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Liquid-bridge breakup in contact-drop dispensing: Liquid-bridge stability with a free contact line
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The static stability of weightless liquid bridges with a free contact line with respect to axisymmetric
and nonaxisymmetric perturbations is studied. Constant-volume and constant-pressure stability regions are
constructed in slenderness versus cylindrical volume diagrams for fixed contact angles. Bifurcations along
the stability-region boundaries are characterized by the structure of axisymmetric bridge branches and families of
equilibria. A wave-number definition is presented based on the pieces-of-sphere states at branch terminal points
to classify equilibrium branches and identify branch connections. Compared with liquid bridges pinned at two
equal disks, the free contact line breaks the equatorial and reflective symmetries, affecting the lower boundary of
the constant-volume stability region where axisymmetric perturbations are critical. Stability is lost at transcritical
bifurcations and turning points along this boundary. Our results furnish the maximum-slenderness stability limit
for drop deposition on real surfaces when the contact angle approaches the receding contact angle.
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I. INTRODUCTION

Recent advances in nanoprinting and nanolithography [1–3]
have provided new directions for studying liquid bridges.
These techniques are the basis for nanoarray fabrication,
which is central to data storage, pharmaceutical screening and
detection, proteomics, and genotyping [1,4–6]. Crystal growth
in microgravity [7], oil recovery [8], and elastocapillarity
[9–12] are other applications where liquid-bridge stability and
breakup are of interest. The ever-shrinking trend in electronic
and diagnostic devices requires novel molecular-resolution and
cost-effective patterning techniques. Direct-write constructive
lithographic tools have been developed over the past decade
to address this demand [1,13]. Contact-drop dispensing is the
basis of several direct-write lithographic techniques, such as
dip-pen nanolithography [14] and polymer pen lithography [2].

Liquid bridges in contact-drop dispensing feature a moving
contact line. Although contact-drop dispensing is a dynamic
process, the scaled form of the slender-jet approximation [15]
suggests that the bridge profile can be accurately predicted
by the Young-Laplace equation for small capillary numbers
(Ca � 1) [16,17]. However, liquid flow and contact-line
motion become significant in a fast-dynamics phase preceding
the pinchoff, affecting the bridge profile and dispensed
drop volume [18]. The receding contact angle, contact-angle
hysteresis, and needle retraction speed have been identified
as the contributing parameters in the literature [18–22].
Here a crucial question arises as to what extent surface
hydrophobicity, moving contact line, and needle retraction
speed each contribute to the dispensed drop size. In contrast
to previous studies, this paper focuses on the static stability
limits of liquid bridges with a free contact line, on a surface
with prescribed hydrophobicity, thus isolating the role of static
parameters from dynamic ones.
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Most previous studies have addressed the stability of liquid
bridges pinned at both contact lines [23–32]. These studies,
reviewed in detail by Akbari [33], examine the effect of several
symmetry-breaking factors and external forces (e.g., unequal
supports, centrifugal, and gravitational forces) on the stability
region1 of weightless liquid bridges spanning two circular
disks. The lower and upper boundaries of the stability region
are usually represented with respect to the cylindrical volume
V and slenderness � (bridge-height to disk-radius ratio). These
correspond, respectively, to the minimum- and maximum-
volume stability limits at fixed slenderness.2 However, the
symmetry-breaking effect of a free contact line arising in
contact-drop dispensing on stability has not been studied in
the literature.

When losing stability, the nature of instabilities at critical
equilibrium states has significant implications for the dynam-
ics and evolution of capillary surfaces. The stability-region
boundaries correspond to critical states at which continuous
branch continuation is not uniquely possible [24,34], and the
equilibrium branches bifurcate. Depending on the structure of
the potential energy, this may result in a hard, soft-dangerous,
or soft-safe stability loss [24]. Slobozhanin et al. [35] exam-
ined the bifurcation of weightless liquid bridges between equal
disks along the entire stability-region boundaries. For a fixed
�, axisymmetric bridges lose stability to nonaxisymmetric
perturbations with increasing the cylindrical volume V at a
supercritical (subcritical) bifurcation along the stability-region
upper boundary when � > 0.4946 (� < 0.4946).

1Unless stated otherwise, stability region refers to the stability
region with respect to constant-volume perturbations.

2Note that the maximum-volume stability limit at fixed slenderness,
referred to as the rotund limit, is equivalent to the minimum-
slenderness stability limit at fixed volume. Similarly, the minimum-
volume stability limit at fixed slenderness, referred to as the slender
limit, is equivalent to the maximum-slenderness stability limit at fixed
volume.
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Axisymmetric bridges experience a soft-safe stability loss
at supercritical pitchforks, leading to a continuous deformation
to nonaxisymmetric shapes with incremental increase in vol-
ume, whereas they undergo a hard stability loss at subcritical
pitchforks, resulting in a sharp, discontinuous deformation to
nonaxisymmetric shapes. Here axisymmetric bridges seek the
closest stable and dynamically accessible nonaxisymmetric
configurations. This was proved to be in quantitative agreement
with experimental observations [35,36]. Similarly, axisym-
metric bridges lose stability at supercritical and subcritical
pitchfork bifurcations to nonaxisymmetric perturbations along
the lower boundary for small slendernesses. However, this
results in contact-line detachment due to the geometric con-
straints [25,37]. At larger slendernesses, axisymmetric bridges
lose stability to axisymmetric perturbations at turning points
(subcritical pitchforks) for � < 2.13 (� > 2.13). This is a
hard stability loss, causing the bridge to break into two primary
drops. The lower boundary of the stability region (slender
limit) is of particular interest to contact-drop dispensing where
the drop volume is to be controlled. Here critical perturbations
are reflectively symmetric (antisymmetric) at turning points
(pitchforks) resulting in the formation of two equal (unequal)
primary drops upon breakup [37].

Having a free contact line, liquid bridges in contact-
drop dispensing are expected to exhibit a different behavior
than those considered in the foregoing studies. Equilibrium
solutions and their stability are affected through the integration
constants of the Young-Laplace equation and the boundary
conditions of the corresponding Sturm-Liouville problem,
respectively. The latter has not been fully appreciated in
the literature. Dodds et al. [17] examined the dynamics of
stretching liquid bridges with two free contact lines between
plates and cavities. The breakup length is then compared
to Plateau’s stability limit for a cylinder spanning the same
support plates with the same radius as the bridge neck,
providing an upper bound on the capillary number for which
the quasistatic assumption is valid. However, the contact-line
influence on the cylinder static stability limit is neglected,
noting that the critical slenderness for cylinders with a free
contact line and two free contact lines is less than Plateau’s
stability limit by ∼ 30% [38] and 50% [39], respectively.
In another paper, Qian and Breuer [40] studied the breakup
dynamics of stretching liquid bridges having a pinned or free
contact line with a substrate. The static stability limit was
determined for selected bridge volumes and contact angles
as a benchmark for dynamic results, without constructing
the stability region. They experimentally identified the static
stability limit when the contact line was free.

