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We study the ground-state Wigner bilayers of pointlike particles with Yukawa pairwise interactions, confined
to the surface of two parallel hard walls at dimensionless distance η. The model involves as limiting cases the
unscreened Coulomb potential and hard spheres. The phase diagram of Yukawa particles, studied numerically by
Messina and Löwen [Phys. Rev. Lett. 91, 146101 (2003)], exhibits five different staggered phases as η varies from
0 to intermediate values. We present a lattice summation method using the generalized Misra functions which
permits us to calculate the energy per particle of the phases with a precision much higher than usual in computer
simulations. This allows us to address some tiny details of the phase diagram. Going from the hexagonal phase I
to phase II is shown to occur at η = 0. All second-order phase transitions are proved to be of mean-field type. We
also derive the asymptotic shape of critical lines close to the Coulomb and hard-spheres limits. In and close to the
hard-spheres limit, the dependence of the internal parameters of the present phases on η is determined exactly.
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I. INTRODUCTION

Most organic or anorganic surfaces of mesoscopic objects
(macromolecules or colloids) become charged when immersed
in polar solvents such as water. These solvents provide
favorable environments for free charges (“counterions” to the
charged surfaces) which intermediate an effective interaction
among the mesoscopic objects. At low temperatures, and
in particular at T = 0 when the system is in its ground
state, counterions between two charged plates crystallize into
bilayer Wigner structures which are important in understand-
ing anomalous phenomena such as like-charge attraction or
overcharging [1–5]. Bilayer Wigner crystals describe several
real physical systems in condensed and soft matter, such as
semiconductors [6], quantum dots [7], and dusty plasmas [8].
Confined systems of charged colloidal particles were reviewed
recently [9], from both the experimental and theoretical points
of view.

From the particle models studied in this paper, we start
with the neutral Coulomb system of, say, elementary pointlike
charges −e with a 1/r interaction between two parallel
plates of the same homogeneous surface charge density σe

at distance d, and the phase diagram at T = 0 depends on
a single dimensionless parameter η = d

√
σ . According to the

Earnshaw theorem [10], particles will stick symmetrically onto
the surface of the plates. Five distinct phases were detected to
be stable, i.e., providing global minimum of the energy, as η is
changing from 0 to ∞ [11–15]. The lattice structures are the
same on both plates and they are shifted laterally with respect
to one another. Structures I, III, and V are rigid (Fig. 1), i.e.,
they have fixed (η-independent) primary cells. Structures II
and IV are soft (Fig. 2), and the shape of their primary cells
varyies with η.

Structures I, II, and III correspond to the staggered
rectangular lattice, see Fig. 2 left. The primitive translation
vectors of Bravais lattice are

a1 = a(1,0), a2 = a(0,�), a = 1√
σ�

. (1)

The lattice spacing a within one layer is determined by the
electroneutrality condition. Two rectangular structures, one

within each layer, are shifted with respect to each other by the
vector

c = α(a1 + a2) (2)

with α = 1/2. The rigid structure I has the aspect ratio � = √
3

and it arises for η = 0 because the two layers merge into
a Wigner monolayer which is known to be hexagonal (or,
equivalently, equilateral triangular) [16]. Structure III consists
of a square lattice with � = 1. Phase II with

√
3 > � > 1

interpolates continuously between structures I and III.
Phase IV consists of two staggered rhombus lattices (Fig. 2,

right). One rhombus structure has the angle φ between the
primitive translation vectors

a1 = a(1,0), a2 = a(cos φ, sin φ), a = 1√
σ sin φ

. (3)

In general, this phase has two variants according to the lateral
shift (2) between the opposite sublattices. The version IVA has
α = 1/2, whereas for IVB the shift parameter 1/3 < α < 1/2.
For Coulomb bilayers, only phase IVA takes place.

Phase V corresponds to two shifted hexagonal lattices. In
a single layer, the elementary cell is the rhombus with the
primitive translation vectors

a1 = a(1,0), a2 = a

2
(1,

√
3), a =

√
2

31/4
√

σ
. (4)

The lateral shift between the opposite lattices c is given by (2)
with α = 1/3.

The transitions between phases II → III and III → IV are
continuous (of second order), while the transition IV → V
is discontinuous (of first order). In order to describe these
phase transitions, a new analytic approach to Coulomb bilayers
was proposed in Ref. [17]. Using a series of transformations
with Jacobi θ functions, the energy of the five phases was
expressed as series of generalized Misra functions which
converge very quickly. Near critical points, the generalized
Misra functions can be expanded easily in powers of the
order parameter and the corresponding energies posses the
Ginsburg-Landau form. This allows one to specify the critical
points with an arbitrary prescribed accuracy and to derive
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a Structure I
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Structure V

FIG. 1. Rigid structures I, III, and V of particles on two parallel
plates; open and filled symbols correspond to particle positions on
the opposite layers.

the mean-field critical behavior of the order parameter. Also
the existence of phase I at η = 0 only was confirmed. This
result was in contradiction with numerical approaches like the
Ewald technique [13] and Monte Carlo simulations [15] which
predicted an extremely small, but finite, stability interval of η′s
for phase I.

Colloidal particles or particles in highly charged dusty
plasmas usually interact via Yukawa potential [18] due to the
Coulomb potential screening by additional microions in the
system. The Yukawa pair potential of particles at distance r is
defined by

V (r) = V0
e−κr

κr
, (5)

a1

a2

c

a2

a1

II IV

φ

FIG. 2. Soft structures II and IV.

where κ is the inverse screening length and the amplitude
V0 = Z2κ exp (κR)/ε(1 + κR)2, with Z being the charge of
one particle and ε ≈ ε0 is the permittivity for dusty plasma.
When κ is large, R becomes the radius of a hard sphere
as V (r) ∝ exp [κ(R − r)] is exponentially large for r < R

and negligible otherwise. The relation V0 ∝ κ keeps the limit
κ → 0 of Eq. (5) finite, yielding the proper Coulomb formula.
Thus the limiting cases κ → 0 and κ → ∞ correspond to the
unscreened Coulomb and hard-spheres interaction potentials,
respectively. We shall work in units of V0 = 1. For two
parallel plates at distance d, the phase diagram depends on
two dimensionless parameters:

η = √
σd, λ = κd. (6)

A system of hard-sphere particles between two parallel
hard plates was studied by computer simulations in the
past [19–22]; numerical methods were reviewed recently in
Ref. [23]. For small values of η, the ground-state crystal
structures involve Wigner bilayers I-V, including phase IVB
with two varying parameters φ and α. For large values of η,
the phase-V bilayer transforms itself to crystalline multilayers,
with particles entering the region between the plates, such as
multiple square and hexagonal layers [19] and rhombic [20]
and prism superlattices [21].

A similar phase diagram was obtained for the general
Yukawa potential. For small values of η, although Earnshaw
theorem [10] does not apply to Yukawa particles, the particles
stick symmetrically to plates and with increasing η they
constitute successively Wigner I–V bilayers [24]. In the region
of large values of η, in close analogy with confined hard
spheres, some of the particles will move in the interior of
the domain between the plates and create multilayers [25].

In this paper, we shall concentrate on Wigner bilayers
of pointlike particles interacting via the Yukawa potential.
The original numerical work of Messina and Löwen [24]
determined the phase diagram of the Yukawa system which
exhibits single and double re-entrant transitions. We shall
apply a straightforward extension of the recent analytic method
[17] which provides us with high-precision calculations to shed
more light on important tiny details of the phase diagram. For
any λ, the transition from phase I to phase II is shown to occur
directly at η = 0, in agreement with the statement in Ref. [25].
For first-order phase transitions, we recalculate the coexistence
domain of phases IVA+V, III+V, and IVB+V suggested by
Messina and Löwen. Moreover, we locate the tiny coexistence
domain of phases IVA+IVB. As concerns second-order phase
transitions, closed-form formulas for critical lines between
various phases, expressed in terms of generalized Misra
functions, permit us to determine the asymptotic Coulomb
λ → 0 and hard spheres λ → ∞ shapes of these lines. The
expansions of the structure energies around second-order
transition points and the determination of the order parameter
can be done analytically, which enables us to derive the critical
behavior of the Ginzburg-Landau type. In and close to the
hard-spheres limit, the η dependence of the internal parameters
of the phases is determined exactly.

The paper is organized as follows. In Sec. II, we derive
the expression for the energy per particle of phase II (phases
I and III being its special cases) in terms of the generalized
Misra functions. The fact that going from phase I to II occurs at
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η = 0 is shown in Sec. III. The second-order transition between
phases II and III and the corresponding mean-field critical
behavior are described in detail in Sec. IV. The expression
for the energy of phase IVB (with phases IVA and V as its
special cases) is derived in Sec. V. The second-order transition
between phases III and IVA is described in Sec. VI. The first-
order transitions between phases IVA-V, IVA-IVB, and IVB-V
are discussed in Sec. VII. The dependence of the energy on
the dimensionless distance η, for fixed values of λ, is the
subject of Sec. VIII. The η dependence of the internal structure
parameters of phases present in and near the hard-spheres limit
is derived in Sec. IX. Section X is the conclusion. Auxiliary
formulas for the generalized Misra functions and for the critical
lines are given in Appendices A–D.

