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Adaptive elastic networks as models of supercooled liquids
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The thermodynamics and dynamics of supercooled liquids correlate with their elasticity. In particular for
covalent networks, the jump of specific heat is small and the liquid is strong near the threshold valence where
the network acquires rigidity. By contrast, the jump of specific heat and the fragility are large away from this
threshold valence. In a previous work [Proc. Natl. Acad. Sci. USA 110, 6307 (2013)], we could explain these
behaviors by introducing a model of supercooled liquids in which local rearrangements interact via elasticity.
However, in that model the disorder characterizing elasticity was frozen, whereas it is itself a dynamic variable
in supercooled liquids. Here we study numerically and theoretically adaptive elastic network models where
polydisperse springs can move on a lattice, thus allowing for the geometry of the elastic network to fluctuate and
evolve with temperature. We show numerically that our previous results on the relationship between structure
and thermodynamics hold in these models. We introduce an approximation where redundant constraints (highly
coordinated regions where the frustration is large) are treated as an ideal gas, leading to analytical predictions
that are accurate in the range of parameters relevant for real materials. Overall, these results lead to a description
of supercooled liquids, in which the distance to the rigidity transition controls the number of directions in phase
space that cost energy and the specific heat.
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I. INTRODUCTION

Liquids undergo a glass transition toward an amorphous
solid state when cooled rapidly enough to avoid crystal-
lization [1]. The glass lacks structural order: it is a liquid
“frozen” in a local minimum in the energy landscape, due
to the slowing down of relaxation processes. It is very
plausible that the thermodynamics and the dynamics in super-
cooled liquids strongly depend on the microscopic structure
of these configurations—hereafter referred to as “inherent
structures” [2]. However, a majority of glass theories [3–9]
have focused on explaining the correlations between macro-
scopic observables seen in experiments (such as the rela-
tionship between thermodynamics and dynamics [10,11]),
while only a few [12–15] have investigated the role of
structure.

Experiments reveal that elasticity plays a key role in both
the thermodynamic and dynamical properties in supercooled
liquids, such as the jump of specific heat and the fragility
characterizing the glass transition. Specifically, it has been
found that (I) glasses present an excess of low-frequency
vibrational modes with respect to Debye modes. The number
of these excess anomalous modes, quantified as the intensity
of the boson peak [16], shows a strong anticorrelation with the
fragility [17,18]. (II) The rigidity of the inherent structures is
tunable by changing the fraction of components with different
valences in network glasses [19–21], where atoms interact via
covalent bonds and much weaker Van der Waals force. The
covalent network becomes rigid [22–24], when the average
valence r exceeds a threshold rc, determined by the balance
between the number of covalent constraints and the degrees
of freedom of the system. Both the fragility and the jump
of specific heat depend nonmonotonically on r , and their
minima coincide with rc [19,25]. Interesting works using
density functional theory [12,26] investigated the relationship
between structure and fragility, but they do not capture this
nonmonotonicity.

Recent observations [27–31] and theory [14,32–40] indi-
cate that in various amorphous materials, the presence of soft
elastic modes is regulated by the proximity of the rigidity
transition, linking evidence (I) and (II). To rationalize this
connection, we have introduced a frozen elastic network
model that bridges the gap between network elasticity and
geometry on one hand, elasticity and the thermodynamics and
dynamics of liquids on the other [41]. This model incorporated
the following aspects of supercooled liquids: (i) particles
interact with each other with interactions that can greatly
differ in strength, such as the covalent bonds and the much
weaker Van der Waals interaction found in network glasses.
(ii) Neighboring particles can organize into a few distinct
local configurations. (iii) The choices of local configurations
are coupled at different location in space via elasticity. These
features were modeled using a random elastic network whose
topology was frozen, as illustrated in Fig. 2. The possibility
for local configurations to change was incorporated by letting
each spring switch between two possible rest lengths. Despite
its simplicity, this model recovered (I) and (II). In particular, it
reproduced the nonmonotonic variance of the jump of specific
heat and the fragility with the coordination z of the network:
they are extremal at zc = 2d (d is the spatial dimension),
where a rigidity transition occurs. This model could be solved
analytically, and it led to the view that near the rigidity
transition the jump of specific heat is small because frustration
vanishes: most directions in phase space do not cost energy
and thus do not contribute to the specific heat.

This is a novel explanation for a long-standing problem,
and it is important to confirm that this view is robust when
more realism is brought into the model. In particular, the
model used frozen disorder to describe elasticity, whereas
it is itself a dynamical property in liquids, where there
cannot be any frozen disorder. The thermal evolution of the
topology of the contact network and its effects on rigidity
transition were also not addressed. A network is rigid when
an imposed global strain induces stress, and the rigidity can
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FIG. 1. (Color online) Illustration of rigidity transition. Blue,
green, and red color the floppy, isostatic, and stressed clusters,
respectively.

be achieved topologically by adding constraints [22]; see
Fig. 1 for an illustration in a small network. The network
is said to be self-stressed if some of the constraints are
redundant, removing those leaves the network rigid. Three
scenarios of rigidity transition have been extensively studied
in the literature [42,43] (but see Ref. [44] for a recent fourth
proposition). Spatial fluctuations of coordination are important
in the first two. The rigidity percolation model [45–48]
assumes that bonds are randomly deposited on a lattice.
Fluctuations lead to over-constrained (self-stressed) clusters
even when the average coordination number is not sufficient
to make the whole network rigid. This model corresponds to
the infinite temperature limit. To include these effects, self-
organized network models were introduced [49–52], where
overconstrained regions are penalized. A surprising outcome
of these models is the emergence of a rigidity window: rigidity
emerges at a small coordination number before the self-stress
appears (even in the thermodynamic limit). Finally, in the
mean-field or jamming scenario, fluctuations of coordinations
are limited. Similar to the simple picture in Fig. 1, the rigidity
and the stress appear at the same zc in the thermodynamic
limit. The rigid cluster at zc is not fractal and is similar to
that of packings of repulsive particles. The model of Ref. [41]
assumed that networks were of this last type.

