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Strain fluctuations and elastic moduli in disordered solids

Daniel M. Sussman,1,* Samuel S. Schoenholz,1 Ye Xu,1,2 Tim Still,1 A. G. Yodh,1 and Andrea J. Liu1

1Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
2Complex Assemblies of Soft Matter, CNRS-Rhodia-UPenn UMI 3254, Bristol, Pennsylvania 19007, USA

(Received 25 March 2015; published 20 August 2015)

Recently there has been a surge in interest in using video-microscopy techniques to infer the local mechanical
properties of disordered solids. One common approach is to minimize the difference between particle vibrational
displacements in a local coarse-graining volume and the displacements that would result from a best-fit affine
deformation. Effective moduli are then inferred under the assumption that the components of this best-fit
affine deformation tensor have a Boltzmann distribution. In this paper, we combine theoretical arguments with
experimental and simulation data to demonstrate that the above does not reveal information about the true elastic
moduli of jammed packings and colloidal glasses.
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I. INTRODUCTION

Characterizing the elasticity of soft disordered materials
is challenging, in part because these systems often lie at
the boundary of where classical theories of elasticity are
applicable [1]. In jammed harmonic sphere packings, for
example, a length scale below which continuum elasticity
breaks down has been explicitly identified, and this length
diverges upon the approach to the jamming transition [2].
Another complication derives from the presence of nonaffine
distortions that disordered materials experience in response
to imposed deformations. It has been argued that these
nonaffinities arise from spatial fluctuations of local elastic
moduli [3] and finite-temperature effects [4,5].

Since the mid-2000s there has been a surge of experiments
and simulations that aim to calculate elastic constants from
particle-level fluctuations [6–11]. One common approach
focuses on thermally induced microscopic strain fluctuations
[4,8,12,13]. In these studies, the fluctuations of a locally
defined strain field are aggregated over time to arrive at a
distribution of strains at each point. It is assumed that these
strains are drawn from a Boltzmann distribution whose weight
defines a local elastic modulus. Global elastic properties of
the system are then computed by averaging or coarse graining
these local moduli. In the case of crystalline systems [12,13] it
is relatively straightforward to construct a local strain field on a
per-particle basis by appealing to an undeformed lattice. In the
case of amorphous systems, however, such an identification
is no longer possible. Instead, it has been suggested that one
should construct a coarse-grained strain field by computing the
best affine approximation to the collective motion that some
neighborhood of particles undergo [8].

In this paper we argue that thermally induced particle
motion in amorphous solids does not permit the use of
local affine strain distributions (computed as best-fit affine
transformations) to compute elastic moduli. To demonstrate
this concept we consider two systems: a simulation of
harmonic disks in two and three dimensions and a quasi-
two-dimensional experimental colloidal system, studied and
described in detail in Ref. [14]. We rely, in particular, on
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simulations of harmonic disks since their elastic moduli have
been very well characterized by independent measurements
and theoretical analyses. Moreover, these systems can be
simulated at arbitrarily low temperatures to ensure that we
are truly in the regime where linear response is valid. One
quantification of the degree of structural correlations captured
by the best-fit affine transformation, �, are their dependence
on the coarse-graining scale L. If � is to relate to linear
elasticity, then we should expect var[�αβ] ∼ L−d as expressed
in Ref. [8], where α and β specify the indices of the
deformation tensor. We will use this simple scaling relation as
a benchmark throughout our analysis, and we will show that
the structural correlations captured by �αβ are systematically
too weak to relate to the elastic moduli.

We wish to emphasize that defining best-fit local strains in
actively deformed materials can, in conjunction with knowl-
edge of the local stresses, still lead to meaningful information
about the elasticity of disordered materials [15]. Additionally,
tracking particle positional information over a long time can
be effectively used to estimate the covariance matrix of the
system [14]. However, we argue that if there are only thermally
induced fluctuations, then the distribution of best-fit strains
does not contain information about the system elasticity.

In Sec. II we introduce the formalism commonly used
to extract affine strains from thermal fluctuations, and we
highlight some problems with interpreting exponential fits of
the associated distribution to obtain elastic moduli. In Sec. III
we study the simulations in a regime where the correlations
between particle positions and displacements are relatively
small, and we show that a simple statistical model completely
describes the distributions of local strains. The statistical model
accurately predicts the distriubtions for all temperatures,
coarse-graining sizes, and pressures, and we show that these
measurements are emphatically not connected to the elastic
moduli of the systems. In Sec. IV we discuss simulation
and experimental measurements in a regime with increasingly
large particle position and displacement correlations. While
the correlations that enter the calculation of the best-fit affine
deformation tensor in this regime might be expected to enable
one to deduce the elastic moduli, we again find that this is
not the case. We discuss these results and their consequences
for interpreting experimental data in Sec. V. The Appendices
present a reformulation of the quantity D2

min used to define �αβ
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(Appendix A), the statistical model used to understand the data
in Sec. III (Appendix B), and the details of the simulations and
experimental systems studied (Appendix C).