II. ENERGY OF STRUCTURES I, II, AND III

We aim at deriving the interaction energy per particle EII

for structure II with the aspect ratio �, phases I and III being
its special cases with � = √

3 and � = 1, respectively. The
energy consists of two parts: The intralayer energy Eintra sums
the contributions from all particles in the same layer as the
reference one while the interlayer energy Einter involves all
particles from the opposite layer. To express the energy per
particle as a quickly convergent series, we shall apply a three-
step method from Ref. [17].

The occupied lattice sites within one layer are numbered
as r = ja1 + ka2 where the primitive vectors a1 and a2 are
defined in (1) and j,k run over all integers, except for the
reference site (0,0). The intralayer interaction of a reference
particle is thus given by

Eintra = 1

2

∑
(j,k)�=(0,0)

exp(−κa
√

j 2 + k2�2)

κa
√

j 2 + k2�2
. (7)

To evaluate lattice sums of Yukawa potentials, we shall often
use the integral representation (see, e.g., Ref. [23])

e−κr

κr
= 1

κ
√

π

∫ ∞

0

dt√
t

exp

(
−κ2

4t
− r2t

)
. (8)

The intralayer energy per particle is then expressible as

Eintra = 1

2aκ
√

π

∫ ∞

0

dt√
t
e− κ2a2

4t

⎛
⎝∑

j,k

e−j 2t e−k2�2t − 1

⎞
⎠

= η

2
√

πλ

∫ ∞

0

dt√
t
e
− λ2

4η2 t [θ3(e−t�)θ3(e− t
� ) − 1],

(9)

where we substituted t� → t and introduced the Jacobi θ

function θ3(q,0) ≡ θ3(q) = ∑∞
j=−∞ qj 2

[26].
The Wigner lattice on the opposite layer at distance d is

shifted by the vector (a1 + a2)/2. The square of the distance
between the reference particle and the particles on the opposite
layer becomes r2

jk = (j − 1/2)2a2 + (k − 1/2)2a2�2 + d2.
Proceeding analogously as in the previous case, we get for
the interlayer energy

Einter = η

2
√

πλ

∫ ∞

0

dt√
t
e
− λ2

4η2 t
−η2t

θ2(e−t�)θ2(e−t/�), (10)

where another Jacobi θ function θ2(q) = ∑
j q(j−1/2)2

was
introduced.

The total energy per particle EII is a sum Eintra + Einter.
Using the Poisson summation formula

∞∑
j=−∞

e−(j+ψ)2t =
√

π

t

∞∑
j=−∞

e2π ijψe−(πj )2/t , (11)

it can be easily shown that in the limit t → 0 the product
of θ functions θm(e−t )θm(e−t ) ≈ π/t for both m = 2,3. In
the unscreened Coulomb limit λ → 0, this would lead to the
divergence of the corresponding integrals due to the lack of
the neutralizing background charge. We “artificially” subtract
the singular π/t terms from the products of θ functions and
simultaneously add the same singular terms and integrate them
explicitly, with the result

EII = η

2
√

πλ

∫ ∞

0

dt√
t
e
− λ2

4η2 t

{[
θ3(e−t�)θ3(e−t/�) − 1 − π

t

]

+ e−η2t

[
θ2(e−t�)θ2(e−t/�) − π

t

]}
+ π

η2

λ2
(1 + e−λ).

(12)

This corresponds to adding and subtracting the background
interaction energy [17]

EB = −π
η2

λ2
(1 + e−λ). (13)

The procedure is inevitable in the Coulomb λ → 0 limit. For a
positive λ > 0, the procedure is not necessary but it enhances
substantially the convergence properties of the obtained series.

The integration region [0,∞] in (9) can be split into
intervals [0,π ] and [π,∞]. Using the Poisson summation
formula (11), the integral over [π,∞] can be rewritten as∫ ∞

π

dt√
t
e
− λ2

4η2 t

[
θ3(e−t�)θ3(e−t/�) − 1 − π

t

]

=
∫ ∞

π

dt√
t
e
− λ2

4η2 t

⎡
⎣π

t

∑
j

e− (πj )2

t�

∑
k

e−(πk)2 �
t − 1 − π

t

⎤
⎦

=
∫ π

0

π dt ′

t ′3/2
e
− λ2 t ′

4η2π2

⎛
⎝π

t ′
∑

j

e− j2 t ′
�

∑
k

e−k2t ′� − 1 − t ′

π

⎞
⎠

=
∫ π

0

dt√
t
e
− λ2 t

4η2π2

[
θ3(e−t�)θ3(e−t/�) − 1 − π

t

]
. (14)

Similarly,∫ ∞

π

dt√
t
e
− λ2

4η2 t e−η2t
[
θ2(e−t�)θ2(e− t

� ) − π

t

]

=
∫ π

0

dt√
t
e
− λ2 t

4η2π2 − η2π2

t [θ4(e−t�)θ4(e− t
� ) − 1], (15)

where we introduced the Jacobi θ function θ4(q) =∑
j (−1)j qj 2

.
Finally, in close analogy with Ref. [17], we apply

once more the Poisson summation formula (11) for each
term in the integration from [0,π ]. The final formula for
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the energy reads

EII = η

2
√

πλ

⎧⎨
⎩2

∞∑
j=1

[z3/2(0,λ2/(4π2η2) + j 2�) + z3/2(0,λ2/(4π2η2) + j 2/�)] − πz1/2

(
0,

λ2

4η2π2

)

+ 2
∞∑

j=1

(−1)j [z3/2(π2η2,λ2/(4π2η2) + j 2�) + z3/2(π2η2,λ2/(4π2η2) + j 2/�)] − πz1/2(λ2/(4η2),0)

+ 4
∞∑

j,k=1

(−1)j (−1)kz3/2(π2η2,λ2/(4π2η2) + j 2/� + k2�) + 4
∞∑

j,k=1

z3/2(0,λ2/(4π2η2) + j 2/� + k2�)

+ 2
∞∑

j=1

(−1)j [z3/2(π2η2,λ2/(4π2η2) + j 2�) + z3/2(π2η2,λ2/(4π2η2) + j 2/�)] − πz1/2(λ2/(4η2),η2)

+ 2
∞∑

j=1

[z3/2(λ2/(4η2),j 2�) + z3/2(λ2/(4η2),j 2/�)] + 4
∞∑

j,k=1

z3/2(λ2/(4η2),j 2/� + k2�)

+ 4
∞∑

j,k=1

z3/2[λ2/(4η2),η2 + (j − 1/2)2/� + (k − 1/2)2�]

⎫⎬
⎭+ π

η2

λ2
(1 + e−λ). (16)

Here we introduced the function

zν(x,y) =
∫ 1/π

0

dt

tν
e−xt e−y/t . (17)

It is a generalization of the well-known Misra function [27],
corresponding to x = 0, commonly used in lattice summa-
tions. The functions zν(x,y) with half-integer values of ν can
be expressed in terms of the complementary error function,
see Appendix A. This permits us to use very effectively the
MATHEMATICA software and to derive in Appendix A their
asymptotic forms for (x finite, y → ∞) and (y finite, x → ∞).
The series in the generalized Misra function (16) is quickly
converging; for the known λ = 0 Coulomb cases [17], the
truncation of the series over j,k at M = 1,2,3,4 reproduces
the exact value of the energy up to 2,5,10,17 decimal digits,
respectively. This accuracy even improves itself for λ > 0, so
in our numerical calculations we keep the truncation of the
series at M = 5.

The formula (16) is symmetric with respect to the transfor-
mation � → 1/�. This symmetry corresponds to an obvious
invariance of the energy with respect to the lattice rotation
around one point by 90◦.

III. GOING FROM PHASE I TO II

As was mentioned in the Introduction, numerical ap-
proaches [13,15] predicted that phase I has a region of stability
[0,η̃] with a very small η̃ > 0 and there is a second-order
transition between phases I and II. This small region was
expected to vanish (η̃ = 0) in the hard-spheres limit λ → ∞
[24]. But in Ref. [17] it was shown both analytically and
numerically that η̃ = 0 in the unscreened Coulomb limit λ →
0, i.e., phase I exists only for η = 0. There is no singularity in
the ground-state energy, so going from phase I to phase II is
not a phase transition in the usual sense. In what follows, we
derive the same results for any positive λ.

We know that � = √
3 for phase I at η = 0. Let us assume

that for η > 0 we have � = √
3 − ε with a small ε and, in

close analogy with Ref. [17], expand the energy (16) in a
Taylor series:

EII(
√

3 − ε,η,λ) = EII(
√

3,η,λ) + f1(η,λ)ε

+ f2(η,λ)ε2 + O(ε3), (18)

where the expansion functions f1(η,λ) and f2(η,λ) are written
explicitly in terms of the generalized Misra functions in
Appendix B. For given η and λ, the extremum of the energy
(18) occurs at ε∗ given by

∂

∂ε
EII(

√
3 − ε,η,λ)

∣∣∣
ε=ε∗

≈ f1(η,λ) + 2f2(η,λ)ε∗ = 0,

(19)
implying

ε∗(η,λ) ≡
√

3 − �∗(η,λ) = − f1(η,λ)

2f2(η,λ)
. (20)

For the unscreened Coulomb case λ = 0 it has been shown
in Ref. [17] that

√
3 − �∗(η,0) = − f1(η,0)

2f2(η,0)
= 7.14064 . . . η2 + O(η4).

