.

We remark that neglecting general bead-bead interactions
besides the covalent bonds along the chain is the major
approximation introduced in our model that has the merit
of drastically reducing the computational cost of our study.
More importantly, it has also the advantage of retaining a close
relation between our approach and the classical fiber bundle
model. Last but not least, our model could indeed represent
real systems, consisting of polymeric fibers in solution at the
� point [29].

III. RESULTS

For the sake of clarity, before presenting the results we
summarize here the notation that is used throughout the paper.
Simulated samples consist of fibers (chains), each made of
beads. The number of chains and of beads per chain are Nc

and Nb, respectively. At any given time, the number of intact
chains is nc(t), while the number of broken chains and broken
bonds are nbc(t) and nbb(t), respectively. The total load on the
bundle is F , and the initial load per chain is f1 = F/Nc. The
load on intact chains increases with increasing damage of the
bundle, and this will be denoted by f1(t) = F/[Nc − nbc(t)].
The average lifetime of bundles subject to the same load F is
denoted by τ , while the breaking time of the individual bundle
j is τj .

The process of breaking single anharmonic chains similar
to those considered in our study has been investigated a
few times in the past [26–28] using molecular dynamics
simulations. At nonvanishing temperature, the breaking rate of
such chains under constant tension f1 follows the Arrhenius
law of activated processes, with an activation energy that
decreases linearly with increasing applied tension f1. The
chain lifetime scales with its length N according to N−β , with
0 < β < 1. The exponent β approaches 1 with f1 → 0, and
slowly tends to zero with increasing f1. These conclusions are
based on the results of constant temperature simulations, at

TABLE I. Parameters entering the definition of the model
potential. The mass of each particle is set to m = 1.

D0 re a0 rc � Kw Ks

6 1.5 2 3 0.5 0.2 0.2

temperatures T and applied tensions f1 that are relatively high
compared to those used in our study [26–28]. Despite the slight
differences in the model and in the simulation parameters,
these results of Ref. [26–28] provide the first basic elements
to interpret our data.

A. System and simulation setup

Most of our simulations have been carried out for bundles
of Nc = 400 chains, each consisting of Nb = 100 beads.
The parameters of the model potential are listed in Table I.
Recombination of broken bonds is not allowed, but the effect
of bond recombination has been investigated by a few test
computations, whose results are summarized in Sec. III D.

In a first stage of our investigation we prepared a library
of 200 starting configurations, equilibrated at the reduced
temperature T = 0.33. Equilibration has been carried out
under a moderate tensile load F = 5, introduced to keep
zb > za , and to limit fluctuations in the length of the bundle.
To test the stability of our MD code and our choice of the
simulation parameters, equilibration has been carried out upon
disconnecting the sample from the thermal bath [η = 0 in
Eq. (13)] that otherwise could conceal the drift of temperature
and potential energy. Moreover, to prevent the breaking of
bonds during this preliminary stage, the confining potential
described in Eq. (11) has been included with Rconf = 0.6,
kconf = 0.4. Under these conditions, a sample has been equi-
librated for 50 × 106 steps, with occasional (small) rescaling
of velocities to set the temperature. Then we carried out a MD
simulation lasting 200 × 106 steps, selecting and storing one
configuration every 106 steps. In the units implicitly defined
in Table I, the time step used in all of our simulations is
δt = 0.025. The computation takes about 1 h for 106 MD
steps on a single x86_64 core running at 2.80 MHz.

At this stage, before introducing bond and chain breaking
mechanisms, the system behaves like a (slightly visco)-elastic
polymeric material, whose response to small-amplitude, long-
wavelength perturbations consists of weakly damped oscilla-
tions. At very low T and under moderate tension, the speed of
sound is easily computed from the phonon dispersion relation
of monoatomic harmonic chains [see Ref. [32], Eq. 22.31, p.
433] cs = √

V ′′
M (re)/m, where VM (r) is the Morse potential

of Eq. (2) and m = 1 is the mass of each bead, giving
cs = a0

√
(2D0) ≈ 7 in our units of length and time. At the

temperature (T = 0.33) of our simulations, however, the
relevant forces stabilising the Gaussian coil configuration
are of entropic origin [29], and the bundle behaves like a
1D elastic system of spring constant Y = 3kBT /Nbr

2
e and

linear density ρ ∼ N
1/2
b as predicted by the Gaussian theory

of harmonic chains. Then the sound velocity is reduced to
cs = √

Y/ρ ∼ 0.25 (again for our systems and in our units).
Following these considerations, it is easy to estimate a time
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scale for the spontaneous oscillations of bundles, which turns
out to be ∼102 time units, as confirmed fairly accurately by
our simulations. We do not have a simple model to predict the
relaxation time of bundle oscillations due to the interaction
among chains through the clamps. However, direct testing by
MD shows that induced oscillations remain recognizable in
the fluctuating noise of the bundle dynamics for about 10 full
oscillations (103 time units), implying a relaxation time of a
few (two or three) hundred time units. Thus, each chain as well
as each bundle behaves like a weakly damped Kelvin-Voight
element, already extensively used in the development of fiber
bundle models [33].

For each sample, the production stage is initiated by
smoothly removing the confining potential and bringing the
external load to the intended value F = f1 × Nc, according
to:

kconf(t) =
{

k
(eq)
conf − 1

2k
(eq)
conf

{
1+ cos

[
π

(
1 + t

tsm

)]}
t < tsm

0 t > tsm

(16)

F (t)=
{

Feq + 1
2 (F − Feq)

{
1 + cos

[
π

(
1 + t

tsm

)]}
t < tsm

F t > tsm

(17)

where the smoothing time is set to tsm = 2500, while k
(eq)
conf =

0.4, Feq = 5 are the strength of the confining potential and
the low tension applied during equilibration, respectively. The
continuous change of kconf and F from their equilibration
to production values has been devised to prevent the early
breaking of chain due to the sudden change of forces on the
particles in our samples.

B. Results of simulations based on the Langevin dynamics

We report first the results of the constant temperature
simulations, enforced through a Langevin thermostat with
T = 0.33 and η = 0.0001, whose aim is to remove the excess
heat generated by the work done by the external force and
to replenish the energy dissipated through the irreversible
breaking of bonds. The low value of η, in particular, has
been selected to retain the fluctuations in forces, velocities,
and displacements that follow the breaking of each chain that
are essential features in the behavior of these systems and
processes.