II. IDENTIFYING LOCAL STRAINS
FROM THERMAL FLUCTUATIONS

We begin by introducing the formalism that has most
commonly been used to extract affine strains from thermal
fluctuations. As mentioned above, the most-studied practical
solution to the problem of nonaffinities is to find the best-fit
affine transformation of local particle positions at time t − �t

onto particle positions at time t and then study distributions
associated with this affine component of particle motion. This
scheme is commonly done using a measure of nonaffinity,
D2

min, originally introduced by Falk and Langer [16]. One
version of this calculation considers a local square or cubic
coarse-graining volume of side length L centered at point �R.
The motion of the particles j in that local volume are tracked
between times t − �t and t and then one computes the devi-
ation of their displacements from those described by a best-fit
affine transformation over that time window [16]. Explicitly,

D2(t,�t) =
∑

j

∑
α

{
rα
j (t) − Rα

−
∑

β

(δαβ + �αβ)
[
r

β

j (t − �t) − Rβ
]}2

. (1)

Here the Greek indices run over the Cartesian coordinates, �rj (t)
is the position of particle j at time t , � is an affine transforma-
tion tensor, and δαβ is the Kronecker delta. This quantity is then
minimized over all possible affine transformation tensors, �αβ :

D2
min(t,�t) = min

�αβ

D2(t,�t). (2)

Solving for the minimizing affine transformation is
straightforward. Defining

Xαβ =
∑

j

[
rα
j (t) − Rα

][
r

β

j (t − �t) − Rβ
]
, (3)

Yαβ =
∑

j

[
rα
j (t − �t) − Rα

][
r

β

j (t − �t) − Rβ
]
, (4)

the best-fit tensor can be written as

�αβ =
∑

γ

Xαγ Y−1
βγ − δαβ. (5)

The standard approach [8] has then been to assume that
these strains are drawn from a Boltzmann distribution whose
energy is given by the elastic energy E/μ = �2

αβLd , where
μ is the elastic constant. If this assumption holds, then the
probability distribution of the squared strain components is
given by P (�2

αβ ) ∼ exp(−μ�2
αβLd/kT ) and the modulus

can be extracted by fitting the logarithm of the probability
distribution to a straight line.

To test this basic claim we plot, in Fig. 1, the distributions
of �2

αβ as measured for small �t for both two-dimensional
(2D) and 3D harmonically repulsive disks, as well as for the
colloidal system at longer �t . We find that this distribution has
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FIG. 1. (Color online) Probability distribution of Ld�2
xy for sim-

ulations in d = 2 (upper red circles) and d = 3 (lower blue circles)
of harmonic repulsive spheres at T = 10−5. Curves are best-fit χ 2

distributions. Inset: Probability distribution of the unscaled �2
xy for

the experimental colloidal system.

a pronounced curvature on a log-linear scale, suggesting that
a simple exponential decay is a poor description of the dis-
tribution. A similar curvature in this distribution was reported
by Rahmani et al., where it was interpreted to result from a
heterogeneous distribution of local moduli [17]. However, as
shown in the figure, we find that the simulation distributions
are accurately described by a simple χ2 distribution coming
from the square of a single Gaussian random variable. Indeed,
Ganguly et al. showed that a perfect hexagonal lattice at low
temperatures has a Gaussian distribution of �xy [5], implying
that there, too, the distribution of �2

xy would take a χ2 form
and not appear as a straight line on a log-linear plot. Given
that this qualitative signature of a heterogeneous distribution
of elastic moduli can be completely reproduced in the context
of a simple statistical model with a single underlying Gaussian
distribution (as discussed in more detail below), our results for
disordered solids reinforce the message that it is hazardous to
fit exponential decays to these distributions and then interpret
the result as elastic moduli.

We note that an alternate definition of the best-fit affine
deformation tensor that is commonly used, and is due to
Cundall [18], first subtracts rigid-body displacements of the
local clusters center of mass before computing the affine
distortion. Since amorphous materials can have large low-
energy fluctuations compared to crystalline systems, these
center-of-mass displacements could, in principle, be important
in our analysis, particularly for relatively small coarse-graining
lengths. However, we have carefully checked that the conclu-
sions in our paper are insensitive to this definitional choice.

In the following we will systematically study the distribu-
tions of �αβ from our simulations as a function of initial system
pressure p, the time window �t , coarse-graining scale L, and
temperature T . We will supplement this with experimental
data for a 2D colloidal sample. By varying the �t at which
we compute the best-fit affine deformation tensor between the
ballistic regime and the cage regime we can systematically
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tune the amount of correlation between displacements of a
particle and its local environment. In no regime do we find
a connection between measured distributions of affine strains
and elastic moduli.

III. STRAIN MEASUREMENTS FOR SMALL �t

In the ballistic regime of small �t (where time is mea-
sured in units of τ , the Lennard-Jones-like time unit of
our simulation) there are only relatively small correlations
between the frame-to-frame displacements of particles and
their initial positions. As such, we expect that the measurement
of locally coarse-grained �αβ can be understood as the
result of measuring single-point particle fluctuations and then
averaging over a locally amorphous environment. Although
our experimental data are well out of this regime, it is easily
probed in our simulations. Clearly, in this regime the system
lacks the particle-displacement correlations necessary to be
described as a solid. Nevertheless, our exploration of this
regime enables us to unambiguously identify an existing
problem in how strain distributions have been analyzed in
amorphous solids [8,17]. It also enables us to set up a
convenient metric for how the strain variances must vary with
coarse-graining scale in order to be interpreted as moduli.