Recently, we have introduced adaptive elastic network
models [42], where the topology of the network is free to
evolve to lower its elastic energy as the system is cooled.
We found that as soon as weak interactions are present,
the network of strong interactions becomes mean-field like
at low temperature. However, the thermodynamic properties
were not studied to test the robustness of the thermodynamic
predictions of Ref. [41] relating structure to the jump of
specific heat. In this work, we directly show numerically and
theoretically that the prediction for the jump of specific heat
is essentially identical in adaptive and frozen elastic network
models. Section II describes the adaptive network models.
Section III presents the numerical results of the model, while
Sec. IV gives the explicit derivation of the thermodynamic
properties, developing an approximation scheme to deal with
the temperature-dependence of the number of over-constraints
in the system, treating them as an ideal gas.

II. MODEL

In our model, degrees of freedom are springs, which are
polydisperse and can move on a lattice. The lattice is built
using a triangular lattice with periodic boundary conditions,
see Fig. 2(c), with a slight regular distortion to minimize
the nongeneric presence of zero modes that occurs when
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FIG. 2. (Color online) (a) and (b) Illustration of the frozen
network model [41]; (c) and (d) illustrate the adaptive network
model [42]. In the latter case, the triangular lattice is systematically
distorted in a unit cell of four nodes shown in the inset of (c). We
group nodes by four, labeled as A, B, C, and D in Fig. 2. One group
forms the unit cell of the crystalline lattice. Each cell is distorted
identically in the following way: node A stays, while nodes B, C, and
D move by a distance δ, B along the direction perpendicular to BC,
C along the direction perpendicular to CD, and D along the direction
perpendicular to DB. δ is set to 0.2 with the lattice constant as unity.
Weak springs connecting (b) six nearest neighbors without strong
springs and (d) six next-nearest neighbors are indicated in straight
cyan lines, emphasized for the central node. (c) Illustration of an
allowed step, where the strong spring in red relocates to a vacant
edge indicated by a dashed blue line.

straight lines are present, as illustrated in the inset of Fig. 2(c).
Polydisperse and mobile “strong” springs of identical stiffness
k connect the nearest neighbors on the lattice and model the
covalent constraints.

We model weak Van der Waals interactions with “weak”
and stationary springs of stiffness kw � k adding to all
next-nearest neighbors on the triangular lattice, illustrated in
Fig. 2(b). We introduce a control parameter α ≡ (zw/d)(kw/k)
to characterize the relative strength of the weak interactions,
where the spatial dimension is d = 2 and the number of weak
constraints per node is chosen zw = 6.

The number of “covalent” springs Ns , equivalent to the
coordination number z ≡ 2Ns/N (N is the number of nodes
in the lattice), is also a dimensionless control parameter. For
a given δz ≡ z − zc, the valid configurations are defined by
the locations of the Ns springs, indicated as � ≡ {γ ↔ 〈i,j 〉},
where the Greek index γ labels springs and the Roman indices
〈i,j 〉 label the edges on triangular lattice between nodes i

and j . We introduce the occupation of an edge, σ〈i,j〉 = 0,
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if there is no strong spring on the edge ij , and σ〈i,j〉 = 1 if
there is one. If r〈i,j〉 denotes the geometric length between
nodes i and j on the lattice, we assume that the spring γ

has a rest length lγ = r〈i,j〉 + εγ , where the mismatch εγ is a
feature of a given spring. εγ are sampled independently from
a Gaussian distribution with mean zero and variance ε2, which
thus characterizes the polydispersity of the model. kε2 is set
to unity as the natural energy scale.

The energy of an inherent structure is denoted H(�). The
configuration � is sampled with probability proportional to
exp ( − H(�)/T ) in the liquid phase, with kB = 1. Temper-
ature T serves as a third dimensionless control parameter.
H(�) is defined as the remaining energy once the nodes of the
network are allowed to relax to mechanical equilibrium:

H(�) = min
{ �Ri }

{∑
γ

k

2
[|| �Ri − �Rj || − lγ ]2

+
∑
〈i,j〉2

kw

2

[|| �Ri − �Rj || − r〈i,j〉2

]2

⎫⎬
⎭, (1)

where �Ri is the position of particle i and 〈i,j 〉2 labels the
next-nearest neighbors. The minimal energy can be calculated
by steepest decent as illustrated in Fig. 3, but this is computa-
tionally expensive. Instead, we approximate the elastic energy
in the linear response range, setting that ε2 � 1 [53]. The
above minimization expression Eq. (1) could then be written
as