Simulations have been carried out at 13 values of the applied
tension 0 � F � 100. More precisely, 20 bundles have been
simulated for each of the loads: F = 0, 5, 10, 15, 30, 50, 60, 70,
80, 90; 50 bundles have been simulated at F = 20, F = 100,
and 200 bundles at F = 40.

In all cases, including F = 0, removing the confining
potential causes the progressive breaking of bonds, that, in the
absence of recombination, proceeds irreversibly, accompanied
by the progressive increase of the bundle length (see Fig. 1).
In the early stages of our simulations, bond breaking events
appear to be independent of each other, taking place by thermal
fluctuations at a nearly constant rate αNc (α being the bond
breaking rate per chain, see Fig. 2), which depends primarily
on the sample temperature [34] and, more weakly, on the

FIG. 1. (Color online) Snapshots from a simulation at T = 0.33,
F = 40. Black particles: Regular beads, twofold coordinated; blue
particles: onefold coordinated beads, marking broken bonds; red
particles: chain terminations on the z = za and z = zb planes. For the
sake of clarity, only 1/4 of the chains are displayed. (a) t/τi = 0.025;
(b) t/τi = 0.5; (c) t/τi = 0.66; (d) t/τi = 0.975.

applied tension (see the inset of Fig. 2). The progressive
accumulation of damage due to this random process represents
the microscopic origin of the bundle ageing that in several

0

100

200

300

400

021060  × 103

t  [time units]

n bb
(t)

F = 60

F = 40

F = 20

F = 0

0 20 40 60 80 100
0

6

12

18

F

10
3  ×

 α

FIG. 2. (Color online) Average number of broken bonds as a
function of simulation time in samples at T = 0.33, F = 0, 20, 40
and 60. Inset: Slope of the linear portion of nbb(t), estimated by
linear fit of the 180 � nbb(t) � 220 range. The range of the linear
fit is delimited by the two horizontal dashed lines in the main plot.
Results averaged over all the samples simulated at the same load, see
text.
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models is accounted for through suitable phenomenological
coefficients [35]. In the latest stages, the rate of bond breaking
increases significantly, reflecting the concentration of stress
on the chains that still connect the two end planes. To within
statistical accuracy, at all times broken bonds are uniformly
distributed along the entire length of the polymeric chains.
The pile-up of particles in close proximity of the clamps that
can be seen in Figs. 1(c) and 1(d) is due to broken chains that
fold into a nearly Gaussian coil, only slightly perturbed by the
soft external wall.

At first, each bond breaking is likely to break a chain, and
thus:

dnbc(t)

dt
= αNc, (18)

where, as already stated, α is the rate of bond breaking per
chain. With increasing damage of the bundle, it increases
also the probability that a bond breaking event occurs on a
chain that is already broken. In this way, the rate of chain
breaking is decoupled from the bond breaking rate, and, in
particular, the chain breaking rate can decrease well below the
rate αNc of bond breaking. Eventually, this purely statistical
effect would reduce the rate of chain breaking to just 1/Nc of
the initial rate. However, this reduction is to some extent offset
by a mechanical effect, since the decreasing number of intact
chains increases the average tension that each of these chains
has to withstand. This, in turn, increases the rate of chain
breaking, according to the effect quantified in Refs. [26–28]
and reproduced by our computations (see inset in Fig. 2). At
variance from the first, the second effect is purely due to the
chain-chain interaction through the end blocks, and its detailed
effect depends on the load-sharing mechanism adopted by the
model.

The competition of these two effects is apparent in the time
dependence of the number of broken chains that is shown
in Fig. 3 for three values of the applied stress. Despite their
spanning fairly different time scales, all the curves share a few
general aspects. Apart from the first 2500 time units, affected
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FIG. 3. (Color online) Number of broken chains as a function of
simulation time in individual samples at T = 0.33 under the tensile
load F = 10, F = 20, F = 30. No averaging has been carried out in
this case.
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FIG. 4. (Color online) Number of broken chains as a function of
scaled time at five values of the tensile load F . τi is the time to break
individual bundles, see text. The results have been averaged over all
the samples under the same tensile load. From top to bottom: F = 0,
10, 20, 40, 60.

by the change of F and by the switch off of the confining
potential, a first stage of rapid raise in the number of broken
chains is followed by an almost linear range, turning into a
final avalanche of chain breaking events that completes the
failing process.

A visual summary of these results is obtained by first
plotting the nbc(t) curve for each bundle j as a function of
t/τj , where τj is the breaking time of that individual sample.
Then, all the curves for a given value of F , that now span the
same 0 � t/τ � 1 domain, are averaged. In other terms, we
compute and plot the function:

β(u) = 〈nbc(uτi)〉i , (19)

where 0 � u � 1, and the average is over all possible initial
conditions for the intact bundle at T = 0.33. For the sake of
simplicity, we shall use the loose notation 〈nbc〉(t/τ ) for β(u)
and for similar elaborations of other properties such as the
bundle length.

The results for 〈nbc〉(t/τ ) are displayed in Fig. 4, showing
that in the regular 0.2 � t/τ � 0.8 range, the decrease of the
chain breaking rate with increasing time is more pronounced
at low F load, while, as expected, the size and relative duration
of the avalanche stage are higher at high values of F .

While the avalanche stage is difficult to predict and to
describe, the early stages of creep progression can be modelled
on the basis of the few considerations listed in the previous
paragraphs. To first approximation, let us assume that the rate
of bond breaking is constant:

dnbb(t)

dt
= αNc (20)

and each bond breaking event has a probability:

P (t) = [Nc − nbc(t)]

Nc

(21)
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FIG. 5. (Color online) Number of broken bonds and of broken
chains as a function of time in a sample at T = 0.33 under load
F = 20. The full line is the prediction of Eq. (23) in the text.

to break an intact chain. Then the rate of chain breaking is

dnbc(t)

dt
= αNc

[Nc − nbc(t)]

Nc

, (22)

whose solution is

nbc(t) = Nc[1 − exp (−αt)], (23)

where the constant rate α is estimated from the central portion
of the broken bonds versus time curves, Fig. 2.