As we show in Appendix A, the calculation of the best-fit
affine deformation tensor in a local coarse-graining volume
can be usefully formulated as

�αβ =
∑

j

�jα

(∑
γ

Aγ rjγ

)
, (6)

where the first sum is over all particles j in the local coarse-
graining volume, �jα is the frame-to-frame displacement of
particle j in the α direction, the Aγ are quantities related to the
initial positions of all particles in the local volume, and rjγ is
the γ component of the position of particle j at time t − �t . In
the limit of small correlations between displacements and local
structure, then �αβ can be approximated as a sum of random
variables, where �jα is drawn from a Gaussian distribution
whose width, σ�, is set by the density and temperature of

the system and which is uncorrelated with the structural
parameters Aγ .

In Appendix B we combine this idea with the simplest
possible model of the spatial structural parameters Aγ , treating
the positions of particles within the local coarse-graining
volume as being uniformly distributed with no excluded
volume. By the central limit theorem this simple statistical
model predicts that �αβ will have an approximately Gaussian
distribution. Given a measurement of σ� and the particle
number density, Appendix B provides a prediction for its
variance.

Despite the naivete of this model, we find that the
distributions of �αβ when measured with a small �t are
remarkably well described by sums of Gaussian random
variables multiplied by uncorrelated, ideal-gas-like structural
parameters. Figure 2 demonstrates this, showing that the
distributions of �xx and �xy collapse when scaled by
the appropriate powers of temperature and coarse-graining
scale predicted by the model. Additionally, as expected by the
model, the distributions for every component of �αβ is nearly
identical. Even more remarkably, the simple statistical model
predicts the variance of the observed Gaussian distributions to
within 10%.

Given that the variances are so well described by a statistical
model with no positional correlations and no correlations
between particle positions and displacements, any effort to
extract elastic moduli from this measurement is doomed to
failure. As a simple demonstration of this failure, we follow
Ganguly et al. and interpret var[�xx + �yy] as the bulk com-
pliance and var[�xy + �yx] as the shear compliance [5] [given
that P (�2

αβ) is so well-described by a χ2 distribution it makes
little sense to fit a straight line to it]. Explicitly, as a function
of coarse-graining volume L the relationship between the bulk
and shear modulus and local strain fluctuations is given by

var[�xx + �yy] = kBT

L2
[B(L) + G(L)]−1, (7)

var[�xy + �yx] = kBT

4L2
[G(L)]−1. (8)
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FIG. 2. (Color online) Collapsed probability distributions of P (�xx) (blue points) and P (�xy) (red points) as computed for �t = 2τ .
(a) Scaling collapse of P (�αβ ) for 2D simulations with

√
T for coarse-graining scale L = 2, p = 10−2 and temperatures of T = 10−5, 2 ×

10−5, 4 × 10−5, 6 × 10−5, 8 × 10−5, 10−4. Dashed line is the prediction from Appendix B. (b) Scaling collapse of P (�αβ ) for 2D simulations
with L2 for T = 10−5, p = 10−2, and L = 2, 4, 6, 8, 10, 12, 14. Dashed line is the prediction from Appendix B for the L = 6 data set.
(c) Scaling collapse of P (�αβ ) for 3D simulations with L2.5 for T = 10−5, p = 10−2, and L = 2, 4, 6, 8, 10, 12, 14.
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FIG. 3. (Color online) Inverse variance of �xx (blue circles) and
individual particle displacement magnitude (red squares) for 2D
simulations with T = 10−5 and L = 4 as a function of pressure,
normalized by the value at p = 10−4. Dashed line is the predicted
scaling of the bulk modulus with pressure. Inset: Ratio of the variance
of the diagonal to off-diagonal component of �αβ as a function of
pressure. The corresponding ratio of moduli scales as G/B ∼ √

p

(dashed line).

We then plot the moduli—the inverse compliances—in Fig. 3
as a function of pressure for our simulated systems. Notably,
the ratio of the bulk to the shear modulus is constant, whereas
it is known that these jammed packings have a ratio that scales
with the square root of the pressure, G/B ∼ √

p [19]. Both
the bulk and shear moduli scale with the true bulk modulus of
the system (the dashed line in the figure); the overall scale of
fluctuations, σ�, itself tracks the scaling of the bulk modulus.
Thus, this measurement could be used to extract the scaling
of the bulk modulus with, e.g., pressure, but not its absolute
magnitude—of course, this scaling can be more more easily
extracted by simply measuring the scale of the fluctuations
directly.

The fact that in the small-�t regime the �αβ are single-
particle quantities whose variance scales as L−4 in two
dimensions and L−5 in three dimensions is a useful reference.
Recall that the energy proposed by Schall et al. scales as
E/μ = �2

αβLd and, moreover, that the mean of �αβ is zero.
It follows that if E/μ is to be well defined in the limit of
large coarse-graining sizes the variance of �αβ must scale as
L−d . Therefore in the regime of small �t , where var[�αβ] ∼
L−d−2, the variance of �αβ cannot yield a well-defined elastic
modulus. Even though Fig. 3 already demonstrated this to be
the case, the necessary condition that var[�αβ] ∼ L−d in the
range of L considered will be useful to keep in mind when we
continue to the cage regime where we can no longer rely on
an analytic model.