(21)
This extremum is the minimum of EII(ε).

In the case of λ > 0, it is shown in Appendix B that for
η � λ the coefficient functions can be approximated by

f1(η,λ) ≈ − ηλ

31/4 4
e
− λ

31/4η + O(η2e
− λ

31/4η ),

f2(η,λ) ≈ λ

31/4 16η
e
− λ

31/4η + O(ηe
− λ

31/4η ). (22)

The extremum
√

3 − �∗(η,λ) = − f1(η,λ)

2f2(η,λ)
= 2η2 + O(η4) (23)
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η

FIG. 3. EII(�,η) − EI(η) as a function of
√

3 − � for the fixed
values of λ = 1 and η = 0.01. The value of ε∗ = 0.0002, which
provides the energy minimum according to the asymptotic formula
(23) is depicted by the vertical dashed line for comparison. Note that
the energy differences are extremely small.

interestingly does not depend in the leading order on λ. It
corresponds to the minimum of energy EII(ε) as ∂2

ε EII(
√

3 −
ε,η,λ)|ε=ε∗ = 2f2(η,λ) > 0. For λ = 1 and η = 0.01, we
checked the result (23) numerically in Fig. 3. One can see that
EII(ε), calculated using the complete formula (16) truncated at
M = 5, has a minimum rather close to the value ε∗ = 0.0002
predicted by our asymptotic formula (20).

We conclude that phase I is stable only at η = 0 and for
an arbitrarily small positive η we enter the region of phase
II. It is interesting that the asymptotic η → 0 predictions for
the unscreened Coulomb λ = 0 case (21) and for λ > 0 (23)
exhibit the same η2 dependence, but there is a skip in the
prefactors from 7.14064 . . . at λ = 0 to 2 for λ > 0. The fact
that in older works [13,15,24] phase I was detected also for
small positive values of η is probably related to extremely
small deviations of

√
3 − �∗ ∝ η2 which are “invisible” by

standard numerical methods. In a recent work [25] it is already
mentioned that phase I may not exist besides zero η and we
fully confirm this statement.

IV. SECOND-ORDER TRANSITION BETWEEN
PHASES II AND III

Let us parametrize � = exp(ε). The symmetry � → 1/�

of the energy (16) is then equivalent to the transformation
ε → −ε and the energy is an even function of ε. The Ginsburg-
Landau form of its expansion around ε = 0 reads as

EII(e
ε,η,λ) = EIII(η,λ) + g2(η,λ)ε2 + g4(η,λ)ε4 + . . . .

(24)
The explicit expression for g2 is given in Appendix C and a
rather cumbersome expression for g4 is also at our disposal.
The critical point is given by the vanishing of the prefactor

g2(ηc,λc) = 0. (25)

We used this equation to get the (dashed) critical line between
phases II and III in Fig. 4. Our definition of η differs from

0 0.2 0.4 0.6 0.8
0

50

100

150

II III

V

IVB

IVA

2η

λ

Ι ΙΙ ΙΙΙ IVB V

0.5 0.77

FIG. 4. Phase diagram of the Yukawa bilayer. Dashed lines denote
the second-order phase transitions; solid lines correspond to the first-
order phase transitions. The hatched area corresponds to the phase
coexistence domain. The important data for the hard-sphere limit
λ → ∞ are added on the top.

that of the dimensionless distance in the paper of Messina
and Löwen [24], namely η2 = ηML. To maintain the full
comparability, we shall present the phase diagram using the
variable η2.

A. Critical behavior

To obtain the critical behavior, we note that the functions
g2 and g4 in Eq. (24) behave in the vicinity of the critical point
(ηc,λc) as follows:

g2(η,λ) = g21(λc)(ηc − η) + O[(ηc − η)2],

g4(η,λ) = g40(λc) + O(ηc − η), (26)

where g21(λc) < 0 and g40(λc) > 0 for all λc. The minimum
energy is reached at ε∗ ≈ �∗ − 1 given by

∂

∂ε
EII(e

ε,η,λ)

∣∣∣∣
ε=ε∗

≈ 2g2(η,λ)ε∗ + 4g4(η,λ)(ε∗)3 = 0.

(27)
For η > ηc, there is only one solution ε∗ = 0 which corre-
sponds to the square lattice of phase III. For η < ηc, we get
one trivial (unphysical) solution ε∗ = 0 and two nontrivial
conjugate solutions ±ε∗ with

ε∗ =
[
− g2(η,λ)

2g4(η,λ)

]1/2

≈
[
− g21(λc)

2g40(λc)

]1/2√
ηc − η, (28)

η → (ηc)−. The order parameter ε∗ ∝ √
ηc − η is thus as-

sociated with the mean-field critical index βMF = 1/2 for
every λ � 0. The dependence of � − 1 on ηc − η is shown in
Fig. 5 for three values of λ = 1,10,100. Near the critical point
(ηc − η small), the asymptotic relation (28) (dashed lines) fits
perfectly the numerical data from minimization of the energy
EII (12) (full lines). In the logarithmic plot, for all values of
λ the slope of � − 1 versus ηc − η is very close to 0.5 in the
region of small and intermediate values of ηc − η, confirming
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FIG. 5. Order parameter close to the critical point of the transition
II-III for three values of λ = 1,10,100. Full lines follow from
numerical minimization of the energy (16). The slope of lines is
close to βMF = 1/2. Dashed lines represent the asymptotic η → (ηc)−

relation (28).

the value 1/2 of the mean-field critical index βMF for all
values of λ.

From Eq. (24), the energy difference of phases II and III
close to the critical point is given by

EII(e
ε,η,λ) − EIII(η,λ) ∼ − g2

21(λc)

4g40(λc)
(ηc − η)2. (29)

The critical singularity should be of type (ηc − η)2−α , implying
the mean-field critical index αMF = 0 for any λ.

To obtain another two critical indices, we add to the
energy (24) the symmetry-breaking term −hε, where a small
positive external field h → 0+ is linearly coupled to the order
parameter. The optimization condition for the energy with
respect to ε now takes the form

2g2(η,λ)ε∗ + 4g4(η,λ)(ε∗)3 − h = 0. (30)

At the critical point, since g2(ηc,λc) = 0 and g4(ηc,λc) =
g40(λc), we find from (30) that

ε∗ =
[

h

4g40(λc)

]1/3

. (31)

This critical singularity should be of type h1/δ , which leads to
the mean-field critical index δMF = 3 for any λ. Performing
the derivative of Eq. (30) with respect to h, we find for the
field susceptibility close to the critical point:

∂ε∗

∂h

∣∣∣∣
h=0

= 1

−4g21(λc)

1

ηc − η
, η → (ηc)−. (32)

The corresponding critical singularity (η − ηc)−γ leads to the
mean-field critical index γMF = 1 for arbitrary λ.

It is easy to verify that our mean-field critical indices

αMF = 0, βMF = 1
2 , γMF = 1, δMF = 3 (33)

fulfill two standard scaling relations [28]:

2 − α = 2β + γ = β(δ + 1). (34)

0.262 0.264 0.266 0.268 0.27
0

0.05

0.1

0.15

0.2

2

η

λ

Transition II - III

FIG. 6. The critical line between phases II and III near the
unscreened Coulomb λ → 0 limit. Full line follows from the
numerical evaluation by using the relation g2(η,λ) = 0. Dashed line
corresponds to the asymptotic formula (35).

Since there are no fluctuations in our system at zero tem-
perature, the critical indices η and ν, related to the particle
correlation function, are not defined.

B. Coulomb λ → 0 limit of the critical line

We reproduce ηc(0) = 0.2627602682 [17] in the Coulomb
λ → 0 limit. It is shown in Appendix C that the asymptotic
λ → 0 shape of the critical line between phases II and III is
parabolic:

λ2 ≈ c23[ηc − ηc(0)], c23 ≈ 24.173744. (35)

This formula is compared to the critical line evaluated
numerically by using the relation (25) in Fig. 6.