Comparison of this prediction for nbc(t) with the results of
the computational experiment reveals a fair agreement for most
of the nbc(t) curve, up to the beginning of the final avalanche
(see Fig. 5). The final avalanche is caused by the fact that with
increasing bundle damage the load on each of the intact chains
increases. This makes it more likely to break bonds on the intact
rather than on broken chains and, perhaps more importantly,
it enhances the cooperativity of the intact chains evolution,
eventually triggering avalanches. This simple picture allows
us to define the avalanche, as the portion of the nbc(t) deviating
from the predictions of Eq. (23).

To this aim, we compute the numerical derivative of the
nbc(t) curves shown in Fig. 4 that represents a time dependent
rate of breaking chains. We identify the beginning of the final
avalanche with the time tav at which this time-dependent rate
equals 2 times the average breaking rate Nc/τ . In this way,
we determine the portion of the lifetime and of the bundle
damage that is accounted for by the last stage of avalanche
failing. The results are summarized in Fig. 6. The transition
from secondary creep to avalanche is fairly sharp, and therefore
the results do not depend significantly on the precise value
of the threshold rate chosen to define tav. Up to the highest
load explored in our simulations, the avalanche stage does not
exceed ∼15% of the bundle lifetime but accounts for up to
∼50% of the chain breaking events (see the inset in Fig. 6).

The avalanche stage is marked by strong correlations in
breaking times, since the failing of even a single chain triggers
further breaking events. This is illustrated in Fig. 7, where
we show the probability distribution for the time between
successive chain breaking events, separating the first and
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FIG. 6. (Color online) Relative fraction of the bundle lifetime
accounted for by the avalanche stage. The avalanche starts at tav,
defined as the time at which the time dependent rate of chain breaking
equals two times the average rate Nc/τ . Inset: Fraction of chains in
the bundle that break during the avalanche stage.

second half of the entire bundle simulation. In the first case, the
probability distribution is very broad and nearly structureless.
In the second half of the simulation, a narrow peak at low times
results from the rapid chain collapse during the avalanche
stage.
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FIG. 7. (Color online) Probability distribution P (δt) for the time
interval between two successive chain breaking events. The red curve
refers to events taking place when the number of broken chains is less
than 50%, and the blue dashed curve refers to the remaining 50% of
chain breaking events and includes the effect of the final avalanche.
Average over 200 bundles of Nc = 400 chains of Nb = 100 at T =
0.33 under load F = 40. Inset: Detail of nbc(t) for a single bundle at
T = 0.33 under load F = 40 in the early stages of stretching. Short
bursts of correlated chain breaking events are shown in red (full line),
while regular steady segments are shown in blue (dashed line).
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FIG. 8. (Color online) Bundle elongation as a function of time at
four values of the tensile load. Data in the main panel have been scaled
and averaged as in Fig. 4. From bottom to top: F = 0, 20, 40, 80. Inset:
Logarithmic plot of the strain rate γ̇ (t) = d|zb − za |/dt for bundles
at T = 0.33 and F = 40. Dots: Simulation data. Straight line (blue):
Linear interpolation of the 0 � t/τ � 0.027 data, corresponding to
a power-law dependence γ̇ (t) ∼ t−α; red curve: Interpolation of
the 0.95 � t/τ < 1.0 data with a polelike term γ̇ (t) ∼ μ/(1 − t/τ )
diverging at t = τ .

In many respects, the information contained in Fig. 7 is
relatively trivial, since it mainly reflects the global quickening
of the bundle kinetics towards the end of its lifetime, without
highlighting special correlations or cause-effect relations
among the events. Perhaps more telling are bursts of chain
breaking that develop already in the early stages of our bundle
breaking simulations (see inset in Fig. 7) and represent the
most obvious precursors of the final avalanche. These bursts
are apparent from the visual impression of nbc(t) curves for
single bundles but are difficult to unambiguously define and
quantify. More importantly, our simulations do not provide
sufficient statistics to investigate the properties of these bursts.

The results for the time dependence of broken bonds
and chains are reflected in the parallel evolution of the
bundles’ length Lz(t) ≡ |zb − za|(t) [36] that is illustrated in
Fig. 8. The simulation data in this figure have been treated
as in Fig. 4, representing in fact 〈Lz〉(t/τ ). The bundle
length changes rapidly at first when the load is applied,
with superimposed oscillations of fairly small amplitude and
period of the order of 100 time units (see Fig. 9) not seen
in Fig. 8 because of averaging over multiple samples but
apparent in the results for individual bundles. Then the bundle
length raises nearly linearly, up to the point at which the last
avalanche stage begins, marked by an increasing upwards
curvature of 〈Lz〉 versus time. Small-amplitude oscillations
at the frequency of the bundle (quasi)-eigenmodes continue
throughout the simulation, excited by the sudden changes in
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02010  × 103

t

|z b-
z a| 

(t)
 

F = 20

FIG. 9. (Color online) Bundle elongation as a function of time at
tensile load F = 20. Results refer to a single bundles; no averaging
over samples has been carried out.

the end-wall position caused by chain breaking events and
continuously damped by the complex many-particle dynamics
of our samples. These damped oscillations provide a simple
representation of creep ringing observed in experiments and
discussed in a number of papers [37].

Experimental data are often presented and discussed
in terms of the time-dependent strain rate γ̇ (t) =
d[〈Lz〉(t/τ )]/dt . The logarithmic plot of γ̇ (t) versus time
displays three characteristic stages, identified as the primary,
secondary, and tertiary regimes of creep [38,39] well known
from the technological characterization of materials. The first
stage, also known as Andrade creep [40], is characterized by
a power-law dependence of the strain rate on time γ̇ (t) ∼ t−α ,
whose exponent α, in soft fibrous materials, is typically close to
unity [25] and can be derived from the viscoelastic properties
of the sample [41,42]. The secondary regime is marked by a
minimum of γ̇ (t), occurring at the universal value of the scaled
time tmin/τ = 0.556 [43], while the third regime corresponds
to the avalanche stage, with an apparent divergence of the strain
rate at the time t = τj of the bundle breaking. As a result of
these observations, the entire plot for the strain rate γ̇ (t) can
be approximated by the simple expression:

γ̇ (t) = λ

(
t

τ

)−α

+ μ

1 − t/τ
(24)