In this paper, we examine the static stability of weightless
liquid bridges with a free contact line with respect to ax-
isymmetric and nonaxisymmetric perturbations. We construct
the constant-volume and constant-pressure stability regions in
a broad contact-angle range from hydrophilic to hydropho-
bic. The stability region is presented in slenderness versus
cylindrical volume diagrams with respect to constant-volume
and constant-pressure perturbations. Bifurcations along the
stability-region boundaries are characterized from the struc-
ture of axisymmetric bridge branches and families of equilib-
ria, similarly to Lowry and Steen [27]. We also modify Lowry
and Steen’s wave-number classification and pieces-of-sphere

configurations [27] to account for the symmetry-breaking
effect of the free contact line. Pieces-of-sphere configurations
are the states at the terminal points of equilibrium solution
branches (except the rotund limit of the primary branch where
the terminal point corresponds to a bulged nodoid), which can
serve as the starting point in branch continuation techniques.
Moreover, approximate expressions for the upper and lower
boundaries of the stability region in the small slenderness
limit are presented and compared with available formulas
in the literature for liquid bridges between equal disks. Our
results distinguish the symmetry-breaking and destabilizing
effects of a free contact line with respect to liquid bridges
between equal disks [27,35,39], unequal disks [26], and
parallel plates [39,41,42], which have not been previously
addressed. Controllable microdeposition benefits from the
asymmetric breakup of liquid bridges. Hence, these effects,
although static and geometric in nature, are of significant
interest to contact-drop dispensing.

II. THEORY

We consider a liquid of volume v bridging a circular
disk with radius R0 and a large plate. The disk and plate
are separated by a distance h, as shown in Fig. 1. The
region occupied by the liquid bridge is denoted �l , and that
occupied by the surrounding fluid �g . The bridge is pinned
to the disk and is free to slide horizontally on the plate.
The gravity force is neglected in this analysis, which is a
reasonable approximation when the fluids are in microgravity
(Bo � 1), the bridge dimensions are much smaller than the
capillary length (R0,h � √

γgl/g|ρl − ρg|), or their densities
are perfectly matched. Consequently, there is a constant
pressure differential between the nonhydrostatic pressure of
the bridge pl and the surrounding fluid pg . The origin of the
coordinate system is placed on the bridge equatorial plane
such that the z axis is the symmetry axis. The meridian curve
is parametrized with respect to its arclength s. Axisymmetric
equilibrium surfaces are specified by

r = r(s), z = z(s), s ∈ [s0,s1], (1)

which are the stationary points of the energy functional

U [r(s),z(s)] = γsl�sl + γgl�gl + γsg�sg, (2)

where γij is the surface tension between the phases i and j ,
and �ij is the interfacial surface area. This is an isoperimetric
variational problem for volume-controlled bridges and the
extremization is subject to v[r(s),z(s)] = const. In contrast,
pressure-controlled bridges are unconstrained. However, the
pressure-work contribution to the energy functional due
to volume changes must be accounted for. Therefore, the
energy functional to be extremized in both pressure-controlled
(unconstrained) and volume-controlled (constrained) cases is

F [r(s),z(s)] = U [r(s),z(s)] − (pl − pg)v[r(s),z(s)]. (3)

The corresponding Euler-Lagrange equation is the well-known
Young-Laplace equation

r ′′ = −z′(q − z′/r), z′′ = r ′(q − z′/r) (′≡ d/ds) (4)
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FIG. 1. (Color online) Weightless liquid bridge: (a) schematic and (b) coordinate system with meridian curve parametrization.

with

γgl cos θc = γsl − γsg, cos θc = n · np, (5)

where q = (pg − pl)/γgl measures the nonhydrostatic pres-
sure differential (or mean curvature) [24]. Here θc and θd are
the contact and dihedral angles that the interface �gl forms
with the plate and disk, respectively. Equilibrium solutions
belong to the families of doubly connected, constant-mean
curvature axisymmetric surfaces, including cylinders, spheres,
catenoids, nodoids, and unduloids. The catenoid is a limiting
case of the nodoid and unduloid family as q → 0. The scaled
lengths

ρ = |q|r, ξ = qz, τ = |q|s (6)

are adopted when q �= 0 to nondimensionalize the Young-
Laplace equation, furnishing

ρ ′′ = −ξ ′(1 − ξ ′/ρ), ξ ′′ = ρ ′(1 − ξ ′/ρ) (′≡ d/dτ ) (7)

with

ρ(0) = ρ0, ρ ′(0) = 0, ξ (0) = 0, ξ ′(0) = 1. (8)

The cylindrical volume V = v/πR2
0h, scaled volume v∗ =

v/4πR3
0/3, scaled pressure (mean curvature) Q = qR0, and

slenderness � = h/R0 are the dimensionless parameters
adopted in this paper to present the stability region and
branching diagrams.

The stability region for constant-volume perturbations
has a more complicated structure than at constant pressure.
The entire upper boundary and part of the lower boundary
correspond to pitchfork bifurcations where nonaxisymmetric
perturbations are critical. Axisymmetric perturbations are
critical along the lower boundary for longer liquid bridges,
and the stability loss occurs at turning points and transcritical
bifurcations. Hence, to capture these complexities, we apply
the variational method of Myshkis et al. [24] to determine
the stability of equilibrium surfaces with respect to arbitrary
volume-preserving perturbations. This method associates the
second variation of the potential energy with the eigenvalues of
the corresponding spectral (Sturm-Liouville) problem where
critical states satisfy

L ϕ0 + μ = 0, ϕ0(τ0) = 0,
(9)

ϕ′
0(τ1) + χ̃ϕ0(τ1) = 0,

∫ τ1

τ0

ρϕ0dτ = 0

for axisymmetric perturbations and

(L − 1/ρ2)ϕ1 = 0, ϕ1(τ0) = 0, ϕ′
1(τ1) + χ̃ϕ1(τ1) = 0

(10)

for nonaxisymmetric perturbations. Here τ0 = |q|s0, τ1 =
|q|s1,

χ = k1
 cos θc − kp


sin θc

at 
, (11)

and

L ≡ d2

dτ 2
+ ρ ′

ρ

d

dτ
+

[(
1 − ξ ′

ρ

)2

+
(

ξ ′

ρ

)2]
(12)

with χ̃ = χ/|q|; the first principal curvature of the interface
and plate at the contact line 
 are denoted k1
 and kp
, respec-
tively. Note that ϕ0(τ ) and ϕ1(τ ) represent the axisymmetric
and nonaxisymmetric perturbations corresponding to the first
harmonic mode in θ . The solutions of Eqs. (9) and (10) can be
written

ϕ0(τ ) = C1w1(τ ) + C2w2(τ ) + μw3(τ ), (13)