C. Hard-spheres λ → ∞ limit of the critical line

In the hard-spheres limit λ → ∞, the critical point for the
II → III transition is (ηc)2 → 1/2 [24]. The convergence to
this value is extraordinarily slow. Let us analyze this limit
in the critical equation g2(η,λ) = 0. Applying the asymptotic
formulas for the generalized Misra functions (A8) and (A9) to
g2(η,λ) given by the series (C1), most summands become
exponentially small compared to the few leading terms
proportional to exp(−λ/η). In particular, we can neglect
completely the first four sums in Eq. (C1), since all terms
behave as exp(−cλ2), and the sixth sum, because we get at
least exp(−√

2λ/η) for the j = k = 1 term. Those leading
terms appear in the fifth sum with j = 1 and the seventh sum
with j = k = 1. The ones with, e.g., j = 2, k = 1, etc., are
exponentially small again compared to the leading ones. In the
last sum the z7/2(.,.) term has zero prefactor for j = k. We
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FIG. 7. An excerption of the phase diagram for Yukawa particles
for the second-order phase transitions II → III and III → IVA. The
solid lines denote the critical lines obtained numerically by using
Eq. (25) and (42), respectively. The dash-dotted lines correspond to
the asymptotic large-λ formulas (39) and (47).

are left with the three-term expression

g2(η,λ) ≈ z7/2

(
λ2

4η2
,1

)
− z5/2

(
λ2

4η2
,1

)

− 1

2
z5/2

(
λ2

4η2
,η2 + 1

2

)
, λ � 1. (36)

Applying the asymptotic formula (A9), we rewrite the right-
hand side of this expression as

√
πλe

− λ
η

4η

⎡
⎣λ

η
+ 1 + η

λ
−

1 + η

λ
√

η2+ 1
2

η2 + 1
2

e
λ
η

(1−
√

η2+ 1
2 )

⎤
⎦. (37)

The critical condition g2(η,λ) = 0 implies a transcendental
formula for η(λ):(

λ
η

+ 1 + η

λ

)(
η2 + 1

2

)
1 + η

λ
√

η2+ 1
2

= e
λ
η

(1−
√

η2+ 1
2 )
. (38)

The exponential term can be equal to the rational one only
if 1 −

√
η2 + 1/2 is close to zero, i.e., η2 → 1/2 in the

λ → ∞ limit as expected. The next terms of the large-λ
expansion of η(λ) can be derived straightforwardly, with the
result

η ≈ 1√
2

− ln λ

λ
− ln 2

2λ
+ O

(
ln2 λ

λ2

)
. (39)

In general, the series contains the terms of the form (ln λ)m/λn

where m, n are integers such that 0 � m � n. The first
correction of type (ln λ)/λ explains a slow convergence of
the results as λ → ∞.

The asymptotic formula (39), taken for η2, is plotted in
Fig. 7 by the dash-dotted line. We see that it reproduces
adequately the numerical results for the critical line (solid
line) in a large region of the phase diagram. It can be shown
that the next term of the series (39) reads as 3 ln2 λ/(23/2λ2);
plotting the asymptotic formula (39) with this term included
makes the difference with the numerical solid line invisible
by eye.

V. ENERGY FOR STRUCTURES IVA, IVB AND V

It was already mentioned that structures IVA, V, and even
III are special cases of the most general phase IVB. Hence
we will sketch the derivation of the energy per particle for
the latter. The elementary cell is a rhombus with the angle φ

between the vectors a1 and a2 of the same magnitude a, see
Fig. 2. The density of particles on one plate is σ = 1/(a2 sin φ).
We will prefer the parametrization of the angle by δ =
tan(φ/2). Another free parameter is α ∈ [1/3,1/2] measuring
the diagonal shift c of the lattice on the opposite layer, see
formula (2). The square of the lattice vector can be writ-
ten as |rjk|2 = a2[(j + k)2 cos2(φ/2) + (j − k)2 sin2(φ/2)].
Next we distinguish the cases when j + k is an even or odd
integer and go to the summation over new indices m and n;
details of this technicality and of the next steps can be found
in Sec. III of Ref. [17]. The main difference is that we get
(n + α)2 and (n − 1/2 + α)2 instead of n2 and (n − 1/2)2

for the interlayer contribution. Applying the Poisson formula
(11) creates additional factors exp(2πinα) and exp[2πin(α −
1/2)]. Reducing the summation over {−∞,∞} to {1,∞}
turns these factors to 2 cos(2πnα) and 2 cos[2πn(α − 1/2)],
respectively. The final formula for the energy per particle of
phase IVB reads

EIVB = η

2
√

2πλ

⎛
⎝2

∞∑
j=1

[
z3/2

(
0,

λ2

2π2η2
+ j 2δ

)
+ z3/2

(
0,

λ2

2π2η2
+ j 2/δ

)]
[1 + (−1)j ]

+ 4
∞∑

j,k=1

[1 + (−1)j+k]z3/2

(
0,

λ2

2π2η2
+ j 2/δ + k2δ

)
− πz1/2

(
0,

λ2

2η2π2

)

+ 2
∞∑

j=1

[
cos(2πjα)z3/2

(
π2η2/2,

λ2

2π2η2
+ j 2δ

)
+ z3/2

(
π2η2/2,

λ2

2π2η2
+ j 2/δ

)]

+ 2
∞∑

j=1

{
cos

[
2πj

(
α − 1

2

)]
z3/2

(
π2η2/2,

λ2

2π2η2
+ j 2δ

)
+ (−1)j z3/2

(
π2η2/2,

λ2

2π2η2
+ j 2/δ

)}
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+ 4
∞∑

j,k=1

{
cos(2πjα) + cos

[
2πj

(
α − 1

2

)]
(−1)k

}
z3/2

(
π2η2/2,

λ2

2π2η2
+ j 2δ + k2/δ

)

+ 2
∞∑

j=1

[
z3/2

(
λ2

2η2
,j 2δ

)
+ z3/2

(
λ2

2η2
,j 2/δ

)]
+ 4

∞∑
j,k=1

z3/2

(
λ2

2η2
,j 2/δ + k2δ

)
− 2πz1/2

(
λ2

2η2
,0

)

+
∞∑

j,k=−∞

{
z3/2

[
λ2

2η2
,η2/2 + 1

δ
(j + α)2 + k2δ

]
+ z3/2

[
λ2

2η2
,η2/2 + 1

δ
(j + α − 1/2)2 + (k − 1/2)2δ

]}

−2πz1/2

(
λ2

2η2
,η2/2

)
+ 4

∞∑
j,k=1

z3/2

[
λ2

2η2
,
1

δ

(
j − 1

2

)2

+
(

k − 1

2

)2

δ

]⎞⎠+ π
η2

λ2
(1 + e−λ). (40)

VI. TRANSITION BETWEEN PHASES III AND IVA

One can verify that for the structure IVA with α = 1/2 the
energy (40) possesses the symmetry δ → 1/δ. The case δ = 1
or φ = π/2 is the fixed point of the transformation δ → 1/δ

and corresponds to the critical point between phases III and
IVA. In full analogy with the transition between phases II and
III, we parametrize δ = exp(−ε) so the energy of phase IVA
becomes an even function of ε. The expansion of the energy
(40) around the critical point δ = 1 in powers of small ε takes
the form

EIVA(e−ε,η,λ)

= EIII(1,η,λ) + h2(η,λ)ε2 + h4(η,λ)ε4 + · · · . (41)

The explicit formula for h2 in terms of the generalized Misra
functions is presented in Appendix D and h4 is also at our
disposal. The critical line between phases III and IVA is once
again given by vanishing of the prefactor

h2(ηc,λc) = 0, (42)

see Figs. 4 and 7.

A. Critical behavior

The expansion of the coefficients h2 and h4 around the
critical point (ηc,λc) is analogous to the previous case of the
second-order transition between phases II and III. The leading
terms are h2(η,λ) ≈ h21(λc)(η − ηc) and h4(η,λ) ≈ h40(λc),
where h21(λc) < 0 and h40(λc) > 0 for all λc. Optimizing the
energy EIVA with respect to ε, the stationary solution ε∗ =
1 − δ∗ behaves as

ε∗ =
[
− h2(η,λ)

2h4(η,λ)

]1/2

≈
[
− h21(λc)

2h40(λc)

]1/2√
η − ηc (43)

with η → (ηc)+. The order parameter ε∗ has again the singular
behavior of mean-field type with critical index βMF = 1/2. We
tested this results numerically in a plot analogous to Fig. 5
and got the slope β ≈ 0.499. Without going into detail, other
critical indices also attain their mean-field values (33).

B. Coulomb λ → 0 limit of the critical line

The week screening (small λ) case of the phase transitions
III-IVA and IVA-V was studied by use of Monte Carlo methods
in Ref. [29].

We reproduce ηc(0) = 0.6214809246 [17] in the Coulomb
λ → 0 limit. The asymptotic shape of the critical line for small
λ is again parabolic, see Appendix D:

λ2 ≈ c34[ηc − ηc(0)], c34 ≈ 149.7837254. (44)

This asymptotic result is compared with the numerical cal-
culation of the critical line directly from the relation (42) in
Fig. 8.

C. Hard-spheres λ → ∞ limit of the critical line

In the hard-spheres limit λ → ∞, the critical point for
the III → IVA transition is (ηc)2 → 1/2 [24], the same as in
the previous case of the II → III transition. Let us analyze the
large-λ limit of the critical relation h2(η,λ) = 0. In the same
way as for g2, we get three leading terms from the seventh and
ninth (last) sums of Eq. (D1):

1

16
z7/2

(
λ2

2η2
,
η2

2
+ 1

4

)
− 1

4
z5/2

(
λ2

2η2
,
η2

2
+ 1

4

)

− 1

2
z5/2

(
λ2

2η2
,
1

2

)
= 0, λ � 1. (45)

0.621 0.6215 0.622 0.6225 0.623 0.6235 0.624
0
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0.2

0.3

0.4

2

η
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Transition III-IVA

FIG. 8. Transition III-IVA near the Coulomb λ → 0 limit. The
full line follows from the numerical treatment of the relation
h2(η,λ) = 0. The dashed line corresponds to the asymptotic formula
(44).
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FIG. 9. A detailed view of the phase diagram for lower λ values.
The sectors of phase IVA are disconnected by the phase coexistence
domain.