(see Eq. (1) in Ref. [25]).
To compare with these experimental observations, we report

on a logarithmic scale the time dependence of the strain rate
averaged on our 200 simulations at F = 40 (see the inset
in Fig. 8). The result has an obvious qualitative correspon-
dence with the experimental picture, with, however, quanti-
tative differences that might be considered equally or even
more important than the similarities. First, it is certainly true
that the expression of Eq. (24) provides an excellent fit of
our strain rate data, but the exponent α turns out to be very
high (α ∼ 7) compared to the values around unity found by
measurements on soft fibrous materials. As a consequence, the
γ̇ valley turns out to be very broad, and the absolute minimum
is difficult to accurately identify but seems to be located at
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FIG. 10. (Color online) Lifetime of fiber bundles as a function
of the tensile load. Filled squares: Constant temperature simulations
with a Langevin thermostat at T = 0.33 and η = 0.0001. Full dots:
Newtonian simulations (no friction and no random forces) started
from samples equilibrated at T = 0.33. Blue and red lines are a
guide to the eye.

t/τ ∼ 0.12, well before the universal value tmin/τ = 0.556
already mentioned in the previous paragraph. We think that
the quantitative discrepancy on the α exponent and on tmin/τ

is due to our specific way to apply the load and to remove
the confining potential according to Eqs. (16) and (17) with
a relatively short tsm. The extreme microscopic size of our
samples, the harmonic bond at the chain-clamp junction,
the ideal rigidity of the clamps, and the absence of general
bead-bead interactions might play a complementary role.

As expected, the lifetime of bundles decreases rapidly with
increasing tensile load. The logarithmic plot of τ versus F

shown in Fig. 10 displays a marked curvature, ruling out a
simple scaling law such as:

τ = F−γ , γ > 0 (25)

over the entire range of F . On the low-tension side, this result
is to be expected, since the finite lifetime of all our samples
excludes a divergent prediction such as given by Eq. (25)
in the F −→ 0 limit. On the high-tension side, however, the
logarithmic plot of τ versus F approaches a linear behavior
with a slope of −3.9. Taking into account the transient time
needed to switch on the load, the exponent becomes −4 to
within the small error bar, thus giving τ ∼ F−4 in the high-load
regime.

The same power-law dependence, with a similar exponent,
has been found in the experimental characterization of creep
failure in protein gels [25]. The good correspondence might
be partly accidental, since our polymeric samples do not seem
to have much in common with protein gels. Perhaps more
relevant is the similarity with the lifetime versus load relation
in the fatigue failing of fibrous materials such as paper and
wood [44], generally described as one of the many instances
of Basquin’s law [45]. Needless to say, creep and fatigue
are distinct phenomena, the first referring to static load and
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FIG. 11. (Color online) Stress f1 versus bundle length Lz in
samples under load F from 5 to 40. The definition of f1 contains
an extra term accounting for the internal pressure of the bundles, see
Eq. (26).

the second concerning time-dependent, cyclic loads. In our
simulations, however, the distinction between static and time-
dependent properties is somewhat blurred by the relatively
short duration of the breaking process, and recovering the
τ ∼ F−4 behavior in the high load limit might be more than a
mere coincidence.

It is tempting to speculate that, apart thermal fluctuations,
the bundle length Lz and the effective stress on chains
f1(t) = F/[Nc − nbc(t)] are related by an equation of state
Lz[f1] that depends on the system temperature but not on
the total applied load F . The results of our simulations show
that this assumption is justified only at a rather low order of
approximation, since the Lz[f1] relations obtained at different
F values overlap fairly closely but not exactly. Somewhat
surprisingly, the largest deviation among curves occurs at
low values of F , suggesting that the missing ingredient is
the internal pressure due to the beads interaction with the
confining potential. We verified that modifying the expression
of the effective stress into

f1 = (F + F0)

[Nc − nbc(t)]
(26)

with F0 = 2 significantly improves the collapse of the different
Lz[f1] data, as shown in Fig. 11. An even better result is
obtained upon taking into account that the internal pressure
decreases with increasing separation of the confining walls,
replacing F0 in Eq. (26) by F̃0/Lz, but we did not carry out a
systematic study of all physically motivated forms.

The general picture of creep provided by our simulations
depends significantly on the ratio of the well depth of the Morse
bead-bead potential (D0 = 6 in the present computations)
and simulation temperature (T = 0.33). A short series of
simulations again at T = 0.33 with D0 increased from 6
to 7 allowed us to verify that increasing the ratio of D0

and T exponentially extends the bonds and chains lifetime,
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FIG. 12. (Color online) Relative uncertainty on the bundle life-
time τ as a function of the tension on the bundle. �τ is the standard
deviation of breaking times. Red dots: Langevin simulation; blue
squares: Newtonian simulation. The continuous lines are quadratic
fits to the simulation data given as a guide to the eye.

consistently with the Arrhenius theory of activated processes.
The stabilization of bundles at high load with increasing
D0/T expands the linear range on the high-load side of the
logarithmic plot in Fig. 10 and approaches more closely the
picture provided by experimental measurements. Needless to
say, the cost of simulations also increases exponentially with
D0/T , rapidly exceeding the available computer power.

Because of thermal fluctuations, and, even more, because of
the unpredictable discharge of avalanches, the breaking time
is a random variable, whose distribution is approximatively
Gaussian. Even in the F = 40 case, for which 200 independent
samples have been simulated, our statistics is insufficient to
verify whether the probability distribution is indeed Gaussian
or whether it is symmetric or slightly skewed.

The relative fluctuation in the breaking time is a parameter
of obvious interest for applications. We found that the relative
uncertainty (�τ/τ , where �τ is the standard deviation of
the breaking times) is lowest at F = 0 and increases nearly
quadratically with increasing applied load (see Fig. 12). This
result is somewhat surprising, since one could think that
applying an external perturbation would drive the system
towards its fate reducing the role of fluctuations. The increase
of �τ/τ with increasing F points to the important role of the
final avalanche in enhancing the relative lifetime uncertainty at
high F . We anticipate that the result differs when simulations
are based on Newton’s equation of motion, as discussed in
Sec. III C.