H(�) = k

2

∑
�

ε〈i,j〉G〈i,j〉,〈l,m〉ε〈l,m〉 + o(ε3), (2)

where ε〈i,j〉 = εγ when spring γ connects i and j . The
coupling matrix G = P − S(S tS + kw

k
S t

wSw)−1S t , derived in
our previous works [41,42] (or see Appendix Sec. A), is a
product of the structure matrix S and its transpose S t , the
structure matrix of the weak spring network Sw, and P the
projection operator of the triangular lattice onto occupied
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FIG. 3. (Color online) Illustration of configuration energy of the
adaptive network model (δz = 0.27). Solid lines are springs, colored
according to their extensions: from red to purple, the springs go from
being stretched to being compressed, with spring extensions shown in
the unit of ε. Left: Nodes sit at lattice sites, so the color shows the rest
length mismatches of the springs {εγ }. Right: Nodes are relaxed to
mechanical equilibrium. Most links appear in green, indicating that
most of the elastic energy is released. The configuration energy is
defined by the residual energy.

edges. The structure matrices S and Sw describe the topology
of the networks of strong and weak springs: if neighbor nodes
i and j are connected, the change of the distance between i

and j , δr〈i,j〉 = S〈i,j〉,i · δ �Ri + S〈i,j〉,j · δ �Rj + o(δ �R2), due to
displacements of nodes δ �R. We point out that as the weak
network is fixed, S and thus G depend only on the network
topology of strong springs, but not on the mismatches εγ .

Our model is a generalization of on-lattice network models:
setting the interaction strength control parameter α = 0, it
naturally recovers the randomly diluted lattice model [48]
when T = ∞. It is also related to the self-organized lattice
model [49,50], which postulates that elastic energy is linearly
proportional to the number of redundant constraints [49,54].
We will find that this assumption holds true for α = 0 and
T � 1. However, the existence of weak interactions among
sites means that in real physical systems α > 0. This turns out
to completely change the physics, an effect that our model can
incorporate.

III. NUMERICS

We implement a Monte Carlo simulation to sample the
configuration space of the model, with 106 Monte Carlo steps
at each T . At each step, a potential configuration is generated
by a Glauber dynamics—moving one randomly chosen spring
to a vacant edge, as illustrated in Fig. 2(c). We numerically
compute the elastic energy of the proposed configuration
using Eq. (2): calculating the structure matrix S and then
the corresponding G. On computing G, the matrix inversion,
(S tS + kw

k
S t

wSw)−1, is singular when the network contains
floppy structures, which do not appear except when kw = 0.
When α = 0, we implement the “pebble game” algorithm [55]
to identify the over-constrained subnetworks and then do
matrix division in the subspace, as the isostatic and floppy
regions store no elastic energy after relaxation. We have found
little finite-size effect by varying the system size from N = 64
to N = 1024 nodes in the triangular lattice. In the following,
we present our numerical results of networks with N = 256
nodes, averaged over 50 realizations of random mismatches if
not specified.

A. Dynamics

We investigate the dynamics by computing the cor-
relation function C(t) = 1

Ns (1−Ns/3N) (〈σ (t)|σ (0)〉 − N2
s /3N ),

where |σ (t)〉 is the vector indicating the occupation of all
edges at time t . The correlation C(t) decays from one to zero
at long time scales. We define the relaxation time τ as the time
C(τ ) = 1/2 and the numerical results of τ as a function of
temperature T for several different coordination numbers are
shown in the Fig. 4.

We find that the implemented dynamics is not glassy. The
relaxation time increases as a power law of the temperature
T −0.5, even much slower than a strong glass that would
display an Arrhenius behavior log10 τ ∝ 1/T . This result is
very surprising because the frozen elastic network model we
studied earlier was glassy (its fragility was similar to that
of network liquids). Despite being dynamically very different,
these two models are almost identical as far as thermodynamics
is concerned, as we will see below. It could be that the lack
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FIG. 4. (Color online) Relaxation time τ in log-scale versus
inverse temperature 1/T for different coordination numbers δz and
α = 0.0003. The solid black line indicates a power-law relation
between τ and T : τ ∼ T −1/2.

of glassiness comes from our choice of Monte Carlo where
springs can try other locations anywhere in the system [56].

To compare the thermodynamics of these models we
now need to define an effective glass temperature Tg (even
if we do not see a real glass transition). We do that by
using the empirical Lindemann criterion [57] according to
which an amorphous solid melts when the standard deviation
〈δR2〉1/2 of particles’ displacements is greater than a fraction
cL of the particle size a. The coefficient cL must depend
on the quench rate q, since this is also the case for Tg .
This dependence is logarithmic, because the dependence of
relaxation time on temperature in experimental glass formers
is at least exponential (for typical experimental quench rate
in supercooled liquids, cL ≈ 0.15 [58]). We can estimate

this standard deviation via the elastic modulus if we treat
the glass as a continuum 〈δR2〉 ∼ T/Ga, where G is the
instantaneous shear modulus of the structure [8]; we thus get
Tg ∝ Ga3/ ln(1/q). We set the lattice length a in our model to
unity.

We measure the shear modulus averaging over configu-
rations at given temperatures, shown in the left panel of
Fig. 5. Practically, we choose Tg = 〈G〉Tg

/ ln(1/103q), where
the cooling rate q is defined as the inverse of the number of
Monte Carlo steps performed at each temperature in the model.
〈•〉Tg

is the mean value at temperature Tg . The prefactor in this
definition of Tg does not affect qualitatively our conclusions,
but for this prefactor the definition of Tg in the frozen
model [41] is essentially identical to the dynamical definition
used in [41], as shown in the right panel of Fig. 5 by lining up
G and Tg . The specific values of Tg following that definition
are shown in the inset of the bottom panel of Fig. 7, they
correspond to Tg = 〈G〉Tg

/ ln(103) in the present model, and
Tg = 〈G〉Tg

/ ln(105) in the frozen network model [41], which
is simpler to simulate and can thus be equilibrated longer.