The application of the asymptotic relations (A9) to this
equation implies

√
π

2

λ

η
e
− λ

η

⎛
⎝
⎧⎨
⎩ λ

8η
(
η2 + 1

2

)3/2

⎡
⎣1+ 3η

λ

√
η2 + 1

2

+ 3η2

λ2(η2 + 1
2 )

⎤
⎦

− 1

2(η2 + 1
2 )

⎛
⎝1 + η

λ

√
η2 + 1

2

⎞
⎠
⎫⎬
⎭

×e
λ
η

(1−
√

η2+1/2) −
(

1 + η

λ

)⎞⎠ = 0. (46)

The root of the expression in the largest parentheses yields

η ≈ 1√
2

+ ln λ

λ
+ −5 ln 2

2λ
+ 3

4

√
2

(
ln λ

λ

)2

+ O
(

ln λ

λ2

)
.

(47)

This asymptotic formula, taken for η2, is plotted in Fig. 7
by the dash-dotted line. The comparison with the numerical
results for the critical line (solid line) is very good.

VII. PHASE TRANSITIONS IVA-V, IVA-IVB, AND IVB-V

All phase transitions IVA-V, IVA-IVB, and IVB-V are of
first order due to a discontinuous change of both structure
parameters δ and α. For phase IVB one has to minimize
numerically the energy (40) with respect to two parameters
δ and α, which is tedious but feasible.

The phase coexistence domain was calculated by using the
double tangent construction [30] based on the E(η−2) plots.
A detailed view of this domain for small to medium values of
λ is shown in Fig. 9. The coexistence domain between phases
IVA and V and the one between phases III and V meet at a
point. It is seen that the left borders between the pure phases

0.58 0.59 0.6 0.61 0.62
30

35

40

IVA+IVB IVB+V

V

IVB

IVA

2η

λ

Ι

IVA+V

V

FIG. 10. The eutectic-like part of the phase diagram in detail. The
dotted line separates the coexistence region IV+V from IVA+IVB
and IVB+V.

IVA and III and the corresponding coexistence domains have
different slopes at this point.

Even more interesting is the magnified region for larger λ

values, see Fig. 10. It resembles the typical phase diagram of
binary alloys, where the phase IVB plays the role analogous to
liquid, IVA and V of pure metal phases and λ corresponds to
the temperature [31]. The point analogous to the eutectic one
has coordinates η2 = 0.5957 and λ = 33.53. The coexistence
domain between IVA-IVB is much narrower that that of IVB-V,
as the stepwise change of internal parameters is significantly
smaller in the former case.

In the Coulomb limit λ → 0 the transition is directly
IVA-V. We get ηt (0) = 0.732416, δt = 0.69334 for phase IVA
[17], whereas for the rigid phase V δt = tan(π/6) = 1/

√
3 ≈

0.57735. For very small λ the phase coexistence domain is
extremely narrow and its borders have a common asymptote.
The shape of these transition lines is again parabolic, and we
can approximate it empirically by

λ2 ≈ c4A5[ηt (0) − ηt ], c4A5 ≈ 805.3, (48)

but now the parabola is reversed giving rise to the multiple
re-entrant behavior, see Figs. 4 and 9.

In the hard-spheres limit λ → ∞, there are no regions of
phase coexistence. The transition line IVA-IVB asymptotically
approaches the value (ηt )2 → 1/2, so phase IVA is absent in
that limit [24]. The transition line IVB-V should reach the point
ηt ≈ 0.877 . . .. Numerically, we got mere ηt = 0.864133 . . .

even for λ = 500. The convergence is rather slow again,
and we have δt = 0.58102 and αt = 0.334428 for phase
IVB at the same λ = 500 value, gradually approaching the
values 0.57735 and 1/3 of phase V, respectively, with O(1/λ)
corrections of both structure parameters. Now we want to
derive the above hard-spheres result from our formalism.
We recall that the energy EIVB is given by Eq. (40) and
EV is its special case for δ = 1/

√
3 and α = 1/3. We apply

the asymptotic formulas (A8) and (A9) to the λ → ∞ limit
of Eq. (40) and neglect exponentially small terms. Five
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summands remain dominant; one from the sixth sum with
j = 1, three from the eighth (last but one) sum, namely both
terms with j = k = 0 and the second one with j = 0, k = 1
plus the j = k = 0 term from the ninth (last) sum:

EIVB ≈ η

2
√

2πλ

{
2z3/2

(
λ2

2η2
,δ

)
+ z3/2

(
λ2

2η2
,
η2

2
+ α2

δ

)

+ 2 z3/2

[
λ2

2η2
,
η2

2
+ (α − 1/2)2

δ
+ δ

4

]

+ 4 z3/2

(
λ2

2η2
,

1

4δ
+ δ

4

)}
. (49)

Notice that two identical terms merged to the one on the third
line. All these summands should be of the same order for
very large λ. Since the asymptotic relations (A9) imply that
zν(x,y) ∝ exp(−2

√
xy) for x → ∞, and the first argument

x = λ2/(2η2) is common for the summands, the second
arguments must coincide as well. Thus we have

δ = η2

2
+ α2

δ
= η2

2
+
(
α − 1

2

)2

δ
+ δ

4
= 1

4δ
+ δ

4
. (50)

This equalities yield the expected asymptotic values of the
structure parameters δ = 1/

√
3 and α = 1/3. Simultaneously,

ηt = 2

33/4
≈ 0.877383 . . . , λ → ∞. (51)

This value can be rederived from purely geometric considera-
tions, too. We have already mentioned that the particle density
at one plate in phase V is σ = 1/[a2 sin(π/3)] = 2/(a2

√
3).

For dense packed hard spheres of radius a, the perpendicular
distance of two layers of triangular lattices is d = √

2/3 a,
see, e.g., Ref. [20]. Inserting these values into η = d

√
σ yields

immediately (51).
We confirm that in the hard-spheres limit the transition IVB-

V will undergo no stepwise changes of structure parameters
and it will be of the second order, as expected.

VIII. THE ENERGY PLOT

We want to compare the values of the optimized energy per
particle for various values of λ and η. We plot E(η) for several
fixed values of λ in Fig. 11. These energies vary by orders of
magnitude, and thus we have chosen a semilogarithmic scale.

First, we consider two limiting cases. For η � 1 and λ > 0,
according to (18) and (22), the energy of the corresponding
phase II ln(EII) ≈ −31/4λ/η and so ln E diverges if η → 0.
More interesting is the optimal energy of phase V, EV, for
η � 1. We were used to obtaining the Coulomb limit as λ → 0,
but we can obtain this limit also for medium λ and very large η,
as the ratio λ/η → 0 again. For η � λ, using the asymptotic
formulas for the generalized Misra functions (Appendix A) we
obtain from (40) that

EV = π
η2

λ2
(1 + e−λ) + cM

η

λ
+ O(1), (52)

where cM = −1.9605158 . . . is the Madelung constant of the
Coulomb potential for the hexagonal lattice; for an explicit
representation of the Madelung constant in terms of zν(0,y)
functions, see Eq. (24) with � = √

3 and η = 0 of Ref. [17].
The leading term is the (minus) background energy (13).
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FIG. 11. The dependence of the energy per Yukawa particle E

on the dimensionless distance η for four values of λ = 1,10,20,35 in
semilogarithmic scale.

We see in Fig. 11 for few fixed values of λ that the energy
is a monotonously increasing function of the dimensionless
distance η. This means that the force between the plates is
always attractive. The nonanalyticities at transition points are
not clearly manifested in this scale. Therefore, for λ = 20, we
performed the derivative ∂E/∂η, directly for rigid structures
and numerically using EIVA minimized with respect to δ

for phase IVA. The obtained results are plotted in Fig. 12.
We see the expected continuous but nonanalytic behavior at
the second-order transition point III-IVA as well as a jump
discontinuity at the first-order transition IVA-V.

IX. INTERNAL PARAMETERS OF THE PHASES NEAR
THE HARD-SPHERES LIMIT

In and close to the limit of hard spheres λ → ∞, the
expressions for the energies of the structures in terms of the
generalized Misra functions admit an asymptotic analysis. This
fact permits us to determine the η dependence of the structure
parameters of the present soft phases II and IVB in the λ → ∞

0.74 0.75 0.76 0.77 0.78 0.796.0×10-12

8.0×10-12

1.0×10-11

1.2×10-11

1.4×10-11

dE
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η

= 20

η

III

IVA

V

FIG. 12. The derivative ∂E/∂η for λ = 20. Full circle corre-
sponds to the second-order transition III-IVA; the dashed line marks
the discontinuity at the first-order transition IVA-V.
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limit and eventually to derive their leading correction for large
but finite λ.