To analyze the (im-)balance of forces that determine the
irreversible deformation and eventual breaking of the sample,
we monitor, first, the distribution of axial forces on each bond,
defined as:

φi = d̈i,i+1 = (Fi+1 − Fi) · (ri+1 − ri)

|ri+1 − ri| , (27)

written here for the bond that joins particle i to particle i + 1. In
this equation, di,i+1 = |ri+1 − ri| is the separation of particle
i from particle i + 1. The probability distribution P (φ) for φi
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FIG. 13. (Color online) Probability distribution of the stress pa-
rameters φ (red line) and ν (blue line) on bonds in a sample under load
F = 20. φ is the component of the force Fi+1 − Fi on the (i,i + 1)
bond directed along the ri−1 − ri direction. ν is defined in a similar
way but excludes the contribution from the direct (i,i + 1) interaction.
Inset: Integral parameters I+

ν and I−
ν [see Eq. (29)] as a function of

time for three different values of the applied load. I+ and I− represent
the fraction (in percentages) of bonds whose ν parameter exceeds the
threshold value (ν+ > a0D0; ν− < −a0D0) for bond breaking (see
text).

at the beginning of stretching a sample at F = 20 is shown
in Fig. 13. Since the force on i and i + 1 depend also on
the position of particle i − 1 and particle i + 2, there is no
one-to-one correspondence between φi and the bond length.
We verified, however, that the largest contribution to φi comes
from the direct i − (i + 1) interaction, which, in our model, is
automatically directed along the bond. The asymmetry in the
φ distribution, therefore, is due to the asymmetry of the Morse
potential, and the large fluctuations of φi reflect primarily the
spectrum of stretching vibrations along the chains. We also
verified that large positive φi values correspond to highly
compressed bonds that are poised to rebound. Conversely,
the (slightly) narrower distribution at φi � 0 corresponds to
stretched bonds, whose breaking is opposed by the Morse
potential acting between i and i + 1. Moreover, the probability
distribution for φi does not depend much on the load F and
is nearly constant during the entire span of our simulations,
with, possibly, only a slight shift towards more negative values
just before breaking. These results confirms that the conditions
of our simulations correspond to relatively weak loads, with
bond breaking driven primarily by thermal activation and only
moderately biased by the applied tension.

A better prognostic value might be attributed to the
distribution of external forces acting on each bond that differ
from the previous case by the exclusion of the direct interaction
between i and i + 1. As expected, the new parameter:

νi = φi − 2∇VM (|ri+1 − ri|) (28)

has a narrower and nearly symmetric distribution, as shown
in Fig. 13 [VM is the Morse potential of Eq. (2)]. Because
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of its definition, the νi parameter can be interpreted as the
external force on the bond that has to be balanced by the
direct interaction to prevent breaking. Since the direct force
between beads is limited to |fmax| = max {f + − f −} = a0D0,
the integral of P (ν) from fmax to infinity gives the portion of
the bond population that is likely to fail. For completeness, we
monitor both I+

ν and I−
ν , defined as:

I+
ν =

∫ ∞

fmax

P (ν)dν I−
ν =

∫ −fmax

−∞
P (ν)dν. (29)

These quantities now depend on F [see Fig. 13(b)] and change
systematically and nearly monotonically with time, displaying
a marked anomaly in the final avalanche stage of breaking.
Admittedly, these features are not overwhelming, but, since
they measure the fraction of bonds subject to comparatively
high stress, the I+

ν and I−
ν parameters might be monitored

by spectroscopic means, providing a diagnostic tool in those
cases in which simpler parameters (such as the global or local
strain) cannot be measured directly or sufficiently accurately.

In experiments, the proximity and then the progression
of failing in fibrous bundles is monitored by detecting the
crackling noise emitted by the sample [46]. In our model, we
do not have an unambiguous definition of acoustic emission.
However, we tentatively monitor the square amplitude (power
spectrum) of the time-dependent oscillations in the length
Lz(t) of individual bundles at a frequency ν that approaches the
time scale (δt = 2π/ν = 450 time units) of spontaneous and
weakly damped oscillations of our samples. At the very least,
these oscillations of the bundle length represent the longest-
wavelength longitudinal vibrational (quasi-)eigenmode in our
simulated system that is the most likely to couple to acoustic
waves in the environment. More precisely, we compute and
plot the time-dependent function:

|A|2(t) =
∣∣∣∣
∫ t+δt

t−δt

g(t ′)e−iνt ′dt ′
∣∣∣∣
2

, (30)

where g(t ′) is defined on the time window t − δ � t ′ � t + δ

as:

g(t ′) = Lz(t
′) −

{
Lz(t − δ)

+ (t ′ − t + δ)

2δ
[Lz(t + δ) − Lz(t − δ)]

}
. (31)

In other terms, g(t ′) reproduces the variations of Lz(t ′), minus
a linear term introduced to enforce the boundary conditions:
g(t − δ) = g(t + δ) = 0. The results (not shown) display a
large, nearly divergent increase of |A|2(t) for t −→ τi and
show also a sequence of broad peaks distributed over the entire
lifetime of the sample, somewhat increasing in frequency and
intensity with increasing time. By direct comparison with the
plot of |zb − za|j (t) for individual sample j , it is easy to
find correlations between the intensity peaks and increased
fluctuations in the bundle length. This correspondence is
certainly not unexpected, but at least it points to a possible
mechanism of sound generation and suggests a relation
between crackling noise and low-amplitude oscillations in the
bundle length that otherwise might not be easy to detect.
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FIG. 14. (Color online) Work W90 performed by the external load
to break 90% of the bundle chains (see text). The dashed line at
W90 = 2400 corresponds to the energy D0 × Nc required to break
Nc bonds, thus representing the minimum energy needed to break
a bundle. Inset: Ratio of temperatures at the end (Tf ) and at the
beginning (Ti) of the simulations based on Newton’s equations of
motion.

The work W performed by the external load on the bundle
is computed by its most basic definition in terms of force and
displacements. To limit the size of the fluctuations in breaking
the last few chains, we focus on the work W90 required to
break 90% of the bundle chains. The results are displayed in
Fig. 14. By definition, W90 vanishes at F = 0, and at moderate
loading it increases with F like W90 ∝ Fγ ; γ > 1. At higher
F , the work W90 displays a clear linear (W90 ∼ F ) behavior
that eventually has to level off since a finite amount of energy
is sufficient to break all bonds.