B. Specific heat

The specific heat data shown in Figs. 6 and 7 are our central
numerical results. The energy E = 〈H〉 is obtained using a
time average over Monte Carlo steps and is shown in Fig. 6(a).
The specific heat is calculated as its derivative c ≡ 1

Ns
dE/dT ,

and is shown versus T for several coordination numbers
when α = 0 in Fig. 6(b) and α = 0.0003 in the top panel of
Fig. 7. When α = 0, the specific heat increases as temperature
decreases for networks with δz > 0, while it meets a maximum
at Ta ∼ 1 and decreases under cooling when T < Ta if δz � 0.
By contrast, the specific heat increases under cooling close to
the transition temperature for all coordination numbers when
α > 0. In addition, when T � α, c → 0.5. All these results
are qualitatively identical to our previous frozen model.

To define the jump of the specific heat at the glass transition,
we simply measure the specific heat at our glass transition

10
0

10
5

0.6

0.7

0.8

0.9

1

1.1

1.2

T/Tg

G
(z

,T
)/

G
(z

,∞
)

−1 0 1 2
10

−5

10
−4

10
−3

10
−2

10
−1

δz

T
g

or
G

 

 

Tg α = 0.0
G/ ln105

Tg α = 0.0003
G/ ln105

Tg α = 0.03
G/ ln105

δz = −0.375
δz = −0.125
δz = +0.000
δz = +0.148
δz = +0.523

FIG. 5. (Color online) Left: Shear modulus of adaptive networks at temperature T rescaled by G at T = ∞ G(z,T )/G(z,∞), α = 0.0003.
The temperature T is rescaled by Tg . Right: Correlation between transition temperature Tg and shear modulus G in the frozen network
model [41].
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FIG. 6. (Color online) Thermodynamics of the adaptive network model without weak constraints α = 0. (a) Energy E/Ns vs. temperature;
(b) specific heat C/Ns vs. temperature; (c) excess number density of redundant constraints nex extracted using the pebble game algorithm vs

temperature. Symbols are numerical data; solid lines are theoretic predictions.

Tg defined above. This definition is natural, since in a real
glassy system, below Tg the liquid is essentially frozen in an
inherent structure, and the contribution to the specific heat from
configurational entropy (i.e., the bottom energy of inherent
structures) vanishes.

Our central numerical result is shown in the bottom panel
of Fig. 7: c(Tg) varies nonmonotonically with the coordination
number z when α > 0. When the network of strong springs
is poorly coordinated δz � 0, c(Tg) decreases as z increases;
when the strong network gets better coordinated δz � 0, c

gradually changes to increase with z; c is minimal at the
proximity of the rigidity transition zc for finite α. These
numerical results are very similar to empirical observations,
see point (II) in the introduction. Our data are in fact very
similar to that of the frozen model, which essentially follows
the dotted lines in Fig. 7.

C. Number of redundant constraints R

When α = 0 and T → 0, the specific heat is simply
proportional to R, as shown in Fig. 6(b). This number is fixed,
R = Nδz/2, in the frozen network models. It varies in the
adaptive network model and depends on the temperature. As
the Maxwell counting gives the minimal number of redundant
constraints of a network, we can define an excess number of
redundant constraints,

nex ≡ 1

Ns

[
R − Nδz

2
	(δz)

]
, (3)

where 	(x) is the Heaviside step function. nex counts the
average number of redundant constraints, additional to the
Maxwell counting. This excess number of redundant con-
straints decreases monotonically to zero under cooling. When
α = 0, nex is proportional to

√
T in the adaptive network model

at low temperature, shown in Fig. 6(c).

IV. THEORY

As illustrated in Fig. 8, in the frozen elastic model we
found that as α → 0, c converges to a constant if z < zc,
whereas it behaves as z − zc for z > zc. As α is increased, the

discontinuous behavior becomes smooth and looks similar to
experimental data. We seek to derive these same features in
the adaptive network models.

A. Thermodynamics

For simplicity, we consider the annealed free energyFann =
−T lnZ . It is exact in the random energy model [59] above
the ideal glass transition [60] and we find it to be a good
approximation of F in our models [41]. The over-line implies
an average over disorder ε,

Z =
∑
{σ }

∑
perm[γ ]

exp[−H(�)/T ], (4)

where a given configuration � is characterized by {σ },
indicating which edges are occupied on the triangular lattice,
and perm[γ ] labels the possible permutations of springs’ rest
lengths.