ϕ1(τ ) = C4w4(τ ) + C5w5(τ ). (14)

These satisfy the following differential equations and their
initial conditions:

L w1 = 0, w1(0) = 0, w′
1(0) = 1, (15)

L w2 = 0, w2(0) = 1, w′
2(0) = 0, (16)

L w3 + 1 = 0, w3(0) = 1, w′
3(0) = 0, (17)

(L − 1/ρ2)w4 = 0, w4(0) = 0, w′
4(0) = 1, (18)

(L − 1/ρ2)w5 = 0, w5(0) = 1, w′
5(0) = 0. (19)

An equilibrium-surface state is critical if ϕ0 or ϕ1 has a
nontrivial solution. It can be shown that a nontrivial solution
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for ϕ0 (ϕ1) exists provided χ̃ = χ̃0 (χ̃ = χ̃1), where

χ̃0 = −

∣∣∣∣∣∣
w1(τ0) w2(τ0) w3(τ0)
w′

1(τ1) w′
2(τ1) w′

3(τ1)∫ τ1

τ0
ρw1dτ

∫ τ1

τ0
ρw2dτ

∫ τ1

τ0
ρw3dτ

∣∣∣∣∣∣∣∣∣∣∣∣
w1(τ0) w2(τ0) w3(τ0)
w1(τ1) w2(τ1) w3(τ1)∫ τ1

τ0
ρw1dτ

∫ τ1

τ0
ρw2dτ

∫ τ1

τ0
ρw3dτ

∣∣∣∣∣∣

, (20)

χ̃1 = −

∣∣∣∣w4(τ0) w5(τ0)
w′

4(τ1) w′
5(τ1)

∣∣∣∣∣∣∣∣w4(τ0) w5(τ0)
w4(τ1) w5(τ1)

∣∣∣∣
(21)

with χ̃0 and χ̃1 the critical χ̃ corresponding to axisymmetric
and nonaxisymmetric perturbations, respectively. One can
deduce from the properties of the spectral problem that an
equilibrium surface is stable (unstable) if χ̃ > max{χ̃0,χ̃1}
(χ̃ < max{χ̃0,χ̃1}), and it is in a critical state when χ̃ =
max{χ̃0,χ̃1}. Details of this method are given by Myshkis
et al. [24].

The critical-state criterion χ̃ = max{χ̃0,χ̃1} defines a
boundary between the stability region and its complement
in the space of physical parameters that the system depends
on. Because this nonlinear equation has multiple solutions,
it is necessary to restrict the search for critical states to a
region that can be systematically constructed. The maximal
stability region (MSR), a concept introduced by Slobozhanin
and Tyuptsov [43], addresses this need. The critical states
associated with the MSR are determined by

D0 =
∣∣∣∣∣∣

w1(τ0) w2(τ0) w3(τ0)
w1(τ1) w2(τ1) w3(τ1)∫ τ1

τ0
ρw1dτ

∫ τ1

τ0
ρw2dτ

∫ τ1

τ0
ρw3dτ

∣∣∣∣∣∣, (22)

D1 =
∣∣∣∣w4(τ0) w5(τ0)
w4(τ1) w5(τ1)

∣∣∣∣. (23)

For a fixed τ0, the first τ1 along the meridian curve at
which D0 = 0 (D1 = 0) corresponds to a critical state of
the MSR with respect to axisymmetric (nonaxisymmetric)
perturbations. Thus, one needs to seek nontrivial solutions
of χ̃ = max{χ̃0,χ̃1} only for surfaces belonging to the MSR.
All equilibrium surfaces outside the MSR are unstable.

The entire stability-region boundary for constant-pressure
perturbations correspond to simple turning points in pressure.
Hence, Maddocks’ theorem can be applied to deduce stability
from the structure of equilibrium branches in volume-pressure
diagrams without additional analysis [44]. This theorem can be
rephrased as follows: Stability exchange only occurs at simple
turning points for equilibrium branches without bifurcation
points. Results are independent of the meridian curve boundary
conditions and thus are applicable to liquid bridges with free
and pinned contact lines. The stability of the segment confined
between the two pressure turning points is inferred from the
truncated sphere stability. Moreover, it immediately follows
from Maddocks’ theorem that the two branch segments beyond
the turning points correspond to bridges that are unstable to
constant-pressure perturbations.

III. RESULTS AND DISCUSSION

A. Equilibrium branch construction

Solving Eq. (7) with the initial conditions of Eq. (8)
furnishes the equilibrium meridian curve [24]

ρ(τ ) =
√

1 + a2 + 2a cos τ , ξ (τ ) =
∫ τ

0

1 + a cos t

ρ(t)
dt,

(24)

giving

|Q| =
√

1 + a2 + 2a cos τ0, (25)

� = − 1

Q

∫ τ1

τ0

1 + a cos t

ρ(t)
dt, (26)

tan θd = sgn(Q)
1 + a cos τ0

a sin τ0
, (27)

tan θc = −sgn(Q)
1 + a cos τ1

a sin τ1
, (28)

V = − 1

Q3�

∫ τ1

τ0

ρ(t)(1 + a cos t)dt, (29)

where a = ρ(0) − 1. Equations (25)–(29) furnish five con-
straints on τ0, τ1, a, Q, �, V , θc, and θd , leaving three
degrees of freedom. The last five variables are single-valued
functions of the first three. Consequently, fixing (τ0,τ1,a), an
equilibrium state characterized by (Q,�,V,θc,θd ) is uniquely
specified.3 One can choose any set of three variables to specify
equilibrium states; however, this uniqueness is not necessarily
preserved. Hereafter, any chosen set is denoted p and will
be referred to as independent parameters. The remaining
variables are thereby termed dependent parameters or norms
and are used as the ordinate in branching diagrams. The scaled
volume v∗ and cylindrical volume V can be interchanged
without affecting the representation of equilibrium solution
multiplicity. In this paper, we present equilibrium branches
in (v∗,Q) diagrams for fixed � and θc and the stability
region in (�,V ) diagrams for fixed θc. Note that (v∗,Q)
are the preferred coordinates in which stability limits can
be associated with turning points for constant-volume and
constant-pressure axisymmetric perturbations [44].