We verified that, at low F , the work carried out by the
external force is insufficient to break at least one bond per
chain, which represents the minimum energy cost of breaking
the bundle, and it is well below the energy stored in the broken
bonds ([nbb(τ ) � nbc(τ ) = Nc] at the end of our simulations.
The situation is reversed at high values of F , in such a case
the work done by F being 4 times the energy irreversibly
spent to break bonds. Since the temperature of all samples
is virtually unchanged throughout all simulations, the energy
balance has to rely on the Langevin thermostat, which at low
F supplies energy to the bundle, while at high F it adsorbs a
portion of its (free) energy. The kinetic energy in the broken
pieces at t = τ accounts for a relatively small fraction of the
work done on the system by the external force. Admittedly,
the Langevin thermostat affects significantly the balance of
external work and dissipation into the different degrees of
freedom. For this reason, this aspect will be analyzed in more
detail by simulations without the Langevin thermostat.

The influence of the chain length, or, more precisely, of the
number Nb of beads (and bonds) per chain on the breaking
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process can be predicted on the basis of the simple model
described at the beginning of this section. Assuming that bonds
break independently at a constant rate, the lifetime of chains
decreases like 1/Nb, giving rise to the τ ∼ N

−β

b , β ∼ 1 in
the f1 −→ 0 limit observed in Refs. [26–28]. At high load,
however, the role of thermal degradation of bonds is reduced
compared to the effect of the tensile load, and the time to
break a chain depends less and less on its length, leading to
the τ ∼ N

β

b , β −→ 0 of Refs. [26–28], again in the high-load
regime. The results of our simulations, carried out at T = 0.33
for 80 � Nb � 200, conform to these predictions, but even at
F = 100 the β exponent estimated from our data is still closer
to one than to zero, confirming that our virtual experiments
always remained in a regime of moderate perturbation of the
system dynamics.

The results of these last simulations provide a simple
framework to predict or understand the effect of polydisper-
sivity on the lifetime of bundles made of chains of unequal
length. Let us assume that the length Nb(i) of individual
chains in the bundle is distributed according to P [Nb]. At
the condition of our simulations, in which bonds break
primarily by thermal activation, the longest chains break
first, narrowing the length distribution towards the low-Nb

range covered by P [Nb]. Test computations carried out for
100

√〈�2Nb〉/〈Nb〉 = 20% (with 〈Nb〉 = 100) and following
the same protocol of the other (monodisperse) simulations
confirm again our expectations. The result will be different at
high load, since in that case short chain are expected to fail
first.

C. Results from simulations based on Newton’s equations
of motion

We now turn to the results of simulations in which particles
are decoupled from the Langevin thermostat (η = 0 and
no random forces). Simulations have been started from the
same samples equilibrated at T = 0.33 already used for the
Langevin simulations.

Under nonequilibrium conditions, there is no rigorous
analog of the equivalence of different ensembles as in the
equilibrium case. Nevertheless, the picture provided by this
second set of computations, which we will call Newtonian to
distinguish them from the Langevin ones, is recognizable as
largely corresponding to the Langevin case, while fluctuations
in the measured properties tend to differ in a more substantial
way for the two choices of the system dynamics. In particular,
the three basic facts described in the first part of this section
are still valid: (i) the important role of the thermal breaking
of bonds; (ii) the decrease of chain breaking rate due to the
decreasing probability that a bond breaking takes place on a
chain still intact; and (iii) the compensation of this effect by the
dependence of the bond breaking rate on the tension per chain
that increases while the number of broken chains decreases.
However, two new factors come into play, i.e., the work carried
out by the external force, that cannot be transferred to the bath,
and the fact that the irreversible deformation of the system
represented by broken bonds is a sink of potential energy. The
two effects are competing with each other, and the prevailing
one can be monitored by the change of temperature throughout
the bundle breaking, which is shown in the inset of Fig. 14.

Our results show that, at low F , the thermal evaporation
of bonds is the dominant feature, as shown by the decrease of
temperature during the stretching simulation. At high F , the
work performed by the external force prevails, increasing the
sample temperature. These two opposite behaviours match at
F = 50, which thus represents the natural separation of the
low- and high-load regimes. These observations are reflected
into the relative lifetimes of bundles in Langevin and in
Newtonian simulations. At low F , in particular, the cooling
during Newtonian stretching extends the sample lifetime (see
Fig. 10), while at high F , heating makes Newtonian lifetimes
shorter than their counterparts in Langevin simulations.

The number Nc of chains in the bundle represents the
minimum number of broken bonds required to split the sample
into two independent moieties. As expected, the number of
broken bonds nbb(τ ) at the end of each simulation exceeds this
minimum value, and the excess number �nbb = nbb(τ ) − Nc

depends on F and on the dynamics adopted to carry out the
time evolution. In the Langevin simulations, �nbb can be as
large as 2Nc for F � 15, decreasing to 0.25Nc at F = 100. At
moderate load, the �nbb from the Newtonian simulations is
similar to the Langevin value �nbb ∼ 2Nc, while it is roughly
twice as large than its Langevin counterpart at high load,
reaching 0.6Nc for F = 100.

During our Newtonian simulations, we recomputed the
work W90 performed by the external load to break 90% of
the bundle chains. The results have been added in Fig. 14 to
compare with the data from the Langevin simulations. At low
load, the two sets of results are the same to within the error
bar, while at high load the W90 measured in the Newtonian
simulations exceeds the corresponding W90 from Langevin
simulations. This result is somewhat counterintuitive, since
at high F the Langevin thermostat removes heat from the
system. We do not have an unambiguous explanation for this
observation, but the difference in �nbb at high F , computed by
use of Newtonian or by Langevin dynamics, easily accounts
for this difference.

The last remark concerns the difference in fluctuations of
the bundle lifetimes as estimated by Newtonian or Langevin
dynamics, illustrated in Fig. 12. The dependence of the
statistical uncertainty �τ/τ on the applied load F is opposite
in the two cases, with the Langevin �τ/τ increasing quadrat-
ically with increasing F , while the Newtonian data display
a similarly parabolic decrease with increasing F . Note that
the Newtonian values for F = 0 and F = 5 (�τ/τ ∼ 0.2) are
omitted from Fig. 12, because they exceed the scale of our plot,
possibly pointing to a weak singularity in the F −→ 0 limit.