We first average over the quenched randomnesses. Using
the linear approximation Eq. (2) and the Gaussian distribution
ρ(εγ ) = 1√

2πε2
e−ε2

γ /2ε2
,

Z =
∑
{σ }

(
Nz

2

)
! exp

[
− 1

2
tr ln

(
I + G({σ })

T

)]
. (5)

The factorial comes from Ns! = ∑
perm[γ ] 1 asG is independent

of the permutation. I is a 3N × 3N identity matrix; each
component corresponds to an edge on the lattice. To compute
the trace in the exponent, we first make the approximation that
the weak springs are weak and numerous S t

wSw ≈ zw
d
INd×Nd ,

which corresponds to the highly connected limit zw → ∞
and finite α. We can then decompose the coupling matrix
G ≈ P − S(S tS + αI)−1S t as [41]:

G({σ }) =
∑

p({σ })
|ψp〉〈ψp| +

∑
ω({σ })>0

α

ω2 + α
|ψω〉〈ψω|, (6)

where p labels the vectors |ψp〉 satisfying S t |ψp〉 = 0 (i.e.,
a basis for the kernel of S t ), and where the |ψω〉 satisfy
SS t |ψω〉 = ω2|ψω〉. The number of redundant directions is∑

p 1 = Ns − (Nd − F ) ≡ R. Note that trP = Ns , Nd − F
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FIG. 7. (Color online) Top: Specific heat c(z,T ) vs. scaled tem-
perature T/Tg for networks with average coordination numbers near
and away from the isostatic on both floppy and rigid sides. The
strength of the weak constraints is given by α = 0.0003. Bottom:
Specific heat at temperature Tg , c(z,Tg), vs. coordination number
δz for α = 0, 0.0003, 0.003, 0.03. The inset shows the transition
temperature Tg for different z and α. Symbols are numerical results,
and lines are theoretical predictions: dashed lines are for frozen
network model and solid lines are for the new model derived in
Sec. IV.

gives the number of frequencies ω, and F counts the number
of floppy modes. The modes |ψp〉, |ψω〉, R, and ω depend
on occupation {σ }. As the |ψ〉’s are orthonormal, the trace in
Eq. (5) gives

Z =
(

Nz

2

)
!

∑
nr ,D(ω)

exp

{
Ns

[
s(nr,D(ω)) − nr

2
ln

(
1 + 1

T

)

− 1 − nr

2

∫
dωD(ω) ln

(
1 + 1

T

α

ω2 + α

)]}
, (7)

Δcp(z)

0 δz

∼ 1

FIG. 8. (Color online) Theoretical predictions for the jump of
specific heat. For vanishingly weak springs α → 0, it is predicted
that the jump is essentially constant for z < zc and then drops to zero
a zc. For larger z, it behaves as z − zc. As α grows this sharp curve
becomes smooth, but a minimum is still present near z = zc.

where s(nr,D(ω)) ≡ 1
Ns

ln
∑

{σ } 1R,D(ω) is configurational en-
tropy density with given number of redundant constraints
nr ≡ R/Ns and density of vibrational modes, D(ω), satisfies
(1 − nr )

∫
dωD(ω) ≡ limN→∞ 1

Ns

∑
ω>0.

B. No weak interactions

Neglecting the weak constraints α = 0, the last term in the
exponential vanishes and the summation over states with given
density of states can be absorbed into the entropy, which then
depends only on the number of redundant constraints:

Z =
(

Nz

2

)
!
∑
nr

eNs [s(nr )− nr
2 ln(1+ 1

T
)]. (8)

We propose an ideal-gas picture of “defects” to find an ap-
proximation form of the entropy s(nr ). When the coordination
number is very small z < zc and the network is mostly floppy,
redundant constraints are defects localized in rigid islands.
Similarly, when the coordination number is very large z > zc

with most regions of the network rigid, there are localized
floppy modes in regions where there are negative fluctuations
of coordination number, which we again described as defects;
see illustration in Fig. 9. The number of such floppy modes
is equal to the number of additional over-constrained in the

(b) z > zc(a) z < zc

FIG. 9. (Color online) (a) z < zc, localized redundant constraints
(red) in a floppy sea (blue); (b) z > zc localized floppy modes (blue)
in a rigid sea (red and green).
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rigid cluster. The entropy gains from having these defects.
Assuming that such defects are independent, we approximate
the entropy by that of an ideal gas:

s(nex) ≈ s(0) − nex ln
nex

en0(z)
, (9)

where nex is the excess number of redundant constraints
defined in Eq. (3) and is thus counting the number of defects.
s(0) is the entropy density of the states with a minimal
number of redundant constraints (i.e., they satisfy the Maxwell
counting); and n0(z) is the excess number of redundant
constraints at T = ∞. Both s(0) and n0 depend only on z

and the lattice structure. This form of Eq. (9) fails when the
assumption of independent “defects” breaks down, as must
occur near the rigidity transition. However, our numerical
results indicate that this approximation is very accurate; we
see deviations only for |δz| � 0.1.

We numerically test the formula Eq. (9) for a triangular
lattice. The configurations with R redundant constraints are
weighted by e−βR for different values of the parameter β. From
Eq. (9), the mean and variance of the excess number density
of redundant constraints, nex, satisfy the following formulas:

β ≡ ∂s

∂nex
⇒ nex(z,β) = n0(z)e−β, (10a)

�n2
ex(z,β) = −β2 ∂

∂β
nex(z,β) = β2nex(z,β). (10b)

Our numerical results coincide with Eqs. (10a) and (10b)
remarkably well, with minor deviations for |δz| � 0.1, as
shown in Fig. 10.