A. Aspect ratio � of phase II at and near hard spheres

The dependence of the aspect ratio �HS on η for phase II is
well known in the hard-spheres limit λ → ∞ [24]:

�HS(η) =
√

4η4 + 3 − 2η2. (53)

In the following, we derive this result and the first 1/λ

correction to it by using our method.
For λ � 1, most of terms in the energy of phase II (16)

become exponentially small (we exclude from the discussion
trivial terms which do not depend on �); only the term j = 1
in the sixth sum and the term j = k = 1 in the eighth (last)
sum contribute. As soon as � > 1, using (A9) we get

EII ≈ η√
πλ

[
z 3

2

(
λ2

4η2
,

1

�

)
+ 2z 3

2

(
λ2

4η2
,η2 + �

4
+ 1

4�

)]

≈ η

λ

⎛
⎝√

�e
− λ

η
√

� + 2√
η2 + �

4 + 1
4�

e
− λ

η

√
η2+ �

4 + 1
4�

⎞
⎠.

(54)

The minimum of the energy is given by ∂EII/∂� = 0, which
implies(

1

2
√

�
+ λ

2�η

)
e
− λ

η
√

�

= 1 − 1
�2

4η2 + � + 1
�

⎛
⎝ 1√

η2 + �
4 + 1

4�

+ λ

η

⎞
⎠e

− λ
η

√
η2+ �

4 + 1
4� .

(55)

If we want to reproduce just the hard-spheres limit λ → ∞,
we can say that exponentials are by far more significant than
rationals and their arguments must become the same, i.e.,√

η2 + �/4 + 1/(4�) = 1/
√

�, which leads to the known
result (53). Numerics suggests that the correction is of the
type 1/λ, i.e.,

� ≈ �HS + a(η)

λ
=
√

4η4 + 3 − 2η2 + a(η)

λ
. (56)

We put the exponentials on one side, insert (56), and expand√
η2 + �/4 + 1/(4�) − 1/

√
� up to the order 1/λ. The

absolute term vanishes and we have

exp

[
−a(η)

4η

3 + 4η4 − 2η2
√

4η4 + 3

(
√

4η4 + 3 − 2η2)3/2

]

= η2 + �
4 + 1

4�

2�
(

1
4 − 1

4�2

) ≈ 1

1 + 4η4 − 2η2
√

4η4 + 3
, (57)

where we considered � ≈ �HS on the second line. From this
relation we readily get

a(η) = (
√

4η4 + 3 − 2η2)3/24η

3 + 4η4 − 2η2
√

4η4 + 3
ln [1+4η4−2η2

√
4η4 + 3].

(58)
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FIG. 13. The aspect ratio � of phase II versus 1/λ for four values
of η = 0.1,0.3,0.4,0.5. The solid lines correspond to numerical
calculations. The asymptotic λ → ∞ result [(56) and (58)] is
represented by dashed lines.

The value of a(η) is negative in the whole interval 0 < η <

1/
√

2 of phase II. We find a(η) ≈ −8 × 31/4η3 for η � 1,
confirming once more that phase II is entered directly from
phase I for any small positive η. We tested the asymptotic
result [(56) and (58)] numerically, see Fig. 13.

B. Parameters δ and α of phase IVB in the hard-spheres limit

As was shown above, in the hard-spheres limit λ → ∞
phase IVB takes place in the interval η ∈ [1/

√
2,2/33/4]. Let

us study the λ → ∞ limit of the energy EIVB (40); terms which
do not depend on δ or α are automatically excluded from the
discussion. For very large λ and general η only the last two
sums contribute, the remaining sums are exponentially small.
The eighth sum has three important terms: one from the first
z3/2 summand with j = k = 0 and two identical ones from the
second z3/2 summand with j = k = 0 and j = 0,k = 1. From
the ninth (last) sum we take the j = k = 0 term. The result is

EIVB ≈ η

2
√

2πλ

[
z3/2

(
λ2

2η2
,η2/2 + α2

δ

)

+ 2z3/2

(
λ2

2η2
,η2/2 + (α − 1/2)2

δ
+ δ

4

)

+ 4z3/2

(
λ2

2η2
,

1

4δ
+ δ

4

)]
. (59)

We notice that two more terms can become important in special
limits. The first is the j = −1, k = 0 term from the eighth
sum, the first z3/2 summand, which contributes only in the
limit δ → 1 (i.e., η2 → 1/2). The other possibly important
term can be found in Eq. (49) as the first one in the bracket,
but it plays role only if η2 → 4/(3

√
3) and it can be omitted

for general η as well.
Now we apply the asymptotic relations (A9) to the energy

(59). The optimization of the energy with respect to parameters
δ and α leads to the equations ∂E/∂δ = 0 and ∂E/∂α = 0.
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What we get are certain products of rational functions and
exponentials. To have a nontrivial solution in the λ → ∞ limit,
the dominant exponentials must have the same arguments
which yield

η2/2 + α2

δ
= η2/2 + (α − 1/2)2

δ
+ δ

4
= 1

4δ
+ δ

4
. (60)

This set of equations can be readily rewritten as

α = 1

4
(1 + δ2), α2 − α + η2

2
δ = 0. (61)

The quartic equation for δ follows

δ4 − 2δ2 + 8η2δ − 3 = 0. (62)

The discriminant of this equation −212(3 − 14η4 + 27η8) is
negative for any η. Consequently, we get two complex roots
and two real ones. It turns out that one of the real roots is
negative and the only physical—real positive—root is given
by Cardano formulas as follows:

δ = −S(η) + 1

2

√
−4S2(η) + 4 + 8η2

S(η)
, (63)

where

S(η) = 1

2

√
4

3
+ 1

3

[
Q(η) − 32

Q(η)

]
(64)

with

Q(η) = 25/3(27η4 − 7 + 3
√

9 − 42η4 + 81η8)1/3. (65)

The value of α follows straightforwardly from the first of
Eqs. (61).

It is easy to check that the above formulas give the
correct lattice parameters at the end points of the phase IVB
region, namely we have (α = 1/2,δ = 1) at η = 1/

√
2 (phase

III) and (α = 1/3,δ = 1/
√

3) at η = 2/33/4 (phase V). We

10.0500.00
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     = 0.8
     = 0.83
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η
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λ

δ δ

α,

α

FIG. 14. The structure parameters δ and α of phase IVB vs λ for
three values of η = 0.75,0.8,0.83. Numerical data are represented by
open symbols (connected by solid lines), and the asymptotic λ → ∞
result given by Eqs. (61) is depicted by a full symbol.

did not find in the literature the above specification of the
structural parameters of phase IVB in the hard-spheres limit.
The numerical test of the results for phase IV parameters is
depicted in Fig. 14. For a given η, the dependence of the
parameters δ (top set) and α (bottom set) on 1/λ, obtained by
numerics, is represented by open symbols (connected by solid
line), and the asymptotic λ → ∞ result given by our Eqs. (61)
is depicted by a full symbol. It is seen that numerical data
converge quickly to their asymptotic values.

X. CONCLUSION

In this paper, we have studied the zero-temperature phase
diagram of bilayer Wigner crystals of Yukawa particles. To
calculate the energy per particle of the phases, we used
the recent method of lattice summations [17] extended to
Yukawa potentials. The weak point of the method is that
one has to know ahead the possible phases from numerical
simulations. The strong point is that the truncation of the series
of the generalized Misra functions provides extremely precise
estimates of the energy, e.g., the truncation at the fifth term
provides the accuracy within 17 decimal digits.

Another strong point of Misra functions is that they can
be readily expanded around the critical point, providing in
this way closed-form expressions for the critical lines between
phases II and III (25) and III and IVA (42). Only few Misra
functions contribute in the equations for the critical lines in the
asymptotic Coulomb λ → 0 and hard-spheres λ → ∞ limits.
The characteristic feature of the Coulomb limit is the parabolic
shape of the critical lines, see Eq. (35) with the corresponding
plot in Fig. 6 for the II-III phase transition and Eq. (44) with the
corresponding plot in Fig. 8 for the III-IVA phase transition.
In the hard-spheres limit, the asymptotic formulas for the II-III
phase transition (39) and the III-IVA phase transition (47) are
pictures by dash-dotted lines in Fig. 7. It turns out that the
second-order phase transitions II-III and III-IVA exhibit the
mean-field critical exponents (33).

The most important features of the Yukawa phase diagram
obtained by Messina and Löwen [24] were confirmed. In
contrast to the majority of previous suggestions and in
accordance with Ref. [25], phase I goes directly to phase II at
η = 0, i.e., there is no finite interval of positive η values where
phase I dominates.

As concerns the first-order phase transitions, we were
able to recalculate the coexistence domains between phases
IVA-V, III-V, and IVB-V. Moreover, due to the high-precision
method using Misra functions, we determined the very narrow
coexistence region between phases IVA-IVB.