Solving Eqs. (25), (26), and (28), we choose p = (τ0,τ1,a)
and Q as the branch parameter to construct equilibrium
branches for fixed � and θc. This significantly reduces the com-
putational cost as compared to problems in which the meridian
curve is computed numerically. For example, Martı́nez and
Perales [45] applied the same idea to construct equilibrium
branches for liquid bridges pinned at two unequal disks and
documented the minimum volume stability limit in terms of
three physical parameters. The stability region and equilibrium
branches are presented for p = (�,V,θc). We use Keller’s

3This does not imply that there is a one-to-one correspondence
between (τ0,τ1,a) and equilibrium states. In fact, equilibrium merid-
ian curves are invariant with respect to the transformation τ̄0 =
τ0 + (2n − 1)π , τ̄1 = τ1 + (2n − 1)π , and ā = −a, with n ∈ Z. All
(τ0,τ1,a) satisfying this transformation specify identical equilibrium
states and distinguishing them is insignificant.
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arclength continuation method, as outlined by Seydel [34].
Branch continuation begins at a pieces-of-sphere state and
terminates at another pieces-of-sphere state or a bulged nodoid
with θd = −π . Note that the liquid bridges in Fig. 1 are
restricted by the geometric constraint θd � π . This constraint
is nevertheless relaxed to compute the entire equilibrium
branch. However, we exclude self-intersecting meridian curves
from equilibrium branches as they are nonphysical [46]. Of
course, this constraint is automatically satisfied by limiting
equilibrium branches between two pieces-of-sphere states.

B. Pieces-of-sphere configurations

Branch classification based on wave number plays a
significant role in the bifurcation, dynamics, and breakup of
liquid bridges. Several definitions have been proposed in the
literature. The number of negative eigenvalues is associated
with instability modes and thus is useful for applications in
which suppression of instabilities is sought. This provides
insight into possible ways of stabilizing liquid bridges [47].
Vogel [48] considered bridges with free contact lines between
two parallel plates and defined the wave number nw as the
number of inflection points in the meridian curve. Here the
wave number is invariant along branches with no bifurcation
point when the contact angles are equal. Lowry and Steen [27]
provided a definition for bridges pinned at two equal disks
where the wave number is invariant for branches that do not
intersect the cos θd axis in V versus cos θd diagrams. This inter-
section occurs at a pitchfork bifurcation where axisymmetric
perturbations are critical. Here an even-wave-number branch
intersects an odd-wave-number one. The number of extrema in
the meridian curve is defined as the wave number in this case.
They also showed that the latter two definitions are compatible
with the constraints at the contact lines.

The free contact line of liquid bridges considered in this
study breaks the equatorial symmetry. These bridges are
subject to different constraints at the upper and lower contact
lines and their equilibrium branches exhibit no particular
invariance property. This is also reflected in the bifurcations
along the stability-region lower boundary. Here branch inter-
sections merely occur at transcritical bifurcations. Moreover,
one can show by counterexample that neither the number
of inflection points nor the number of extrema is invariant
along equilibrium branches. In this work, the wave-number
definition is based on the pieces-of-sphere configurations at the
terminal points, which is used to label equilibrium branches.
The wave number is invariant along each disconnected branch.
For a given θc, there is a slenderness at which nw and nw − 1
branches intersect at a transcritical bifurcation (nw being
even). Beyond this slenderness, the transcritical bifurcation
breaks into two folds where even- and odd-wave-number
half branches meet. Here the wave number is invariant along
half branches, from the pieces-of-sphere state at the terminal
point to the corresponding fold. This is a suitable definition
because the two folds arising from the unfolding of transcritical
bifurcations are indicated by a wave-number transition.

We first demonstrate why equilibrium branches are limited
by pieces-of-sphere configurations before formally defining
the wave number for liquid bridges with a free contact line.
Figure 2 shows how the meridian curves given by Eq. (24)

FIG. 2. Transition from a self-intersecting profile to a non-self-
intersecting profile by varying the shape parameter a.

vary with the shape parameter a. Pieces-of-sphere states are
the limiting case of nodoidal (self-intersecting) and unduloidal
(non-self-intersecting) liquid bridges as a → 1. Increasing
(decreasing) a by a small value ε, a pieces-of-sphere state
is transformed into a nodoid (an unduloid). Note how a self-
intersecting profile approaches (a > 1) and touches (a = 1)
the symmetry axis, unfolds, and detaches (a < 1) from it as a

decreases in the region |a − 1| < ε. For a fixed � and θc, the
meridian curve changes continuously with a along the equi-
librium branch. Therefore, excluding self-intersecting profiles
leaves branches that are terminated at pieces-of-sphere states.

The wave number for pieces-of-sphere states is defined as
a positive integer such that it is even (odd) when all (one of)
the points at which the meridian curve touches the symmetry
axis lie(s) between the plate and disk (on the plate). Each
complete (truncated) sphere in the chain of spheres spanning
the disk and plate adds two (one) to the wave number. This
definition is illustrated in Fig. 3, where nw = 1 and nw = 2 are
the basic states for odd-wave-number and even-wave-number
pieces-of-sphere states, respectively. These configurations can
be specified analytically, furnishing a convenient starting point
for branch continuation methods. We first present the solution
of the basic states. Solutions for higher odd and even wave
number immediately follow from the respective basic states.
Denoting the slenderness and scaled arclength at the disk for
the basic states by �̃ and τ̃0, respectively, the state nw = 1 is
specified by

� = �̃, (30)

Q = − 4�̃

�̃2 + 1
, (31)

τ̃0 = 2 arctan2

(
− 2�̃

�̃2 + 1
, − �̃2 − 1

�̃2 + 1

)
+ π, (32)

τ1 = π, (33)

a = 1, (34)

θd = (τ̃0 + π )/2, (35)
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a

b

b c

c d

d

FIG. 3. (Color online) Wave-number definition based on pieces-of-sphere states for the contact angle θc = 30◦.

where arctan2 is the four-quadrant inverse tangent. This state
[Fig. 3(a)] exists for all � and is a terminal point of the primary
branch. Note that Eqs. (31)–(35) are independent of θc, so
a → 1 as τ1 → π such that Eq. (28) is satisfied. Similarly, the
state nw = 2 is specified by

� = �̃, (36)

Q = −2M, (37)

τ̃0 = 2 arctan2(−M, − M�̃ + cos θc + 2) + π, (38)

τ1 = 3π − 2θc, (39)

a = 1, (40)

θd = (τ̃0 + π )/2 (41)

with

M = �̃(cos θc + 2) ±
√

1 − (2 + cos θc)2 + �̃2

�̃2 + 1
. (42)

This state has two solutions corresponding to the two terminal
points of the branch nw = 2 [Figs. 3(b1) and 3(b2)] and exists
for all � > �(2), where

�(2) =
√

(2 + cos θc)2 − 1. (43)

Here �(2) is the slenderness at which the branch nw = 2
originates. Unlike liquid bridges between equal disks, the two
states corresponding to the terminal points of the branch nw =
2 are not axial mirror images (no reflective symmetry). This

reveals an intimate connection between pitchfork bifurcations
and geometrical symmetry, as pointed out by Seydel [34].
The geometric idealization of liquid bridges pinned at per-
fectly equal disks is unlikely to be realized in practice.
These axisymmetric liquid bridges are also equatorially or
reflectively symmetric, the combination of which underlies
the branch intersections at pitchfork bifurcations (nongeneric).
Small changes in geometry and constraints destroy nongeneric
bifurcations [34], which is why they are rarely, if at all,
encountered in practical problems such as the one considered
in this paper. The solution of higher odd-wave-number states
is

� = �̃ + (nw − 1)(�̃2 + 1)

2�̃
, (44)

τ0 = τ̃0 − nwπ, (45)

where Q, τ1, a, and θd are the same as for the basic state. These
states are independent of θc and exist for all � > �(nw), where

�(nw) =
√

n2
w − 1, nw ∈ {3,5,7, . . .}. (46)

Equation (44) has the solutions

�̃ = � ± √
�2 − n2

w + 1

nw + 1
(47)

for a given � corresponding to the two terminal points of
the respective branch [Figs. 3(c1) and 3(c2) for nw = 3].
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FIG. 4. (Color online) Equilibrium shapes along the equilibrium branch with the slenderness � = 0.53 and contact angle θc = 120◦. Stable
states (solid) and unstable states (dashed) to axisymmetric (red) and nonaxisymmetric (blue) perturbations are represented for constant-volume
perturbations.