Applying Eq. (9), we derive the thermodynamics of our
model when α = 0. Solving the saddle point of Eq. (8), we
obtain the average energy density,

1

Ns

E(z,T ) = r0 + nex(z,T )

2

T

1 + T
, (11a)

the specific heat,

1

Ns

C(z,T ) = r0 + 3
2nex(z,T )

2

1

(1 + T )2
, (11b)
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e
x
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,β
)

δz = −0.395
δz = −0.113
δz = −0.055
δz = −0.004
δz = +0.068
δz = +0.131
δz = +0.506

∼ e−β ∼ β2

FIG. 10. (Color online) Left: Excess number density of redun-
dant constraints nex(z,β). Right: Fluctuation of the number density
of redundant constraints (�nr )2. The solid black lines show the
predictions from the approximate entropy Eq. (9).

the excess number density of redundant constraints,

nex(z,T ) = n0(z)

(
1 + 1

T

)−1/2

, (11c)

where r0 ≡ δz
z
	(δz).

As n0(z) is expected to be an analytic function of z, Eqs. (11)
indicate that c converges to the one found in frozen network
model in the limit T → 0: c = 0 when δz < 0 and c = δz/2z

when δz > 0—the dashed yellow line in Fig. 8. This is our
first central result, which shows that our previous results hold
even when the network is adaptive.

Equations (11) predict the energy, specific heat, and the
number density of redundant constraints at an arbitrary
temperature without any fitting parameter. The solid lines,
shown in Figs. 6(a) and 6(b), are predictions of Eqs. (11a)
and (11b), respectively, with nex as the numerical input. They
are closely consistent with the data points, which confirms
the annealed free energy approximation when α = 0. A
T 1/2 power-law with numerical prefactor n0(z) = nex(z,∞)
predicted by Eq. (11c) coincides well with data points in
Fig. 6(c).

Extending to finite glass transition Tg at α = 0, we find
a correction vanishing as

√
δz in addition to c ≈ δz/2z,

assuming Tg ∼ G ∼ δz for z > zc. But this correction is
quantitatively unimportant as n0 � 0.03 and does not change
qualitatively the linear growth of the specific heat when δz > 0,
as illustrated by the solid orange line in Fig. 8.

Our theoretic prediction that nex → 0 when T → 0 vali-
dates the assumptions of Refs. [49,50,54] that the energy of
redundant bonds is proportional to their number, and that this
number is R0 at T = 0.

C. General case

In the thermodynamic limit, Ns → ∞, we take the saddle
point of Eq. (7),

2∂s

∂nr

= ln

(
1 + 1

T

)
−

∫
dωD(ω) ln

(
1 + 1

T

α

ω2 + α

)
(12a)

and

2δs

δD(ω)
= (1 − nr ) ln

(
1 + 1

T

α

ω2 + α

)
(12b)

and solve for energy,

1

Ns

E(z,T ,α) = nr (T )

2

T

1 + T
+ 1 − nr (T )

2

×
∫

dωD(ω,T )
αT

α + (ω2 + α)T
. (13)

The specific heat predictions from differentiating Eq. (13) with
numerical inputs nr (z,T ,α) and Dz,T ,α(ω) are plotted as solid
lines in Fig. 7. [See Appendix, Secs. B–D, for the temperature
dependence of D(ω).] Notice that replacing nr (T ) by δz/z

and D(ω,T ) by its low-temperature limit D(ω) studied in
Refs. [41,61,62], Eq. (13) recovers exactly the one obtained
in the frozen network model, whose predictions are plotted
as dashed lines in Fig. 7. The dashed lines converge to the
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solid lines despite differences at high temperatures for weakly
coordinated networks.

In the limit α → 0 and T � α, Eq. (13) converges to
E/Ns = T/2, which indicates a constant specific heat c = 0.5
when δz < 0 independent of the models. This is shown by the
solid orange line and the dashed yellow line in Fig. 8 and is
our second key theoretical result showing the robustness of
our conclusions for adaptive networks.

V. CONCLUSIONS

In this work, we have studied the correlation between the
elasticity of inherent structures and the thermodynamics in
covalent glass-forming liquids using adaptive network models.
We found numerically and explained theoretically why these
models have a thermodynamic behavior similar to frozen
network models [41], which captures nicely experimental
facts.

The main prediction conclusion of Ref. [41] is thus robust:
as the coordination number approaches zc from above, elastic
frustration vanishes. This leads both to an abundance of soft
elastic modes, as well as a diminution of the number of
directions in phase space that cost energy, which is directly
proportional to the jump of specific heat. Below the rigidity
transition, the elasticity of strong force network vanishes, thus
the energy landscape is governed by the weak Van der Waals
interactions. At these energy scales, all directions in contact
space have a cost, and thus the specific heat increases. Thus,
thermodynamic properties are governed by a critical point at
δz = 0, α = 0 where the jump of specific heat is zero. This
prediction focuses on the configurational part of the jump of
specific heat, since we considered only the energy minima
in the metastable states. In the Appendix, Sec. E, we argue
that the vibrational contribution to this jump is so small in
our models. Thus the main prediction of the specific heat still
holds, even when including the vibrational part.