Another application of our formalism is the determination
of the structure parameters of soft phases II and IVB in and
close to the hard-spheres limit. For λ → ∞, the η dependence
of the aspect ratio � of phase II has already been known [24],
see Eq. (53). We were able to derive the first 1/λ correction
to this asymptotic relation, see Eqs. (56) and (58), which is
in perfect agreement with the numerical results (Fig. 13). The
derivation of the η dependence of two structure parameters δ

and α of phase IVB in the limit λ → ∞, see the relations (60)
and Fig. 14, is likely new as well.
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As concerns future perspectives to apply our method to
other systems, the system of particles with 1/rσ interactions
[23] seems to be a good candidate.
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APPENDIX A

We give explicit analytic formulas for several zν(x,y) functions (17) with half-integer arguments:

z1/2(x,y) =
√

π

x
e−2

√
xy

[
1 − 1

2
erfc

(√
x

π
− √

πy

)
− 1

2
e4

√
xy erfc

(√
x

π
+ √

πy

)]
, (A1)

z3/2(x,y) =
√

π

y
e−2

√
xy

[
1 − 1

2
erfc

(√
x

π
− √

πy

)
+ 1

2
e4

√
xy erfc

(√
x

π
+ √

πy

)]
, (A2)

z5/2(x,y) =
√

πx

y
e−2

√
xy

(
1 + 1

2
√

xy

)
−

√
π

4y3/2

[
− 4e−x/π−πy√y + e−2

√
xy(1 + 2

√
xy) erfc

(√
x

π
− √

πy

)

+ e2
√

xy(−1 + 2
√

xy) erfc

(√
x

π
+ √

πy

)]
, (A3)

z7/2(x,y) =
√

π

y3
xe−2

√
xy

(
1 + 3

2
√

xy
+ 3

4xy

)
−

√
π

8y5/2

[
−4e−x/π−πy(3 + 2πy)

√
y + e−2

√
xy(4xy + 6

√
xy + 3)

× erfc

(√
x

π
− √

πy

)
− e2

√
xy(4xy − 6

√
xy + 3) erfc

(√
x

π
+ √

πy

)]
. (A4)

Here we introduced the complementary error function [26]

erfc(z) = 2√
π

∫ ∞

z

exp (−t2) dt. (A5)

The case ν = 1/2 can be found at the end of Ref. [32]. The expressions for larger ν can be obtained by applying the obvious
relation

∂zν(x,y)

∂y
= −zν+1(x,y). (A6)

The Misra function case zν(0,y) [27] should be understood in the sense of the limit x → 0,

z1/2(0,y) = 2√
π

[e−πy − π
√

y erfc(
√

πy)],

z3/2(0,y) =
√

π

y
erfc(

√
πy),

z5/2(0,y) =
√

π

2y3/2
[2e−πy√y + erfc(

√
πy)],

z7/2(0,y) =
√

π

4y5/2
[2e−πy√y(3 + 2πy) + 3erfc

(√
πy
)
]. (A7)

We need also the asymptotic expansions of zν(x,y) when one of the arguments x or y is large. For x finite and y � 1, we get

z1/2(x,y) = e−πy−x/π

yπ3/2

[
1 + O

(
1

y

)]
,

z3/2(x,y) = e−πy−x/π

y
√

π

[
1 + O

(
1

y

)]
,

z5/2(x,y) = √
π

e−πy−x/π

y

[
1 + O

(
1

y

)]
,

z7/2(x,y) =
√

π3
e−πy−x/π

y

[
1 + O

(
1

y

)]
. (A8)
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For y finite and x � 1, we have

z1/2(x,y) =
√

π

x
e−2

√
xy + O

(
1

x
e−x/π

)
,

z3/2(x,y) =
√

π

y
e−2

√
xy + O

(
1

x
e−x/π

)
,

z5/2(x,y) =
√

πx

y
e−2

√
xy

(
1 + 1

2
√

xy

)
+ O

(
1

x
e−x/π

)
,

z7/2(x,y) =
√

π

y3
xe−2

√
xy

(
1 + 3

2
√

xy
+ 3

4xy

)
+ O

(
1

x
e−x/π

)
. (A9)

We applied the large-argument expansion of the error function [26], erfc(z) ≈ exp(−z2)/(
√

πz).
For small arguments δx and δy, we shall need the following expansion:

zν(x + δx,y + δy) =
∫ 1/π

0

dt

tν
e−(x+δx)t e−(y+δy)/t ≈

∫ 1/π

0

dt

tν
e−xt e−y/t (1 − δx t)(1 − δy/t)

≈ zν(x,y) − δx zν−1(x,y) − δy zν+1(x,y), (A10)

where we kept only terms linear in small variables.

APPENDIX B

The coefficients f1,2(η,λ) in Eq. (18) are given by

f1(η,λ) = η

2
√

πλ

⎧⎨
⎩2

∞∑
j=1

[
j 2z5/2

(
0,

λ2

4π2η2
+ j 2

√
3

)
− j 2

3
z5/2

(
0,

λ2

4π2η2
+ j 2

√
3

)]

+ 4
∞∑

j,k=1

(
k2 − j 2

3

)
z5/2

(
0,

λ2

4π2η2
+ j 2

√
3

+ k2
√

3

)

+ 2
∞∑

j=1

(−1)j
[
j 2z5/2

(
π2η2,

λ2

4π2η2
+ j 2

√
3

)
− j 2

3
z5/2

(
π2η2,

λ2

4π2η2
+ j 2

√
3

)]

+ 4
∞∑

j,k=1

(−1)j (−1)k
(

k2 − j 2

3

)
z5/2

(
π2η2,

λ2

4π2η2
+ j 2

√
3

+ k2
√

3

)

+ 2
∞∑

j=1

[
j 2z5/2

(
λ2

4η2
,j 2

√
3

)
− j 2

3
z5/2

(
λ2

4η2
,
j 2

√
3

)]
+ 4

∞∑
j,k=1

(
k2 − j 2

3

)
z5/2

(
λ2

4η2
,
j 2

√
3

+ k2
√

3

)

+4
∞∑

j,k=1

[
(k − 1/2)2 − (j − 1/2)2

3

]
z5/2

[
λ2

4η2
,η2 + (j − 1/2)2

√
3

+ (k − 1/2)2
√

3

]⎫⎬
⎭, (B1)

f2(η,λ) = η

2
√

πλ

⎛
⎝2

∞∑
j=1

[
j 4

18
z7/2

(
0,

λ2

4π2η2
+ j 2

√
3

)
+ j 4

2
z7/2

(
0,

λ2

4π2η2
+ j 2

√
3

)
− j 2

3
√

3
z5/2

(
0,

λ2

4π2η2
+ j 2

√
3

)]

+ 4
∞∑

j,k=1

[
1

2

(
k2 − j 2

3

)2

z7/2

(
0,

λ2

4π2η2
+ j 2

√
3

+ k2
√

3

)
− j 2

3
√

3
z5/2

(
0,

λ2

4π2η2
+ j 2

√
3

+ k2
√

3

)]

+ 2
∞∑

j=1

(−1)j
[

j 4

18
z7/2

(
π2η2,

λ2

4π2η2
+ j 2

√
3

)
+ j 4

2
z7/2

(
π2η2,

λ2

4π2η2
+ j 2

√
3

)

− j 2

3
√

3
z5/2

(
π2η2,

λ2

4π2η2
+ j 2

√
3

)]
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+ 4
∞∑

j,k=1

(−1)j (−1)k
[

1

2

(
k2 − j 2

3

)2

z7/2

(
π2η2,

λ2

4π2η2
+ j 2

√
3

+ k2
√

3

)

− j 2

3
√

3
z5/2

(
π2η2,

λ2

4π2η2
+ j 2

√
3

+ k2
√

3

)]

+ 2
∞∑

j=1

[
j 4

18
z7/2

(
λ2

4η2
,
j 2

√
3

)
+ j 4

2
z7/2

(
λ2

4η2
,j 2

√
3

)
− j 2

3
√

3
z5/2

(
λ2

4η2
,
j 2

√
3

)]

+ 4
∞∑

j,k=1

[
1

2

(
k2 − j 2

3

)2

z7/2

(
λ2

4η2
,
j 2

√
3

+ k2
√

3

)
− j 2

3
√

3
z5/2

(
λ2

4η2
,
j 2

√
3

+ k2
√

3

)]

+ 4
∞∑

j,k=1

{
1

2

[
(k − 1/2)2 − (j − 1/2)2

3

]2

z7/2

[
λ2

4η2
,η2 + (j − 1/2)2

√
3

+ (k − 1/2)2
√

3

]

− (j − 1/2)2

3
√

3
z5/2

[
λ2

4η2
,η2 + (j − 1/2)2

√
3

+ (k − 1/2)2
√

3

]}⎞⎠. (B2)

We are interested in the small-η behavior of the above functions. One of the arguments in the zν(x,y) functions becomes large,
thus we can apply the asymptotic relations (A8) and (A9). Neglecting the exponentially small terms we find that only the seventh
and the ninth (last) sums both in (B1) and (B2) contribute, namely the leading terms with j = 1 and j = k = 1, respectively.
Consequently, for a fixed λ > 0 and η → 0 (i.e., λ/η � 1), we have

f1(η,λ) ≈ η

2
√

πλ

[
−2

3
z5/2

(
λ2

4η2
,

1√
3

)
+ 2

3
z5/2

(
λ2

4η2
,η2 + 1√

3

)]
≈ − 1

2
√

3
e
− λ

31/4η + 1

6
(
η2 + 1√

3

)e
− λ

η

√
η2+ 1√

3 ,

f2(η,λ) ≈ η

2
√

πλ

[
1

9
z7/2

(
λ2

4η2
,

1√
3

)
+ 1

18
z7/2

(
λ2

4η2
,η2 + 1√

3

)]

≈ − λ

8 35/4η
e
− λ

31/4η + λ

144η(η2 + 1√
3
)3/2

e
− λ

η

√
η2+ 1√

3 , (B3)

where we repeatedly neglected subleading terms. Expanding also the second exponential exp[−λ
√

1 + √
3η2/(31/4η)] in η, we

get (22).