Similarly,

� = �̃ + nw − 2

M
, (48)

τ0 = τ̃0 − (nw − 1)π (49)

for higher even-wave-number states. These states depend on
θc and exist for all � > �(nw), where

�(nw) =
√

n2
w + 2nw cos θc + (cos 2θc − 1)/2,

nw ∈ {4,6,8, . . .}. (50)

Equation (48) has the solutions

�̃ = 2nw�(2 + cos θc) + �(cos 2θc + 4 cos θc − 1)±√
2(nw − 2)

√
2�2 + 1 − 2n2

w − 4nw cos θc − cos 2θc

2n2
w + 4nw cos θc + cos 2θc − 1

(51)

for a given �, corresponding to the two terminal points of the
respective branch [Figs. 3(d1) and 3(d2) for nw = 4].

C. Stability of equilibrium branches

In this section, the typical behavior of equilibrium branches
is illustrated based on the nw = 1 and nw = 2 branches.
Except the primary branch (nw = 1), all higher wave-number
branches correspond to liquid bridges that are unstable to
constant-volume and constant-pressure axisymmetric pertur-
bations. The secondary branch (nw = 2), however, plays an
important role in constructing the stability region. In a certain
range of � and θc, the secondary branch intersects the stable
part of primary branches, splitting it into two disconnected
stable segments. This appears as a kink in the stability-region
lower boundary, which is similar to the one in the lower
boundary for short bridges that correspond to critical states
with respect to nonaxisymmetric perturbations.

Figure 4 shows how equilibrium shapes vary along a typical
equilibrium branch for a fixed � and θc. At this slenderness,
only the primary branch exists. The branch starts at a pieces-
of-sphere state A and ends at a bulged nodoid4 with θd = −π

4What bulged and constricted mean here is not as evident as for
bridges between equal disks. In this paper, bulged [constricted]
bridges refer to surfaces with r(s1)/R0 > 1 [r(s1)/R0 < 1].

(not shown). The segment EF corresponds to bridges with
θd > π , which cannot be realized in practice between a
disk and plate (see Fig. 1) due to the geometric constraint
mentioned in the Introduction. Similar to bridges pinned at
two equal disks, these are unstable to constant-volume nonax-
isymmetric perturbations. The remaining stable segment DE

loses stability at the volume turning point D to axisymmetric
perturbations. The rotund limit K is a pitchfork bifurcation
where stability is lost to nonaxisymmetric perturbations and
the bridge is a nodoid with θd = 0. Constant-pressure stability
is determined by pressure turning points. There are two
turning points in pressure (G and J ) in Fig. 4 at which
stability exchange occurs according to Maddocks’ theorem.
The truncated sphere state I belongs to the segment GJ ,
implying that it is a stable segment. Stability is lost at G

and J to axisymmetric perturbations; thus, AG and J l are
unstable segments. Furthermore, two catenoids exist for the
given � and θc [38], corresponding to the points C and H

where Q = 0. The catenoid C (H ) is unstable (stable) to both
constant-volume and constant-pressure perturbations.

The segment AD belongs to the MSR with respect to
axisymmetric perturbations and the minimum eigenvalue of
the spectral problem considered by Qian and Breuer [40] is
positive alone this branch. Therefore, neglecting the role of
the free-contact line in the Sturm-Liouville problem results in
the misidentification of the segment AD as a stable branch.
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FIG. 5. (Color online) Equilibrium branch for short liquid bridges at fixed slenderness � and contact angle θc: (a) � = 0.3 and θc = 90◦ and
(b) � = 0.39 and θc = 90◦. Stable states (solid) and unstable states (dashed) to axisymmetric (red) and nonaxisymmetric (blue) perturbations
are represented for constant-volume perturbations.

The remainder of this section focuses on how equilibrium
branches change with � for θc = 90◦ as an example. This is the
only contact angle that is compatible with cylindrical bridges
and thus of particular interest. Figure 5 shows how equilibrium
branches behave for short bridges. Here nonaxisymmetric
perturbations are critical at the maximum and minimum
volume stability limits. The secondary branch does not exist at
these small slendernesses. For � < 0.364 [Fig. 5(a)], moving
along the branch from D to A, the dihedral angle first exceeds
π at C, but does not drop below π before the turning point B.
Hence, there is one connected stable segment. At the rotund
limit, constant-volume stability is lost to nonaxisymmetric
perturbations at D where the bridge is a bulged nodoid with
θd = 0. At the slender limit, constant-volume stability is lost
to nonaxisymmetric perturbations at C where the bridge is
a constricted nodoid with θd = π . At the volume turning
point B, the nature of critical perturbations changes. Beyond
this turning point, axisymmetric perturbations are the most
dangerous along AB. Moreover, the two terminal points A

and F correspond to a pieces-of-sphere and nodoid with
θd = −π , respectively. Note how this branch is limited by
two volume and two pressure turning points. Constant-volume
stability nevertheless cannot be determined from Maddocks’
theorem since the branch has two bifurcation points between
the turning points. However, Maddocks’ theorem can be
applied to constant-pressure stability. The segment between
the pressure turning points has no bifurcation points and is
stable to constant-pressure perturbations. For 0.364 < � <

0.404 [Fig. 5(b)], equilibrium branches behave similarly to
the previous case, except in the slender limit. Here the
dihedral angle exceeds π along CC ′ where bridges are
unstable to nonaxisymmetric perturbations. This results in two
disconnected stable segments (BC and C ′D).