D. The role of broken bonds recombination

The assumption of irreversible breaking of chains is indeed
satisfied in most experiments on polymeric systems, since
covalent dangling bonds rapidly decrease their energy by
combining with radical contaminants that are present even
in the cleanest system. This is even more true for fibers in
a wet environment, in which mobile OH+

3 or OH− species
are present. In polymers, therefore, the reversible breaking
and formation of bonds is quite exceptional, corresponding
in fact to the special case of the so-called living polymers
[47]. Although fairly restricted, this class of polymers is
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conceptually very important and for this reason we briefly
discuss here the consequences of reversible bond formation
and breaking. Moreover, reversible bonding might be more
important in other classes of soft materials such as emulsions
and colloidal gels, in which each particle feels a multitude
of weaker, isotropic interactions. The reversibility of their
bonding is highlighted by their ability to undergo stages
of extended structural healing through the so-called shear-
rejuvenation process [48].

To simplify the computation and retain a favorable scaling
of computer time with system size, we consider the special
case in which each dangling bond can reconnect only with
its original partner. From the chemical point of view, this
is an arbitrary assumption, since dangling bonds are all
equivalent and cannot be distinguished from each other. In
practice, however, we are interested in systems in which
the density of dangling bonds is low, and the only relevant
possibility is that a broken bond quickly reforms, joining the
original particles, before the two partners lose track of each
other. At the very least, our simulations with restricted bond
recombination allow us to highlight the qualitative differences
with the no-recombination case and provide a first preliminary
exploration of a rich new model.

At this stage of the computation, the lateral size of the
sample is relevant, since it influences the probability of the
two loose ends to recombine. Therefore, we introduce periodic
boundary conditions along the in-plane x and y directions,
setting the periodicity at Lx = Ly = 20, thus giving a 2D
density of one chain per unit of area.

No major change in the system behavior is observed
at high values of the applied force, since the breaking of
chains causes a sizable increase of the bundle elongation,
and the fast separation of the two loose ends, thus preventing
recombination. With decreasing F , however, it is increasingly
likely that the two chain terminations will remain close to each
other long enough to have a significant chance of recombining.
The change of behavior is relatively sharp and marked by
the anomalous increase of fluctuations in the breaking time.
Below a critical applied tension Fc, the sample does not appear
to break within the time span accessible to simulation (see
Fig. 15).

In our simulations, carried out with the same basic model of
the previous sections, the critical load is found at F ∗ ∼ 48 ± 3.
At this load, the time evolution of different samples can be very
diverse, with cases in which the bundle starts immediately to
break and cases in which the actual beginning of the breaking
process is preceded by a lag time, as can be seen in the inset
of Fig. 15.

On a much longer time scale, all samples will eventually
break, since in that way they can tap the unlimited supply
of entropy available from the open space. In proximity of
the critical F ∗, the system evolution can be seen as the
uncertain competition of bond breaking, increasing elongation
and decreasing recombination rates, and bond recombination
that temporarily decreases elongation and reinforces itself.
Even below F ∗, a positive fluctuation in the bundle elongation
can decisively decrease the recombination rate, tipping the
balance in favor of bond breaking, leading to the bundle
failing. A similar picture of bundle rupture under cyclic loading
(fatigue) is discussed in Ref. [23].
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FIG. 15. (Color online) Simulations with bond recombination
mechanism (see text): The number of broken chains as a function of
time in two samples under tensile load above [(a) F = 50] and below
[(b) F = 40] the critical load F ∗ = 48. Inset: Time dependence of
the number of broken bonds in three distinct samples under the same
(slightly subcritical) load F = 45.

Bond recombination, therefore, not only introduces a
critical F ∗ tension, but also changes the nature of the bundle
failing process that below F ∗ goes through a latency time,
in preparation of the fluctuation that drives the bundle to
its demise. This represents a kinetic nucleation process that
deserves further extensive analysis by simulation, theory, and
experiments.

E. Simulations at constant strain rate

The resistance of polymeric fiber bundles is sometimes
investigated by experiments that, instead of applying a constant
load, strain the sample at a constant rate up to its breaking point
[49]. The basic result of these measurements is represented
by the stress-strain relation for the material under study that
depends on the temporal rate of strain applied to the sample.

To extend the validation envelop of our idealized model,
we simulated samples under these same constant strain rate
conditions, and we verified that the simulation results reflect
basic features seen in the experimental data [31]. We used again
the same bundles already described in Sec. III, each consisting
of 400 chains 100 beads long. Molecular dynamics has been
carried out in the Langevin framework, at a temperature
T = 0.33, and no bond recombination was allowed. At this
stage, the two terminations of each bundle move in opposite
directions at constant velocity, according to:

za(t) = za(t0) − R(t − t0), (32)

zb(t) = zb(t0) + R(t − t0). (33)

The constant rate at which strain increases, therefore, is 2R.
Clamps do not react to changes in the bundle conformation
and bonding, and therefore the mechanism for chain-chain
interaction discussed in the previous sections is no longer
present. Simulation of whole bundles (instead of individual
chains) are used only to account for the interplay between the
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FIG. 16. (Color online) Stress-strain relation in samples simu-
lated by Langevin dynamics at four values of constant strain rate
(R) testing.

constant strain rate and the internal dynamics of a statistical
assembly of independent chains.

The stress-strain characteristics of our model, averaged
over 20 independent samples, are shown in Fig. 16 for strain
rates R = 10−6, R = 5 × 10−6, R = 10−5, and R = 10−4.
Comparison with the results of recent experiments [31]
shows a good qualitative correspondence of simulation and
experimental results, with (i) an initial stage of a linear,
Hooke’s-like increase of stress with increasing strain; (ii) a
broad region of viscoelastic deformation in which the stress
grows only moderately despite the large increase of the bundle
length; and (iii) a failing stage, in which increasing strain is
opposed by a rapidly decreasing stress, caused by the low and
rapidly decreasing number of chains that still survive.

The most remarkable feature of our results arguably is the
strong influence of the strain rate on the maximum stress on the
sample and also on the elongation (strain) at breaking. Such a
strong dependence has two origins. Partly, it is due to the high
rate of thermal breaking of bonds that degrades the resistance
of our samples over time (aging). Moreover, low strain
rates allow chains to unroll their Gaussian coiling without
going through high-strain configurations. Including bead-bead
interactions would enhance the role of this second effect.