IV. MEASUREMENTS IN THE PLATEAU REGIME
OF THE MEAN-SQUARED DISPLACEMENT

The above section is a useful illustration that distributions
of �2

αβ should not always be interpreted in terms of elastic
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FIG. 4. (Color online) (a) P (�xx) (red-to-orange color scale) and
P (�xy) (dark-to-light blue color scale) for 2D simulation data with
p = 10−2, T = 10−5, L = 4 for �t/τ = 2, 10, 20, 50, 100, 200.
Data sets with smaller variance correspond to shorter �t . (b) P (�2

xy)
normalized by the variance for the above �t (red points correspond
to the shortest �t , light blue points to the longest �t). Dark blue open
circles are experimental data. The solid curve shows a unit-variance
χ 2 function, which matches the short-time data very well.

moduli. However, it is perhaps not surprising that the relatively
uncorrelated nature of particle positions and frame-to-frame
displacements in the ballistic or crossover regimes of �t can
be understood in terms of sums of Gaussian random variables
and not in terms of elastic moduli. By increasing the �t

we can continuously tune the degree of correlation between
the particle displacements and the local structure, and one
hypothesis is that it is precisely these correlations that allow
one to probe the elastic moduli of the system in question.

In Fig. 4 we show how the distributions P (�αβ) change as
�t is continuously increased from the ballistic regime to deep
into the plateau regime. The most apparent change is that the
variance of the diagonal and off-diagonal components of �αβ

begin to separate. However, we also see that the distributions
become increasingly non-Gaussian. Figure 4(b) highlights the
change in the tails of these distributions, showing that as �t is
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FIG. 5. (Color online) (a) Inverse variance of P (�xx) as a func-
tion of �t for pressures between p = 10−2 (blue, upper curve) and
p = 10−4 (red, lower curve). Inset: Ratio of the variance of the
diagonal to the off-diagonal components of �αβ as a function of �t .
(b) Ratio of variance of diagonal and off-diagonal components of �αβ

as a function of pressure for �t/τ = 2,20,200. The corresponding
ratio of moduli scales as G/B ∼ √

p.

increased the distribution of P (�2
αβ) continuously shifts from

being extremely well characterized by a χ2 fit to one with
an apparent power-law tail. We note that the experimental
data in this plot are much deeper into the plateau regime
of the mean-squared displacement than our simulation data.
Nevertheless, the robust presence of a power-law tail in both
the simulations and experiments further emphasizes the danger
of fitting exponential decays to different parts of P (�2

αβ)
distributions and of interpreting those fits as elastic moduli.

However, given that there are clearly some increasing
correlations being picked up by the P (�αβ) distributions,
one may wonder if the variances of these distributions are
related to the elastic compliances. In Fig. 5 we plot inverse
variances as a function of �t and p. Once again we see that
the ratio of moduli estimated in this way is independent of

10−8

10−7

10−6

10−5

10−4

10−3

4 5 6 7 8 9 10 20

va
r[

Λ
x
x

+
Λ

y
y
]

L

10−8

10−6

10−4

2 4 10 20

va
r[

Λ
α

α
]

L

FIG. 6. (Color online) var[�xx + �yy], as a function of coarse-
graining size L in the simulation of two-dimensional harmonic disks
for pressures from p = 10−2 (blue, bottom lines) to p = 10−3.4 (red,
top lines). Overlaid in black is a line with slope −3. Here �αβ was
calculated with �t = 5 × 104, deep into the caged regime. Inset:
var[�xx + �yy] as a function of coarse-graining scale (measured
in microns) for area fractions φ = 0.8625,0.8695,0.8822 (top to
bottom).

pressure, in stark contrast to the true elastic constants of these
systems. Thus, although there are additional correlations in
these data sets, they are not straightforwardly connected to the
appropriate integrals over the covariance matrix that would
allow one to correctly extract elastic constants.

Finally, as in the case of our measurements at short �t , we
can attempt to understand with a finite-size analysis whether
�αβ has the necessary correlations with local structure to hope
to extract elastic moduli from it. To this end, we once again
consider how the variance of the strain tensor scales with
the size of the coarse-graining region used to construct it.
In Fig. 6 we see that the variance of �xx + �yy (which one
hopes to interpret as the bulk compliance) scales with L−3

in two dimensions, again in contrast to the L−d scaling that
any sensible definition of strain must have. We conclude that
although �αβ has more correlation with structure in the cage
regime than in the ballistic regime, it still cannot be used to give
a well-defined elastic moduli. This scaling with L highlights a
danger of fitting limited ranges of data without systematically
checking the dependence on the coarse-graining scale. In
Appendix C, we explore the unphysical behavior of the
inferred elastic moduli if one attempts to artificially fit small
portions of the strain distributions to exponential decays.

V. DISCUSSION

With a combination of simulation and experimental data,
we have demonstrated that for model-disordered solids it is
incorrect to connect exponential fits of P (�2

αβ ) with elastic
moduli. In the limit of small �t , we have presented an analytic
model for the distributions of squared strain deformation tensor
components. The model makes clear that the curvature of
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P (�2
αβ) on a log-linear plot can be completely explained as a

χ2 distribution coming from the square of a single underlying
Gaussian distribution, i.e., rather than from heterogeneous
distribution of local elastic moduli.