Further increase in the slenderness significantly influences
the behavior of equilibrium branches. No sign change occurs
in the pressure differential along the branch when � > 0.663.
Here there are no points on the branch corresponding to

catenary profiles and Q is always negative. Figure 6(a) shows
the equilibrium branch for � = 1.5. The rotund limit D

corresponds to a bulged nodiod with θd = 0 where constant-
volume nonaxisymmetric perturbations are critical. However,
at the slender limit, stability is lost to constant-volume axisym-
metric perturbations at the volume turning point B where the
bridge is a constricted unduloid. The pressure turning points
are the constant-pressure stability limits where axisymmetric
perturbations are critical. Note that the difference between Q at
the maximum and minimum pressure stability limits decreases
with increasing �. Furthermore, the secondary branch does
not exist at this slenderness. At � � 1.862, the two pressure
turning points coalesce. The entire branch is unstable to
constant-pressure perturbations beyond this slenderness. The
secondary branch originates at � = √

3 and grows in length
with �. Equilibrium branches for � � 4.4934 are illustrated
in Fig. 6(b). This is the critical slenderness at which cylindrical
bridges with a free contact line lose stability to axisymmetric
perturbations [38]. The primary branch behaves similarly to
the previous case in the rotund and slender limits. Interesting
to note is the slender limit where the bridge is a cylinder
at the turning point B. Increasing the slenderness beyond
� � 4.4934, bulged unduloids become the critical equilibria
at the slender limit, while the cylindrical state moves past
the turning point to the unstable segment AB. The secondary
branch is limited by two pieces-of-sphere states at G and G′.
It also crosses the primary branch above the volume turning
point. However, this crossing does not correspond to a branch
intersection because the equilibrium states corresponding to
this (v∗,Q) on the primary and secondary branches are
different.

Figure 7 shows typical equilibrium branches for long
bridges. When � � 4.549, the primary and secondary
branches intersect at a transcritical bifurcation and the nw = 1
and nw = 2 families become connected. The equilibrium state
belongs to both nw = 1 and nw = 2 families of equilibria at the
intersection. Here the secondary branch intersects the stable
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FIG. 6. (Color online) Equilibrium branch for medium-length liquid bridges at fixed slenderness � and contact angle θc: (a) � = 1.5 and
θc = 90◦ and (b) � = 4.4934 and θc = 90◦. Stable states (solid) and unstable states (dashed) to axisymmetric (red) and nonaxisymmetric (blue)
perturbations are represented for constant-volume perturbations.

part of the primary branch. Increasing � by a small value,
the nw = 1 and nw = 2 branches split into two half branches,
breaking the bifurcation point into two folds (H and H ′), as
shown in Fig. 7(a). These are turning points in volume. As a
result, two disconnected stable branches emerge, which lose
stability to constant-volume axisymmetric perturbations at H

and H ′. These are the points at which nw = 1 and nw = 2 half
branches meet. Increasing the slenderness beyond � � 4.567,
the stable segment BH disappears, leaving two separate
branches with one connected stable segment [see Fig. 7(b)].
Further increase in the slenderness does not affect the behavior
of equilibrium branches significantly and constant-volume
stability is lost to axisymmetric perturbations at the turning
point H ′ where the bridge is a bulged unduloid. Moreover, the
cylindrical state moves from the nw = 1 to the nw = 2 branch
at larger slendernesses.

Transcritical bifurcations do not affect the stability region
for all contact angles. The secondary branch intersects the
stable part of the primary branch when θc � 125◦. At larger
contact angles, the secondary branch intersects the unstable
part below the volume turning point, as illustrated in Fig. 8.
When θc = 120◦, the transcritical bifurcation lies slightly
above the turning point on the stable part [Fig. 8(a)]. A small
increase in � splits the stable part into two disconnected stable
segments [Fig. 8(b)]. The smaller stable segment only exists
in a narrow range of � beyond the transcritical bifurcation and
eventually disappears with increasing �. Note that the forego-
ing range becomes larger with decreasing θc. However, when
θc = 150◦, the transcritical bifurcation lies below the volume
turning point on the unstable part [Fig. 8(c)]. Increasing � by
a small value splits the unstable part into two disconnected
segments, leaving the stable part unaffected [Fig. 8(d)].
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FIG. 7. (Color online) Equilibrium branch for long liquid bridges at fixed slenderness � and contact angle θc: (a) � = 4.555 and θc = 90◦

and (b) � = 4.57 and θc = 90◦. Stable states (solid) and unstable states (dashed) to axisymmetric (red) and nonaxisymmetric (blue) perturbations
are represented for constant-volume perturbations.
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FIG. 8. (Color online) Equilibrium branch in the vicinity of transcritical bifurcations when the slenderness is (a) below (� = 2.323) and
(b) above (� = 2.325) the transcritical bifurcation at � � 2.3233 for the contact angle θc = 120◦, while it is (c) below (� = 1.026) and (d)
above (� = 1.04) the transcritical bifurcation at � � 1.0285 for θc = 150◦. Stable states (solid) and unstable states (dashed) to axisymmetric
perturbations are represented for constant-volume perturbations.

D. Stability region

Here we present the stability region in (�,V ) diagrams
for fixed θc. Note that equilibrium states are not uniquely
specified by the independent parameters p = (�,V,θc). There-
fore, points inside the stability region in this space may
simultaneously correspond to stable and unstable bridges.
These parameters nevertheless can be readily measured experi-
mentally, furnishing a convenient representation of the stability
limits. We first demonstrate bifurcation characteristics and the
critical perturbations along the stability region boundaries for
θc = 90◦ as an example.

Figure 9 illustrates the stability region with respect to
constant-volume perturbations for θc = 90◦. The upper bound-
ary An and the lower boundary for short bridges ABC corre-
spond to nodoids with θd = 0 and θd = π , respectively, where
stability is lost at pitchfork bifurcations to nonaxisymmetric
perturbations. This behavior is the same as for bridges pinned
at two equal disks. However, a detailed bifurcation analysis is
required to differentiate between supercritical and subcritical
pitchforks along nABC [24,35]. The nodoids belonging to the

boundary segment ABC are also the limiting surfaces resulting
from the geometric constraint imposed by the disk (θd � π ).
Nodoids are the critical surfaces along the segment CD where
stability is lost at turning points to axisymmetric perturbations.
The critical surface at D is a catenoid with θd � 167.8◦.
Axisymmetric perturbations are the most dangerous along
DE. The critical surface at E is a cylinder with � � 4.4934
corresponding to the stability limit of cylindrical bridges
with a free contact line [B in Fig. 6(b)]. This is the point
where the line V = 1 is tangent to the boundary segment
CDEF . This line intersects the segment FGm at � � 4.5667.
The segment AE of the V = 1 line is the locus of stable
cylindrical bridges. However, the remaining segment inside
the stability region is the locus of stable unduliods with
V = 1; the cylindrical bridges corresponding to this segment
are unstable. This contrasts with the stability region of liquid
bridges pinned at two equal disks where the slope of the
lower boundary at (�,V ) = (2π,1) is 1/π . Axisymmetric
perturbations are critical along EFGm. Here, except the point
G, which corresponds to a transcritical bifurcation, stability
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FIG. 9. (Color online) Stability region with respect to constant-
volume perturbations with θc = 90◦. Dashed lines correspond to
constant-volume drop dispensing with v∗ = 1,4.9 (upward). When
v∗ = 1, the bridge profiles at the slender limit for θc = 60◦ (S1 − 60)
and θc = 120◦ (S1 − 120) are shown for comparison.

is lost at turning points. Bifurcation characteristics along the
stability-region boundaries are summarized in Table I. As
discussed in Sec. III C, the kink EFG is a result of the
secondary branch intersecting and splitting the stable part
of the primary branch when 4.549 < � < 4.567. Note that
transcritical bifurcation only occurs at one point along the
lower boundary, indicating why transcritical bifurcations are
nongeneric and unlikely to be realized in practice.