These preliminary results confirm the qualitative validity
of our idealized model also in this type of constant strain
rate applications and highlight the interest of this type of
investigation.

IV. SUMMARY AND CONCLUSIONS

Creep in polymeric fibers has been investigated by molec-
ular dynamics simulations, using a particle-based realization
of the fiber-bundle model to carry out the virtual testing of
finite-size samples under subcritical tensile load.

In many respects, the model that we employ is a hybrid,
introducing a coarse-grained representation of the polymer
structure, and thus accounting for inertia, temperature, and
entropy, but neglecting general particle-particle interactions

besides the nearest-neighbor ones along the chain backbone.
Its definition and usage has been tuned to provide a seamless
junction between the statistical mechanics and material science
picture of this technologically important phenomenon.

In this spirit, our computations have achieved a twofold
goal. On the one hand, we verified that such a model retains the
valuable fiber bundle model ability to faithfully reproduce and
predict basic properties, trends, and features seen in the results
of experiments probing creep in macroscopic samples. On
the other hand, the thorough investigation of a still-idealized
system allows us to set the stage for more detailed models,
to test protocols for the sample preparation and usage, and to
develop approaches to analyze the simulation results.

Simulations have been carried out for samples consisting
of Nc = 400 chains, each consisting of Nb = 100 beads,
clamped to two rigid planes mobile along the z direction
perpendicular to their parallel faces. Because of the absence
of general particle-particle interactions, chains interact only
through their common termination on the planar clamps. We
verified, however, that this peculiar contact is sufficient to
ensure their equilibration within a time much shorter that the
simulation times scale. The multiplicity of chains in our sample
represents a major extension of previous studies investigating
the breaking of single chains [26–28], bringing us one step
closer to realistic models of creep in polymers.

Most of our simulations concerned samples under constant
tensile load, but we also explored the other major condition
of creep mechanical testing taking place at constant strain
rate. Similarly, the majority of simulations excluded the
recombination of bonds after their breaking, a condition
reflecting the behavior of most polymeric systems. However,
we also carried out a preliminary series of simulations to
explore the effect of reversible breaking and formation that
is certainly important in other soft matter systems such as
emulsions and colloidal gels. The parameters of the model
potential (bond length re = 1.5, potential well depth D0 = 6,
and elastic parameter a0 = 2 in scaled units) as well as the
simulation conditions (temperature, load) have been selected
to cause the breaking of ∼Nc bonds during runs of acceptable
cost, allowing us to carry out the multiple simulations needed
to compute average properties.

The immediate outcome of our study can be summarized
as follows. First, the results of constant load and constant
temperature simulations reproduce characteristic features of
the primary, secondary, and tertiary stages of creep as observed
in experiments on macroscopic samples [38–40]. In particular,
the progressive lengthening of the bundle displays a first stage
of fast and nearly reversible evolution, followed by a long
stage of nonlinear deformation, in which the strain rate slows
down significantly, attaining a minimum value well below the
initial rate but eventually triggering the final avalanche that
breaks the sample. Over the entire sample lifetime, the strain
rate can be reproduced by a simple and general analytical
expression, already extensively used in the literature to model
creep [25]. The quantitative value of the parameters providing
the best fit, however, differ from those found in experiments
on comparable materials.

A similar succession of three stages can be identified in
the time evolution of the number of broken chains. The first
two stages, in particular, can be described in terms of a simple
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model, based on the observation that the rate of thermal bond
breaking is nearly constant. In this picture, the avalanche
represent a singular behavior, responsible for most of the
fluctuations in the simulation results.

A logarithmic plot of the bundles lifetime τ versus load
F displays a marked curvature at low F , ruling out a simple
power-law dependence of τ on F . At high load, however, the
log (τ )-versus-log (F ) plot approaches a straight line of slope
α = −4, reminiscent of a similar power-law relation observed
in creep experiments on protein gels [25].

Without bond recombination mechanism, and in the
absence of general particle-particle interactions, the lateral
size of the sample and the application of periodic boundary
conditions are irrelevant, although the number Nc of chains
still affects the degree of fluctuations and cooperativity in the
motion of the clamps, reflected in the short-time dynamics of
the bundle length. Our results, therefore, could be interpreted
in terms of finite-size samples and could provide a first
description of mechanical properties of nanofibers, especially
in a biophysics context.

The inclusion of bond recombination into the model
qualitative changes the picture and introduces a critical load
F ∗ that corresponds to the branching of the system evolution
into two different patterns. Above F ∗ the system evolution is
nearly deterministic, with a downhill progression towards the
broken state and fluctuations whose amplitude grows when
approaching F ∗. Far below F ∗, the sample does not break
during the time span of practical simulations, although simple
considerations suggest that the broken state is always the most
stable configuration, while the intact bundle is metastable. Just

below F ∗, a lag time of seemingly unpredictable duration pre-
cedes the beginning of the actual breaking process, apparently
needed to prepare for the critical density fluctuation that drives
the system towards its stable state.

As a final step, we investigated the behavior of our samples
stretched at constant strain rate. Also in this case, the simu-
lation data reflect features seen in experimental results. The
strain-stress relation, in particular, display again three distinct
stages, in this case corresponding to (i) elastic deformation at
low strain, (ii) a broad region of saturating stress, leading to
(iii) a failure stage in which the few surviving chains oppose
a rapidly decreasing resistance to the separation of two half
bundles. The most remarkable feature seen in the simulation
results is the nonlinear increase of the maximum stress and
bundle length at the breaking point with increasing strain rate.
The absence of general bead-bead interactions might be a
factor that amplifies the nonlinearity in the system response.

The obvious next step in our long-term plan to characterize
mechanical properties by computational means is the inclusion
in our model of bead-bead interactions. These, in turn, will
introduce excluded volume effects, entanglement, as well
as phase changes and the coexistence of crystalline and
amorphous fractions in our polymeric samples. A further step
towards realism might involve the inclusion of an explicit
solvent. Each of these additions will increase significantly
the cost of the computations but will also open the way to
a more quantitative comparison with experiments, extending
our investigations towards a variety of other phenomena, such
as plasticity and crazing, that are now beyond the reach of our
simulations.
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