Furthermore, we have shown that for any choice of �t

the ratio of variances of �xx and �xy for these systems
is essentially constant, with the ratio depending on the �t

window chosen but independent of the pressure of the sphere
packings. In contrast, the global measurement of G/B for these
systems scales with the pressure of the packings, G/B ∼ √

p.
Thus, the ratio of the variances of these distributions does not
correctly capture G/B, i.e., contrary to assumptions made in
the literature [8,17]. Moreover, we find that the variance of the
strain in the cage regime scales with L−3 in two dimensions in
both simulation and experiment. This implies that the strain,
as computed via the best-fit affine transformation, does not
have enough information about local structure to reliably
extract elastic moduli. We contrast this with two-dimensional
crystalline systems [6,9] where a similar protocol reported
variances that scaled with L−2 and elastic moduli consistent
with other measurements were successfully extracted.

Despite the fact that we find the variances of the best-
fit affine strain distributions to be unrelated to the elastic
moduli, we note that previous studies in amorphous ma-
terials have found spatial strain-strain correlations with a
quadrupolar signature in the nonlinear response involving
particle rearrangements [20]. This hallmark of continuum
elasticity is characterized by a power-law decay in the strain
correlations far from the rearrangement. In the linear response
of quiescent systems, by contrast, we are not aware of any
experiment or simulation of amorphous solids that shows that
the best-fit affine strains arising from thermal motion have
detectable power-law correlations, although such correlations
must exist. Indeed, Rahmani et al. find that, in the absence
of external strain, the strain-strain correlation function decays
exponentially (with a length scale on the order of a single
particle diameter) [17].

The difference in this respect between crystalline and amor-
phous materials can be understood by considering the low-
frequency excitations of the respective systems. In colloidal
crystals (e.g., the hexagonal lattices studied in Refs. [6,9])
the only vibrational modes are longitudinal and transverse
sound modes that are (a) intimately related to the elasticity
of the system and (b) spatially extended. We expect, via the
equipartition theorem, that thermal fluctuations will populate
these modes, leading to extended and strongly correlated strain
profiles. By contrast, disordered solids have a large population
of vibrational modes that are extended but disordered (e.g.,
in the boson peak). These modes span the system but have
exponentially decaying local spatial correlations. Thermal
population of these modes leads to strain profiles whose
correlations are similarly exponentially localized; this is
another argument for why measuring affine best-fit strains
generated entirely by thermal fluctuations does not lead to
meaningful information about the elasticity of disordered
materials. In contrast, measuring these quantities in actively
stressed or strained systems may still lead to meaningful
information, as was discussed in a different context in Ref. [15]
(see also below).

The disordered solids whose elasticity we are testing
have explicit length scales, whose scaling for our model
system goes as l∗ ∼ p−1/2 and lc ∼ p−1/4 [2,21], below
which continuum elasticity fails to describe the response of
these solids to imposed forces and deformations. We can
estimate the magnitude of these length scales as ranging
from l∗ ≈ 7.1σ and LT ≈ 2.7σ at p = 10−2 to l∗ ≈ 71σ and
LT ≈ 8.4σ at p = 10−4. The range of coarse-graining length
scales considered may be compared to the characteristic size
of structural heterogeneities that lead to fluctuations in the
local elastic moduli. In a jammed solid, these heterogeneities
are expected to be on the scale of �T or, at worst, �∗. At
the pressures studied, we have chosen coarse-graining scales
that satisfy both L � �∗ and L � �∗. In both of these limits,
comparing these lengths with the data in Fig. 6 suggests that
the measurement of local affine strains is unable to detect the
presence of these length scales, further undermining the claim
that var[�αβ] is, on its own, intimately related to the local
moduli.

We note that other methods for defining local strain fields
and then connecting these to local elastic moduli have been
proposed. Tsamados et al. [15] studied a linear strain tensor,
εlin, constructed from a continuous displacement field that
was itself a coarse graining of local particle motion. In
contrast to the methodology discussed here, Tsamados et al.
also measured a local stress tensor, computed by a similar
coarse graining, and defined the local moduli to be the
constant relating these coarse-grained strains to coarse-grained
stresses. Unfortunately for experimental measurements, the
computation of the local stress fields requires knowledge of
interparticle forces, which are typically difficult to identify in
experimental systems. However, it might be interesting to see
whether the thermal fluctuations of this, or other, definitions
of local strain can be used in an argument in the spirit of Schall
et al. [8].

Another approach that has proven fruitful is to extract
the particle-displacement covariance matrix from microscopic
measurements. The bulk and shear moduli of the system
can then be estimated from the inferred longitudinal and
transverse speeds of sound in the material [14]. However,
this method suffers from a few noted disadvantages. Most
significantly, a large amount of data is needed before the
covariance matrix converges; this amount increases linearly
with the number of particles in the system, Ld , where L is
the system length and d the dimensionality [22]. Second,
disordered systems contain excess vibrational modes at low
frequency that obscure the longitudinal and transverse acoustic
branches of the phonon spectrum in systems that are too small;
this effect scales as 1/L. Together, these issues limit the utility
of the covariance-matrix-approach to systems that are neither
too large nor too small. This, then, explicitly limits the use
of this tool when the distributions and spatial organization of
elastic moduli are of interest.