The upper boundary nA and lower boundary CDEFGm

of the stability region (see Fig. 9) are respectively relevant
to squeezing and stretching liquid bridges in contact-drop
dispensing. For a given bridge volume v and contact angle θc,
the upper boundary furnishes � at the rotund limit where the
bridge bugles nonaxisymmetrically upon squeezing; the lower
boundary provides � at the slender limit where the bridge
breaks into two primary drops upon stretching.

Dashed lines in Fig. 9 are the paths corresponding to
constant-volume drop dispensing. The bridge interface is
deformed into a nonaxisymmetric surface at the rotund limit
if the bridge is squeezed, whereas the bridge breaks into two
primary drops at the slender limit if it is stretched. The points
R1 (R2) and S1 (S2) correspond to the rotund and slender limits
for v∗ = 1 (v∗ = 4.9), respectively. The critical surface is a

bulged nodiod with θd = 0 at the rotund limit for both paths.
However, the slender limit behaves differently for small and
large bridge volumes. At small volumes, the drop dispensing
path intersects the segment DE where the critical surface is
a constricted unduloid, and a neck forms close to the plate,
whereas at large volumes the drop dispensing path intersects
the segment EFGm where the critical surface is a bulged
unduloid, and a neck forms close to the disk. Consequently,
the ratio of the dispensed drop volume to the bridge volume
in the former case is smaller than in the latter case. A fully
dynamic analysis is necessary to precisely quantify this ratio.

When v∗ = 1, the bridge profiles at the slender limit for
θc = 60◦ (S1 − 60), θc = 120◦ (S1 − 120), and θc = 90◦ (S1)
are compared in Fig. 9. Here the contact-line radius is smaller
and the neck is closer to the plate on more hydrophobic surfaces
(θc < π/2). This demonstrates how the symmetry-breaking
effect of the free contact line can be exploited to dispense
smaller drops by adjusting the contact angle. In contrast,
liquid bridges between equal disks are inherently reflectively
symmetric and uneven breakup is only induced by asymmetric
critical perturbations at the slender limit (due to broken
equatorial symmetry) at large volumes [35,37]. This result
is also helpful for interpreting experimental observations on
breakup dynamics in contact-drop dispensing. For example,
Qian et al. [18] reported very small dispensed drops in a
pressure-controlled deposition at fast needle retraction speeds.
This can be attributed to an asymmetric breakup of the bridge
close to its static slender limit induced by a moving contact
line with a small dynamic contact angle. Static stability results
in this paper suggest that asymmetric breakups can be induced
even in the quasistatic limit by purely geometric means.

The stability region with respect to constant-volume and
constant-pressure perturbations is plotted as (�,V ) diagrams
for fixed θc in Fig. 10. The constant-volume stability region
is an open area, which completely encompasses the constant-
pressure stability region at all θc. This implies that all the liquid
bridges that are stable to constant-pressure perturbations are
also stable to constant-volume perturbations, but the converse
does not hold. The maximum volume stability limit increases
with � more rapidly as θc increases. The same behavior is
observed for the minimum volume stability limit at large
slendernesses. Thin solid lines indicate the locus of catenoids
(Q = 0) at the respective contact angle. Along these curves,
� reaches a maximum when intersecting the boundary of
the constant-pressure stability region for a fixed θc. This
point splits the catenoid curve into two segments. The upper

TABLE I. Bifurcation characteristics along the stability-region boundaries in Fig. 9 for the contact angle θc = 90◦.

Open segment Critical surface θd Critical perturbations Bifurcation type

nA bulged nodoid 0◦ nonaxisymmetric pitchfork
ABC constricted nodoid 180◦ nonaxisymmetric pitchfork
CD constricted nodoid (167.8◦,180◦) axisymmetric turning point
point D catenoid 167.8◦ axisymmetric turning point
DE constricted unduloid (81.9◦,167.8◦) axisymmetric turning point
point E cylinder 90◦ axisymmetric turning point
EFG bulged unduloid (90◦,102.3◦) axisymmetric turning point
point G bulged unduloid 102.3◦ axisymmetric transcritical
Gm bulged unduloid (102.3◦,180◦) axisymmetric turning point
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FIG. 10. (Color online) Stability region with respect to constant-volume (thick solid) and constant-pressure (dashed) perturbations with (a)
θc = 30◦, (b) θc = 60◦, (c) θc = 90◦, (d) θc = 120◦, and (e) θc = 150◦. Thin solid lines indicate the locus of catenoids at the respective contact
angle. The lower boundary in the transcritical bifurcation neighbourhood is magnified for (f) θc = 30◦, (g) θc = 60◦, and (h) θc = 120◦.

segment corresponds to stable catenoids, while the lower one
corresponds to catenoids that are unstable with respect to
constant-pressure axisymmetric perturbations. For a given θc,
liquid bridges with Q > 0 can only correspond to the points
inside the region confined between the red curves and the V

axis. Furthermore, the kink in the lower boundary that precedes
the transcritical bifurcation only exists when θc � 125◦ and
occurs at larger � and V for smaller θc.

We conclude this section by comparing the limiting
behavior of the maximum and minimum volume stability
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limits when � � 1 for liquid bridges considered in this study
(case I) and those pinned at two equal disks (case II). As
previously mentioned, the upper and lower boundaries of the
constant-volume stability region, respectively, correspond to
bulged nodoids with θd = 0 and constricted nodoids with
θd = π for case I where nonaxisymmetric perturbations are
critical. Expanding the cylindrical volume as a power series in
slenderness for � � 1, we find the approximate expressions

V = 1 + 1
4 sec4(θc/2)(π − θc + cos θc sin θc)�

− 1
384 sec8(θc/2)[−97 + 24(π − θc)2 − 136 cos θc

− 32 cos(2θc) + 8 cos(3θc) + cos(4θc)

+ 24(π − θc) sin(2θc)]�2 + O(�3), (52)

V = 1 + 1
4 csc4(θc/2)(−θc + cos θc sin θc)�

− 1
384 csc8(θc/2)

[ − 97 + 24θ2
c + 136 cos θc

− 32 cos(2θc) − 8 cos(3θc) + cos(4θc)

− 24θc sin(2θc)
]
�2 + O(�3) (53)

for the upper and lower boundaries, respectively. These are
accurate to second order in � and are in good agreement with
numerical computations for short bridges (Fig. 11). Letting
θc = π/2, Eqs. (52) and (53), respectively, simplify to