Beyond network glasses, our main result potentially ex-
plains the correlation between elasticity and the key aspects of
the energy landscape in molecular glasses [19,25,63]. Indeed
according to our work we expect glasses with a strong Boson
peak to display less elastic frustration, so that they have a
limited number of directions in phase space costing energy;
see discussion in Ref. [41].
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APPENDIX

A. Formalism of elastic energy

The energy H (�) of a given spring configuration � ≡ {γ ↔
〈i,j 〉} is defined in Eq. (1) as a minimization on the positions
of the nodes. This minimum can be calculated using conjugate

gradient methods. However, for small mismatches ε, it is more
efficient to use linear algebra [41], as we now recall. Consider
a displacement field δ �Ri ≡ �Ri − �Ri0, where �Ri0 is the position
of the node i in the crystal described in the previous section.
We define the distance || �Ri0 − �Rj0|| ≡ r〈i,j〉. At first order in
δ �Ri , the distance among neighboring nodes can be written as

|| �Ri − �Rj || = r〈i,j〉 +
∑

k

S〈i,j〉,kδ �Rk + o(δ �R2). (A1)

Where S is the structure matrix, which gives the linear relation
between displacements and changes of distances, as indicated
in Eq. (A1). Minimizing Eq. (1), one gets

H (�) = min
{δ �Ri }

⎧⎨
⎩k

2

∑
γ

(∑
i

Sγ,iδ �Ri + εγ

)2

+ k

2

∑
σ

kw

k

(∑
i

Sw σ,iδ �Ri

)2

+ o(δ �R3)

⎫⎬
⎭

= min
{δ �Ri }

k

2
[〈ε|P|ε〉 + 2〈ε|S|δ �R〉 + 〈δ �R|M|δ �R〉],

(A2)

where we use bracket notations to indicate summation over
edges or nodes, P projects the edge space to the subspace
occupied by springs, M ≡ S tS + kw

k
S t

wSw is the stiff matrix
connecting the responding forces and displacements of nodes
in an elastic network [64], and •t is our notation for the
transpose of a matrix. Solving Eq. (A2), one finds the linear
response,

|δ �R〉 = −M−1S t |ε〉, (A3)

which for a given mismatch field |ε〉 minimizes the elastic
energy in Eq. (1). Inserting Eq. (A3) back into the linear
approximation Eq. (A2), we have [41]

H (�) = k

2
〈ε|P − SM−1S t |ε〉 = k

2

∑
�

ε〈i,j〉G〈i,j〉,〈l,m〉ε〈l,m〉,

(A4)

with G = P − S(S tS + kw
k
S t

wSw)−1S t , and ε〈i,j〉 = εγ for
� = {γ ↔ 〈i,j 〉}.

B. Density of states

We have shown the density of states converges to the
one of mean-field networks [42]. Cooling strongly suppresses
low-frequency vibrational modes, as seen in Fig. 11. This tem-
perature effect on the density of states is primarily induced by
the weak interactions: the density of states changes little under
cooling when α = 0, as appeared in comparing Figs. 12(a)
and 12(b). The slight change indicates that the density of states
depends on the presence of redundant constraints. However,
when α > 0, the low-temperature density of states strongly
differs from its high-temperature counterpart, as shown in
Figs. 12(a) and 12(c).

The modes that rarefy under cooling are localized vibra-
tions. The participation ratio, P (ω) ≡ 1

Nd
(
∑

i �
2
ωi)

2/
∑

i �
4
ωi ,

quantifies the extensity of characteristic modes: P → 0 corre-
sponds to a localized mode, while P → 1 means that the mode
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FIG. 11. (Color online) Changes of density of states D(ω,T ) with temperature for the same z = −0.055, α = 0.0003. Left: density of
states in log-log scale. Right: density of states normalized by its T = ∞ value, emphasizing its difference under cooling. Inset: participation
ratio P (ω,T ) variation under cooling.

extends over the system. Both the low- and high-frequency
ends of the density of states are reduced under cooling, but the
modes in the middle are enhanced, as shown in the right panel
of Fig. 11. This agrees with the small participation ratio of
modes with low and high frequencies; see Fig. 12(d). In fact,
all modes become extended—the participation ratio increases
over the whole spectrum—when the temperature decreases, as
shown in the inset of Fig. 11.

In addition to localization, another prominent feature of
reduced low-frequency modes is the power-law diverging
density of states D(ω) ∼ ωd̃−1; see Fig. 12. The abundance
of low-frequency localized modes appearing with a power
law density of states signals the “fractons” that appear near
the rigidity percolation [47,65,66]. The exponent of the
diverging tail, in Fig. 12(a), implies the fracton dimension
d̃ ≈ 0.75, which is consistent with 0.78 observed for the

rigidity percolation [66,67]. Different fracton dimensions d̃

are observed for different coordination numbers in the case
of rigidity window shown in Fig. 12(b), although more work
would be needed to establish this fact empirically.

We discuss when the temperature affects the mode with
frequency ω in Appendix Sec. C and show illustrations of
“fractons” in Appendix Sec. D.

C. Adaptation effects on density of states

When α > 0, following Eq. (6), we find out the typical
elastic energy corresponding to a mode of frequency ω scales
as α/(ω2 + α), which is proportional to α for ω ∼ 1, while
proportional to 1 when ω � √

α. This implies that the elastic
energy in the degrees of freedom corresponding to the modes
of low-frequency is of the same magnitude as the one in the
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FIG. 12. (Color online) Density of states D(ω,T ) for adaptive networks with different z. (a) Random diluted networks T = ∞; a power
law D(ω) ∼ ω−0.25 is shown in the low-frequency range of networks near zcen. (b) Adaptive networks without weak constraints (α = 0) at
T = 0.0003; power laws with different exponents are shown for networks in the rigidity window: D(ω) ∼ ω−0.25 for δz = −0.055, D(ω) ∼ ω−0.5

for δz = 0.0. (c) Adaptive networks with weak constraints (α = 0.0003) at T ≈ α; away from isostatic, the densities of states are gapped
between zero frequency and Boson peak, where D(ω) ∼ ω0. Inset (d) is the participation ratio P (ω,T ) at T = ∞; see text for definition.
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(c)(b)(a)

FIG. 13. (Color online) Vector plots of vibrational modes in randomly diluted networks, N = 100 × 100. (a) A typical Debye mode, δz =
0.501, ω = 0.017. (b) A typical anomalous mode on boson peak, δz = −0.049, ω = 0.011. (c) A typical fracton, δz = −0.049, ω = 0.0007.

redundant constraints. Similar to the redundant constraints,
these low-frequency modes are reduced under cooling.