In closing, our results highlight the subtlety of measuring
the elasticity in soft disordered systems: A methodology
that has been well validated for two-dimensional crystalline
systems fails spectacularly when applied to numerical sim-
ulations of disordered soft repulsive disks and laboratory
experiments on colloidal packings. In light of this failure, we
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emphasize the critical importance of validating new methods
of probing elastic constants by first testing them systematically
against model systems whose properties are known by more
conventional elasticity measurements.
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APPENDIX A: DEFINING LOCAL NONAFFINITY

In this Appendix and the following we derive a simple statis-
tical model that, for small �t , almost completely captures the
behavior of the components of the best-fit affine deformation
tensors discussed above. For convenience, we first review an
equivalent formulation of the D2

min language. In Appendix B
we will employ this language to make simple estimates of the
variances of �αβ .

1. Operator expressions for nonaffinity

Here we closely follow the language of Ganguly et al.
[5]. In what follows roman indices will refer to particles and
Greek indices to spatial coordinates. We begin by defining the
initial position of particle i, r0

iμ. This could be the position
of the particle at time t − �t as in the D2

min definition, or we
could take it to be the inherent structure position of particle
i or its time-averaged position. Displacements from these
initial positions will be written as uiμ(t) = riμ(t) − r0

iμ. For
computing the local nonaffinity for particle i, we additionally
define displacements relative to that particle as ��j (t) =
�uj (t) − �ui(t). Note that it is common to choose a reference
position about which to define a local coarse-graining volume,
instead of a reference particle. In that case r0

iμ simply sets the
origin of the local coordinate system, which does not change
between time t − �t and time t . In the following we will drop
the explicit dependence on t in our expressions when it is clear
from context.

We next define an intensive measure of the local nonaffinity
of displacements relative to a reference particle in an analogous
way to D2

min:

χi = 1

N
min

�

⎧⎨
⎩
∑
〈ij〉

( ��j − �
[�r0

j − �r0
i

)]2

⎫⎬
⎭, (A1)

where the sum runs over all particles j in the neighborhood
considered and N is the number of particles in that neigh-
borhood. Without the factor of 1/N and taking �r0

j to be the
particle position at time t − �t , the nonaffinity χ is exactly
equal to the definition of D2

min in the main text. Independent
of the presence of the prefactor 1/N the tensor �αβ here is
identical to the best-fit affine deformation tensor defined in
the Introduction. Dividing out by the number of neighbors has

been previously used to study thin films and pillars, where
particles near the interface have many fewer neighbors than
those in the center of the sample [23,24]. Nevertheless, since
below we will be exclusively interested in the distribution of
the components �αβ the choice of an extensive or intensive
definition of the total nonaffinity is irrelevant.

In order to express both χ , and especially �, in a convenient
operator form we define the following matrices. First, where
d is the spatial dimension, we write the (1 × dN) matrix

� = (�11, . . . ,�1d ,�21, . . . ,�2d , . . . ,�Nd ), (A2)

which compactly writes all of the relative displacements in a
convenient order. Next we define the (d2 × 1) matrix

λ = (�11, . . . ,�1d , . . . ,�dd )T . (A3)

This simply unwraps the components of the best-fit � affine-
deformation tensor into a one-dimensional array. Finally, we
define the (dN × d2) matrix:

Rjα,γ γ ′ = δαγ

(
r0
jγ ′ − r0

iγ ′
)
. (A4)

This is a particularly convenient matrix with which to describe
the initial relative positions of particles in the neighborhood of
the reference particle.

We are now in a position to express the nonaffinity in a very
compact fashion. With the above definitions we have

χ = 1

N
min�[� − Rλ]2

= 1

N
min�[�T � − �T Rλ − λT RT � + λT RT Rλ]. (A5)

Taking dχ/dλ and solving gives the minimizing affine
deformation:

λ = (RT R)−1RT � ≡ Q�. (A6)

Given this minimizing λ, the nonaffinity can be written as

χ = 1

N
(� − RQ�)2

= 1

N
�T [1 − 2R(RT R)−1RT + R(RT R)−1RT ]�

≡ 1

N
�T P�. (A7)

The above expression defines a projection operator P =
1 − RQ which projects components of � onto the space of
nonaffine deformations.

2. Specialization to two dimensions

For concreteness, we explicitly write down an expression
for the components of � for a two-dimensional system. Taking
a reference position r0

iμ to set the origin of our local coordinate
system, we have Rjα,γ γ ′ = δαγ r0

jγ ′ for each particle j in the
coarse-graining area that we choose. The matrix (RT R)−1 then
has a simple structure:

(RT R)−1 =

⎛
⎜⎝

C B 0 0
B A 0 0
0 0 C B

0 0 B A

⎞
⎟⎠, (A8)
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where

a =
∑

j

(
r0
jx

)2
; b =

∑
j

r0
jxr

0
jy ; c =

∑
j

(
r0
jy

)2

A = a

ac − b2
; B = −b

ac − b2
; C = c

ac − b2
. (A9)

Thus, in two dimensions the operator Q can be written as a
combination of d2 × d blocks, each of which looks like

Q = (RT R)−1RT

=

⎛
⎜⎜⎜⎜⎝· · ·

Cr0
jx + Br0

jy 0

Br0
jx + Ar0

jy 0

0 Cr0
jx + Br0

jy

0 Br0
jx + Ar0

jy

· · ·

⎞
⎟⎟⎟⎟⎠, (A10)

This lets us compactly write any component of � using
λ = Q�, e.g.,

�xy =
∑

j

�jx

(
Br0

jx + Ar0
jy

)
. (A11)

By writing the best-fit affine transformation tensor as a linear
operator acting on the fluctuations it is already clear that one
would not in general expect, e.g., an exponential distribution
of �2

xy for short �t . The relative displacements ��j can be
assumed to be normally distributed, after which the algebra of
random variables suggests that �2

xy has a χ2 form. In the next
section we show that a simple statistical model reproduces the
distributions of �xy that we observe in our simulations.