APPENDIX C

The coefficient g2(η,λ) in Eq. (24) takes the form

g2(η,λ) = η√
πλ

⎛
⎝ ∞∑

j=1

[
j 4z7/2

(
0,

λ2

4π2η2
+ j 2

)
− j 2z5/2

(
0,

λ2

4π2η2
+ j 2

)]

+
∞∑

j,k=1

[
(j 2 − k2)2z7/2

(
0,

λ2

4π2η2
+ j 2 + k2

)
− (j 2 + k2)z5/2

(
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λ2

4π2η2
+ j 2 + k2

)]

+
∞∑

j=1

(−1)j
[
j 4z7/2

(
π2η2,

λ2

4π2η2
+ j 2

)
− j 2z5/2

(
π2η2,
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4π2η2
+ j 2

)]

+
∞∑
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(−1)j (−1)k
[
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4π2η2
+ j 2 + k2
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λ2
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+ j 2 + k2
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+
∞∑

j=1

[
j 4z7/2

(
λ2

4η2
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(
λ2
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+
∞∑

j,k=1

[
(j 2 − k2)2z7/2

(
λ2

4η2
,j 2 + k2

)
− (j 2 + k2)z5/2

(
λ2

4η2
,j 2 + k2

)]
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+
∞∑

j,k=1

{[
(j − 1/2)2 − (k − 1/2)2

]2
z7/2

[
λ2

4η2
,η2 + (j − 1/2)2 + (k − 1/2)2

]

− [(j − 1/2)2 + (k − 1/2)2]z5/2

[
λ2

4η2
,η2 + (j − 1/2)2 + (k − 1/2)2

]}⎞⎠. (C1)

Our next step is to analyze the small λ behavior of the critical line between phases II and III which is given by g2(η,λ) = 0;
here we write (η,λ) instead of (ηc,λc) to simplify the notation. There are two small quantities, λ2 and η − η0, where we denote
the Coulomb transition distance ηc(0) ≡ η0 ≈ 0.262760268246823 . . .. Applying formula (A10), we demonstrate one specific
example of the expansion of the generalized Misra functions in (C1), up to terms linear in small variables λ2 and η − η0:

z7/2

(
π2η2,

λ2

4π2η2
+ j 2

)
≈ z7/2

(
π2η2

0,j
2
)− λ2

4π2η2
0

z9/2
(
π2η2

0,j
2
)− 2π2η0(η − η0)z5/2

(
π2η2

0,j
2
)
. (C2)

Here we used that η2 = [η0 + (η − η0)]2 ≈ η2
0 + 2η0(η − η0). The absolute terms, like the leading one on the right-hand side of

(C2), are canceled by the definition of the critical point at λ = 0: g2(η0,0) = 0. Thus we are left with

c
(23)
1 λ2 + c

(23)
2 (η − η0) = 0, (C3)

where

c
(23)
1 = −

∞∑
j=1

[j 4z9/2(0,j 2) − j 2z7/2(0,j 2)]/
(
4π2η2

0

)

−
∞∑

j,k=1

[(j 2 − k2)2z9/2(0,j 2 + k2) − (j 2 + k2)z7/2(0,j 2 + k2)]/
(
4π2η2

0

)

−
∞∑

j=1

(−1)j
[
j 4z9/2

(
π2η2

0,j
2
)− j 2z7/2

(
π2η2

0,j
2
)]/(

4π2η2
0

)

−
∞∑

j,k=1

(−1)j (−1)k
[
(j 2 − k2)2z9/2

(
π2η2

0,j
2 + k2

)− (j 2 + k2)z7/2
(
π2η2

0,j
2 + k2

)]/(
4π2η2

0

)

−
∞∑

j=1

[j 4z5/2(0,j 2) − j 2z3/2(0,j 2)]/
(
4η2

0

)

−
∞∑

j,k=1

[(j 2 − k2)2z5/2(0,j 2 + k2) − (j 2 + k2)z3/2(0,j 2 + k2)]
/(

4η2
0

)

−
∞∑

j,k=1

{
[(j − 1/2)2 − (k − 1/2)2]2z5/2

[
0,η2

0 + (j − 1/2)2 + (k − 1/2)2
]

+ [(j − 1/2)2 + (k − 1/2)2]z3/2
[
0,η2

0 + (j − 1/2)2 + (k − 1/2)2
]}/(

4η2
0

) ≈ −0.04791591901052 (C4)

and

c
(23)
2 = −

∞∑
j=1

(−1)j
[
j 4z5/2

(
π2η2

0,j
2)− j 2z3/2

(
π2η2

0,j
2)]2π2η0

−
∞∑

j,k=1

(−1)j (−1)k
[
(j 2 − k2)2z5/2

(
π2η2

0,j
2 + k2

)− (j 2 + k2)z3/2
(
π2η2

0,j
2 + k2

)]
2π2η0

−
∞∑

j,k=1

{[(j − 1/2)2 − (k − 1/2)2]2z9/2
[
0,η2

0 + (j − 1/2)2 + (k − 1/2)2
]

+ [(j − 1/2)2 + (k − 1/2)2]z7/2
[
0,η2

0 + (j − 1/2)2 + (k − 1/2)2
]}2η0 ≈ 1.15830861669576. (C5)

Equation (C3) with the specified constants yields (35).
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APPENDIX D

The function h2(η,λ) in Eq. (41) reads as follows:

h2(η,λ) = η

2
√

2πλ

⎛
⎝ ∞∑

j=1

[
1 + (−1)j

][
j 4z7/2

(
0,

λ2

2π2η2
+ j 2

)
− j 2z5/2

(
0,

λ2

2π2η2
+ j 2

)]

+
∞∑

j,k=1

[1 + (−1)j (−1)k]

[
(j 2 − k2)2z7/2

(
0,

λ2

2π2η2
+ j 2 + k2

)
− (j 2 + k2)z5/2

(
0,

λ2

2π2η2
+ j 2 + k2

)]

+
∞∑

j=1

[1 + (−1)j ]

[
j 4z7/2

(
η2π2/2,

λ2

2π2η2
+ j 2

)
− j 2z5/2

(
η2π2/2,

λ2

2π2η2
+ j 2

)]

+ 2
∞∑

j,k=1

(−1)j
[

(j 2 − k2)2z7/2

(
η2π2

2
,

λ2

2π2η2
+ j 2 + k2

)
− (j 2 + k2)z5/2

(
η2π2

2
,

λ2

2π2η2
+ j 2 + k2

)]

+
∞∑

j=1

[
j 4z7/2

(
λ2

2η2
,j 2

)
− j 2z5/2

(
λ2

2η2
,j 2

)]

+
∞∑

j,k=1

[
(j 2 − k2)2z7/2

(
λ2

2η2
,j 2 + k2

)
− (j 2 + k2)z5/2

(
λ2

2η2
,j 2 + k2

)]

+
∞∑

j,k=1

{[
(j − 1/2)2 − (k − 1/2)2

]2
z7/2

[
λ2

2η2
,(j − 1/2)2 + (k − 1/2)2

]

− [(j − 1/2)2 + (k − 1/2)2]z5/2

[
λ2

2η2
,(j − 1/2)2 + (k − 1/2)2

]}

+ 2
∞∑

j,k=1

{
[(j − 1/2)2 − k2]2z7/2

[
λ2

2η2
,
η2

2
+ (j − 1/2)2 + k2

]

− [(j − 1/2)2 + k2]z5/2

[
λ2

2η2
,
η2

2
+ (j − 1/2)2 + k2

]}

+
∞∑

j=1

{
(j − 1/2)4z7/2

[
λ2

2η2
,
η2

2
+ (j − 1/2)2

]
− (j − 1/2)2z5/2

[
λ2

2η2
,
η2

2
+ (j − 1/2)2

]}⎞⎠. (D1)

Now we can analyze the low-λ limit of the critical line between phases III and IVA. Proceeding in the same way as in the
previous case of the II-III transition, taking the value η0 = ηc(0) ≈ 0.621480924579783, we get from (D1) the equality

c
(34)
1 λ2 + c

(34)
2 (η − η0) = 0 (D2)

with c
(34)
1 ≈ 0.0063328359292865 and c

(34)
2 ≈ −0.94855575801235884369, so Eq. (44) follows.
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