From Eq. (12b), T ∗(ω,α) ∼ α/(ω2 + α) gives an estimate
of the temperature scale the mode ω begins to be reduced. The
adaptation effect at this temperature scale can be seen in the
right panel of Fig. 11. For example, the dashed green line at
T ≈ 0.04 � 1 shows a density of states with frequencies ω �√

α ≈ 0.01 strongly suppressed, while the shape of the density
of states with ω ≈ 0.1 and above is almost unchanged. The
dotted purple line, T ≈ 10−4 ∼ α, shows a density of states
whose highest frequency ω ∼ 1 is also significantly reduced.

D. Fractons

“Fractons” are different from either the low-frequency
Debye modes or the anomalous modes on the boson peak, as
shown in Fig. 13. They [Fig. 13(c)] are localized and random
compared to the Debye modes [Fig. 13(a)], and concentrated
on the fractal sets with sharp boundaries, unlike the extended
anomalous modes [Fig. 13(b)]. The “fractons” are associated
with the collective motion of large isostatic or nearly isostatic
regions as shown in Fig. 14.

E. Vibrational entropy contribution

The structure of the elastic potential evolves with tem-
perature in the liquid phase of the adaptive network model.
Freezing into a glass phase eliminates this variability and leads
to a contribution to the jump of specific heat [68]. Our model
currently ignores the vibrational part of the specific heat, which
incorporates that the shape of the inherent structure evolves
with temperature—not only its bottom energy. We estimate
this contribution from vibrations in this subsection and argue
that it is not significant for the models we consider.

The vibrational entropy includes both linear ω > 0 and
floppy ω = 0 vibration modes [68]:

svib(T ) = [1 − nr (T )]
∫

dωD(ω,T ) ln
eT

�ω
+ f (T ) ln �.

(A5)

� sets a cutoff volume for floppy modes, which is approx-
imately the atomic spacing measured in the Lindemann’s
length: � ≈ (1/0.15)d [58], of order 103 in 3D [57]. f is the
floppy mode density, dual to the number density of redundant
constraints f (T ) = −δz/z + nr (T ), and thus ∂f (T )/∂T =
∂nr (T )/∂T . The jump of specific heat follows:

�cvib = Tg

∂nr (T )

∂T

∣∣∣∣
Tg

[
ln � −

∫
dωDTg

(ω) ln
eTg

�ω

]

+ [1 − nr (Tg)]
∫

dωTg

∂DT (ω)

∂T

∣∣∣∣
Tg

ln
eTg

�ω
. (A6)

FIG. 14. (Color online) Correlation between a low-frequency
fractal mode and isostatic clusters. A network configuration (δz =
−0.042) is shown with its springs in the over-constrained regions
colored in red, in the isostatic regions colored in green, and in the
floppy regions colored in blue. A typical fracton (ω = 5 × 10−4)
specified in this configuration is plotted on top.

022310-10



ADAPTIVE ELASTIC NETWORKS AS MODELS OF . . . PHYSICAL REVIEW E 92, 022310 (2015)

The derivatives on ln T in Eq. (A5), continuous at the glass
transition, have been subtracted.

We estimate the upper limit of the vibrational contribution.
(1) The first term in Eq. (A6): Debye frequency ωD sets the

upper limit of the integral in the bracket, − ln(eTg/�ωD). As
the glass transition temperature Tg and Debye temperature
θD = �ωD/kB are usually of the same order, the bracket
in the first term is dominated by ln �. From Eqs. (11),
we have ∂nr/∂ ln T |Tg

≈ 1
2nex(Tg) � 1

2n0
√

Tg � 0.02
√

α, and
ln � ≈ 5 in 2D. Compared to the specific heat values, which
are of order one shown in Fig. 7, and the scalings of the
minima −0.1/ ln α given in Ref. [41], the contribution, 0.1

√
α,

is insignificant if 0 < α < 0.1.

(2) The second term in Eq. (A6): The upper limit of the
bracket is 1. Replacing ln(eT /�ω) with its upper limit ln �,
we simplify the integral to

∫
dωT ∂D/∂T . We can estimate

the upper limit of the derivative in the integral approximately
by �nT /� ln T , where �nT is the number density of the
modes reduced under cooling. �nT ≈ 0.2

∫ 0.01
0 ω−0.25dω ≈

0.01, roughly the number fraction of “fractons” suppressed
under cooling. Together, the upper limit of the contribution
of the second term is �nT / ln 10 × ln � ≈ 0.03, which is
moderate compared to the values of order one.

Therefore, the vibrational entropy contributes mildly to
the jump of specific heat and does not change the qualitative
behavior of �c in our model of network glasses.
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