APPENDIX B: STATISTICAL MODEL

Here we show that in a disordered material we can use
the algebra of random variables to accurately predict the
distributions associated with �αβ at short �t . As seen in
Fig. 2, and as could be anticipated from the functional form
of Eq. (A11) in the absence of symmetry constraints and
correlations, all of the components of � have nearly identical
distributions when averaged over our disordered systems. Our
goal in this section will be to predict the variance of �αβ as a
function of the typical scale of the fluctuations of � and the
size of the coarse-graining volume. To do so, we start from
a simple model for single-particle positional distributions and
build up to the distribution of the best-fit affine deformation
tensor.

For simplicity, we focus on the two-dimensional case, and
our dominant assumption will be a lack of structural order in
the square coarse-graining cells. Hence, for a square coarse-
graining square of side length L = 2R we take the r0

jα to be
uniformly distributed in (−R,R), i.e., to have a probability
distribution given by

Pr0
jα

(x) =
{

1
2R

|x| < R

0 |x| > R
. (B1)

The building blocks of the best-fit affine deformation tensor
involve sums of products of these single-particle distributions.

It is straightforward to show that

Pr0
jx r

0
jy

(x) =
{

1
2R2 log

(
R2

|x|
) |x| < R2

0 |x| > R2
, (B2)

P(r0
jα )2 (x) =

{ 1
R

√
x

0 < x < R2

0 otherwise
. (B3)

To make further progress we invoke the central limit
theorem to describe the a, b, and c random variables. Let
n = ρ(2R)d , where ρ is the number density, denote the average
number of particles in a local coarse-graining volume and the
symbol N (μ,σ ) denote a Gaussian distribution with mean μ

and width σ . Then we approximate

a(x) =
n∑

j=1

P(r0
jα )2 (x) ≈ N

(
nR2

3
,
2R2√n√

45

)
≈ c(x),

(B4)

b(x) =
n∑

j=1

Pr0
jx r

0
jy

(x) ≈ N
(

0,
R2√n

3

)
.

We next approximate the denominators that appear in the
random variables A,B, and C, i.e., (ac − b2). The b2 part is
trivial and is given by

Pb2 (x) ≈ 3 exp
( −9x

2nR4

)
√

2πnR4x
. (B5)

The product ac can be written as the sum of two general χ2

distributions:

ac = (a + c)2

4
− (a − c)2

4

= 1

4

[
N
(

2nR2

3
,

√
8n

45
R2

)]2

− 1

4

[
N
(

0,

√
8n

45
R2

)]2

.

(B6)

Note that both the second term in Eq. (B6) and the distribution
of the b2 have their weight centered about zero, whereas the
first term in Eq. (B6) has a large positive mean. For simplicity
we thus approximate the expression (ac − b2) by a single
noncentral χ2 random variable:

ac − b2 ≈ 1

4

[
N
(

2nR2

3
,

√
8n

45
R2

)]2

. (B7)

Defining σac = R2
√

8n/45, the quantity 4(ac − b2)/σ 2
ac is a

noncentral χ2 random variable with noncentrality parameter
λ = 5n/2 and number of summed normal variables k = 1.
This allows us to write the first moment and variance of (ac −
b2) as

〈ac − b2〉 ≈ nR4(2 + 5n)

45
, (B8)

var[ac − b2] ≈ 8n2(1 + 5n)R8

2025
. (B9)

We now approximate the mean and variance of, e.g., A and
B by the lowest-order terms in the Taylor expansion for the
ratio of random variables, neglecting any covariance. That is,
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for random variables X and Y we approximate〈
X

Y

〉
≈ 〈X〉〈Y 〉2

〈Y 〉3
+ 〈X〉var[Y ]

〈Y 〉3
+ · · · (B10)

var

[
X

Y

]
≈ var[X]〈Y 〉2

〈Y 〉4
+ 〈X〉2 var[Y ]

〈Y 〉4
+ · · · . (B11)

We find

〈A〉 = 15

(2 + 5n)R2
+ 120(1 + 5n)

(2 + 5n)3R2
, (B12)

var[A] = 180

n(2 + 5n)2R4
+ 1800(1 + 5n)

(2 + 5n)4R4
(B13)

〈B〉 = 0, (B14)

var[B] = 225

n(2 + 5n)2R4
. (B15)

The penultimate step is to consider the variance of the
products �jxAr0

jy and �jxBr0
jx . We again simply assume that

the rjα are uniformly distributed and that the �jα are normally
distributed with zero mean and width σ�. Using the relation
that the variance of a product of random variables Xi is

var[X1X2 · · · Xn] =
∏

i

(var[Xi] + 〈Xi〉2) −
∏

i

〈Xi〉2

(B16)
we have that

var
[
�jxAr0

jy

] = 75σ 2
�

(2 + 5n)2R2
+ 60σ 2

�

n(2 + 5n)2R2

+1800σ 2
�(1 + 5n)

(2 + 5n)4R2
+ · · · (B17)

var
[
�jxBr0

jx

] = 75σ 2
�

n(2 + 5n)2R2
+ · · · . (B18)

We are finally in position to evaluate the variance of the
components of the best-fit affine deformation tensor. Since

�xy =
∑

j

�jx

(
Br0

jx + Ar0
jy

)
(B19)

we assume that the variance from each particle in the local
coarse-graining volume contributes identically and thus have

var[�xy] ≈ n
(
var

[
�jxAr0

jy

] + var
[
�jxBr0

jx

])
, (B20)

where the variances in this equation are given by Eq. (B17).
A comparison between this equation and the simulation data
(using the measured σ�) is shown in Fig. 2, where it is
seen to be an excellent estimate of the variance: with no
adjustable parameters, and completely ignoring correlations
from excluded volume (or any other source), this simple model
describes the variance measured in the simulations to within
10%.