V = 1 + π

2
� +

(
8

3
− π2

4

)
�2 + O(�3), (54)

V = 1 − π

2
� +

(
8

3
− π2

4

)
�2 + O(�3), (55)
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FIG. 11. (Color online) Comparison of approximate formu-
las (52) and (53) (dashed) and numerical computations (solid) for the
upper and lower boundaries of the constant-volume stability region
in the small-slenderness limit. Labels denote the contact angle θc in
degrees.

which are identical to the expressions in the literature for case
II [35] with a slenderness twice that of case I. Recall that bulged
nodoids with θd = 0 and constricted nodoids with θd = π are
also the critical surfaces along the upper and lower boundaries
of the constant-volume stability region for case II. Therefore,
when θc = π/2, a critical surface for case I is half as slender
as the corresponding critical surface for case II, while their
cylindrical volumes are equal. Consequently, the maximum
and minimum volume stability limits of case I for short bridges
in a (�I ,V ) diagram must approach those of case II in a
(�II /2,V ) diagram as θc → π/2, where �I and �II denote
the slenderness in cases I and II, respectively.

E. Pinned versus free contact lines

Liquid bridges with two pinned contact lines are exposed
to a smaller set of axisymmetric perturbations than those with
a free contact line, so the former is more stable with respect
to axisymmetric perturbations. Consequently, a fixed-volume
liquid bridge with a free contact line can be stretched beyond
its slender limit �s if the free contact line is pinned to the
plate (see Fig. 1), implying that free contact lines have a
destabilizing effect. Figure 12 demonstrates this effect by
comparing equilibrium branches at fixed v for a drop bridging
a disk and plate (case I), as shown Fig. 1, and two unequal disks
(case II), as studied by Slobozhanin et al. [26]. The bridge in
case I has a pinned and a free contact line, whereas in case II
it has two pinned contact lines. Note that cases I and II are,
respectively, specified by p = (�,V,θc) and (�,V,K), where
K is the ratio of the lower to upper contact-line diameters.
When stretching the bridge, K varies at fixed θc in case I
and θc varies at fixed K in case II. Therefore, comparing the
stability of cases I and II is not straightforward.

To explicitly demonstrate the contact-line effect, the same
upper disk is used in cases I and II, while the lower disk in
case II is chosen to have the same radius as the contact line
in case I at its slender limit �I

s (S1 in Fig. 12). As a result,
the bridge profiles for both cases are identical at � = �I

s .
When θc = 60◦ and v∗ � 0.3636, the bridge in case I loses
stability to axisymmetric perturbations at S1 upon stretching,
where �I

s = 1 [Fig. 12(a)]. To accommodate the contact-line
radius at S1 in case I, K � 0.1870 in case II. Note that S1

is not a turning point on the equilibrium branch of case II,
so the bridge can be stretched beyond �I

s . The bridge in
case II loses stability to axisymmetric perturbations at its
slender limit �II

s � 1.2281 (S2 in Fig. 12), which is well
above that of case I. Unlike case I, the rotund limit of case
II R2 is a turning point where axisymmetric perturbations
are the most dangerous. This agrees with previous reports
in the literature [26] that when 0 < K < 0.306 the rotund
limit is not a pitchfork bifurcation at which nonaxisymmetric
perturbations are the most dangerous. Thus, the bridge in case
II does not bulge nonaxisymmetrically upon squeezing.

When θc = 120◦ and v∗ � 2.3455, the bridge in case I loses
stability to axisymmetric perturbations at �I

s = 3 [Fig. 12(b)]
upon stretching. Similarly to Fig. 12(a), the bridge in case
II breaks at a higher slenderness (�II

s � 3.0697) than that
in case I. However, the rotund limit in both cases is a
pitchfork bifurcation where nonaxisymmetric perturbations
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FIG. 12. (Color online) Comparison of equilibrium branches for a liquid bridge, having a free (solid) and pinned (dashed) contact line on
the plate with (a) θc = 60◦, v∗ � 0.3636, and K � 0.1870 and (b) θc = 120◦, v∗ � 2.3455, and K � 1.7461.

are the most dangerous. Thus, the bridge in cases I and II
bulges nonaxisymmetrically upon squeezing.

IV. CONCLUSION

We have examined the equilibrium and stability of weight-
less liquid bridges that are pinned at one contact line to a disk
with the other free to move on a parallel plate. Constant-volume
and constant-pressure stability regions were constructed for
fixed contact angles. Bifurcations along the stability-region
boundaries were determined from the structure of equilibrium
branches and families of equilibria. A branch classification
was proposed based on the wave number of pieces-of-sphere
states at branch terminal points, accounting for the symmetry-
breaking role of the free contact line. In comparison with
liquid bridges pinned at two equal disks, the free contact line
completely breaks the equatorial and reflective symmetries,
destroying the pitchfork bifurcations along the lower boundary
of the constant-volume stability region where axisymmetric
perturbations are critical. This effect, which is of static
character, causes liquid bridges to form a neck near the plate
before breakup on hydrophobic surfaces (θc < π/2), leading
to small dispensed-drop volumes. Therefore, controlling the
drop size by surface hydrophobization can be achieved even in
the quasistatic limit, as we have shown via a stability analysis.

Our results can be directly applied to drop deposition on
ideal surfaces in the quasistatic limit. However, real surfaces
exhibit contact-angle hysteresis. The contact line remains fixed
until the advancing (receding) contact angle is reached from
above (below) if the bridge is squeezed (stretched). When
dispensing drops on real surfaces, perturbations of sufficiently
small amplitude do not displace the contact line for contact

angles above (below) the advancing (receding) contact angle.
When the advancing or receding contact angle is reached, the
contact line can freely move on the plate. Therefore, there is
a transition in the stability limits between two ideal regimes
for contact-drop dispensing on real surfaces: (i) liquid bridges
between unequal disks with perfectly pinned contact lines, as
studied by Slobozhanin et al. [26], and (ii) liquid bridges with
a perfectly free contact line, as studied in this paper. For a given
advancing contact angle and drop volume, the upper boundary
of the stability diagrams in Fig. 10 provides the slenderness
at which liquid bridges bulge nonaxisymmetrically. Similarly,
for a given receding contact angle and drop volume, the lower
boundary of the stability diagrams furnishes the slenderness at
breakup. Note that the receding contact angle is constant to a
good approximation in the quasistatic phase of drop deposition
due to small contact-line speeds. Moreover, the bridge profile
and critical perturbations at the slender limit are useful for
estimating the dispensed drop size.

Comparing the equilibrium branches of a bridge between
a plate and disk and a bridge between two unequal disks
revealed the destabilizing effect of a free contact line, which
is particularly relevant to breakup at the slender limit. This
implies that the breakup height for liquid bridges that are
constrained at their contact lines is larger than for those with
free contact lines.
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