APPENDIX C: SYSTEM PREPARATION

1. Simulation details

Our simulations are of frictionless packings with periodic
boundary conditions composed of equal numbers of small and
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M
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t/τ
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103

0.01 0.1 1 10

M
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(n
m

2
)

t(s)

FIG. 7. (Color online) Mean-squared displacement (in units of
particle diameters) for p = 10−3.4, 10−3.0, 10−2.4, 10−2.0 (top to
bottom). Inset: Mean-squared displacement in units of nm for the
colloidal system for φ = 0.8625,0.865,0.8695,0.8775,0.8822 (top
to bottom).

large spheres with a diameter ratio 1:1.4 and of equal mass, m.
The particles interact with a repulsive, finite-ranged potential

V (rij ) =
{

ε
2

(
1 − rij

σij

)2
rij < σij

0 rij > σij

, (C1)

where rij is the distance between particles i and j , σij is
the sum of the particles’ radii, and ε determines the strength
of the interaction. We report energies in units of ε and
distances in units of the average particle diameter. Time is
measured in units of

√
ε/(mσ 2). We used this model to study

1024-particle systems in 2D and 4096 in 3D for a range
of pressures between p = 10−2 and p = 10−4. The initial
configurations of these systems were set by first placing the
particles at random in an infinite-temperature configuration
and then quenching to T = 0 using a combination of linesearch
methods, Newton’s method, and the FIRE algorithm [25]. We
then performed low-temperature molecular dynamics using
the LAMMPS package [26]. For ease of comparing our time
scales with the typical glassy crossover from ballistic to caged
to diffusive behavior, mean-squared displacement curves for a
subset of our 2D simulations are shown in Fig. 7.

In both the simulations and the experiments we compute
the local nonaffinity and best-fit affine deformation tensors as
described in the text by partitioning the system into squares
(cubes in 3D) of a given side length. Thus, we compute with
respect to a local origin of a coordinate system rather than with
respect to tagged reference particles. We have confirmed that
this choice does not affect our conclusions.

2. Experimental details

Our experimental systems are quasi-two-dimensional pack-
ings of poly(N -isopropyl acrylamide) (PNIPAM) microgel
particles. The full details of the experimental setup and data
acquisition are reported in Ref. [27]. In brief, the disordered
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packing was prepared using a binary particle suspension
with PNIPAM particles of two diameters: σ1 ≈ 1.0 μm and
σ2 ≈ 1.4 μm. The sample was confined between two cover
slips (Fischer Scientific) and then sealed from the edges
with optical glue (Norland 63) [28]. Since PNIPAM is a
temperature-sensitive polymer, the particle diameters can be
controlled by changing the temperature. Thus, we tuned the
effective packing fraction of the sample, φ, in situ using an
objective heater (BiOptics). The temperature was set to a
narrow range of 26.4 ◦–27.2 ◦C so the packing was above the
jamming point. For each temperature studied, the trajectories
of N ≈ 4500 particles in the field of view were extracted from a
total of 30 000 frames of video using standard centroid-finding
and particle-tracking techniques [29]. D2

min calculations were
done by first subtracting the global drift of the sample and
then using �t = 0.273 s, a value which is well into the plateau
region of the mean-squared displacement [14], as seen in the
inset to Fig. 7.

Under experimental conditions, where the full distribution
and its heavy tail may not always be accessible, it may
be tempting to try to fit to an exponential decay to these
distributions over some limited dynamic range. Thus, in Fig. 8
we briefly mention the results of approximating the observed
experimental distributions of (�xx + �yy)−2 by exponential
decays using an artificially restricted dynamic observation
range. In the main plot we show exponential fits to the squared
strain distributions as a function of coarse-graining size, and
there is little agreement between these fits. In the inset we
plot the bulk modulus that would be inferred from such fits
relative to the bulk modulus as measured in Ref. [14]. There is
no systematic trend suggesting that, in the large-L limit where
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FIG. 8. (Color online) Normalized probability distributions of
(�xx + �yy)−2 for the experimental colloidal system at a fixed
volume fraction, truncated to a fixed dynamical range, for several
different choices of the box coarse-graining size. The fits are
exponential decays, and the curves are calculated distributions
for L = 1,3,4,11,20 microns. Inset: Inferred modulus from the
exponential decay fits normalized by the measured value by the
methods in Ref. [14] as function of L. Data sets are for φ =
0.8625,0.865,0.8695,0.8775,0.8822.

the method is ostensibly most sensible, the inferred modulus
is asymptotically approaching the true value. This behavior
could be anticipated from the results shown in Fig. 6.
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