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Using the s ensemble to probe glasses formed by cooling and aging
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From length scale distributions characterizing frozen amorphous domains, we relate the s ensemble method
with standard cooling and aging protocols for forming glass. We show that in a class of models where space-time
scaling is in harmony with that of experiment, the spatial distributions of excitations obtained with the s ensemble
are identical to those obtained through cooling or aging, but the computational effort for applying the s ensemble
is generally many orders of magnitude smaller than that of straightforward numerical simulation of cooling or
aging. We find that in contrast to the equilibrium ergodic state, a nonequilibrium length scale characterizes the
anticorrelation between excitations and encodes the preparation history of glass states.
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I. INTRODUCTION

Through biasing statistics of trajectory space—the so-
called “s ensemble” method—nonequilibrium phase transi-
tions emerge between ergodic liquidlike states and dynam-
ically inactive glasslike states. This class of transitions are
found in idealized lattice models [1,2] and in simulations
of atomistic models [3–5]. In the latter case, it affords a
systematic computational means of preparing exceptionally
stable glass states [6]. This paper draws the conclusion that
the s ensemble transition coincides with the physical glass
transition [7], and the ensemble of its inactive states are those of
natural structural glass. Specifically, we derive correspondence
between spatial correlations in the s ensemble glass with those
in the glass produced with finite-rate cooling or aging. The
correspondence provides a basis for an extraordinarily efficient
route for preparing structural glass with molecular simulations.

The equivalence that we put forward here between glasses
prepared computationally via the s ensemble and those
prepared through standard means such as cooling and aging is
based on the detailed study of an idealized glass model, the East
model [8,9]. The East model is a spin facilitated model on the
lattice with hierarchical dynamics leading to a super-Arrhenius
relaxation law of the “parabolic” kind [9] (i.e., the exponential
of a quadratic function of the inverse temperature). The East
model captures many of the observed features of real glass
formers [7] and its main physical ingredients of localized
excitations and hierarchical dynamics can be seen to be present
in more realistic liquid models [10]. The simplicity of the
East model allows for detailed studies of its dynamics, which
here we use to make predictions about the glass state more
generally.

The paper is organized as follows. In Sec. II we consider
the fluctuation properties of dynamical trajectories of atom-
istic liquid models in the supercooled regime accessible to
simulations. Here we discuss the concept of excitations (or
soft spots) [10] that allows us to establish the connection
between atomistic systems and East-like models, together with
the associated scaling laws obeyed by space-time fluctuations.

*Corresponding author: Juan.Garrahan@nottingham.ac.uk

This section contains one of our two central results: we
demonstrate that rare space-time domains of low activity
exhibit pronounced anticorrelation between excitations; this
is a signature at the mesoscopic level of the anticorrelation
between excitations that we argue later is typical of the glass.

In Sec. III we describe in general the three routes to prepare
glasses, that is, materials which fall out of equilibrium due
to their relaxation times exceeding the available observation
time. Two of these routes are the standard ones of cooling
and of aging after a quench. The third one is that of biasing
the ensemble of trajectories by removing dynamical activity,
i.e., that of the s ensemble method. Furthermore, we argue
on general grounds, using the scaling ideas of Sec. II, that
the glasses obtained through the standard procedures and the
s ensemble should be equivalent. This is our second central
result, and the validity of this prediction is tested explicitly in
Sec. IV for the case of the East model. Section V provides our
conclusions.

II. SPACE-TIME STRUCTURE OF GLASS-FORMING
LIQUIDS

To begin, it is helpful to consider Figs. 1(a) and 1(b), which
render trajectories of a two-dimensional 5 × 104-particle
system in a fashion that extends the approach of Ref. [10].
The system is a liquid mixture at a temperature that is 80%
below that of the onset temperature To [10–14], and the
trajectory runs for an observation time tobs ≈ 10 τ . Here, τ

stands for the equilibrium structural relaxation time. It is
about 105 integration steps at this particular temperature, and
tobs, being ten times longer, provides ample opportunity to
observe the nature of dynamic heterogeneity in the system. The
simulations illustrate correlated dynamics of a glass-forming
material, which is distinct from dynamics of crystal coarsening
(see the Appendix).

Most motions in glass-forming liquids are irrelevant vibra-
tions, and the amplitudes of most of those vibrations are similar
in size to typical enduring displacements [10]. Irrelevant
vibrations can be filtered out by focusing on inherent structures
[15]. The set of particle positions at time t , {ri(t)}, evolves
by molecular dynamics; the inherent structure, {r̄i(t)}, is the
position of the potential-energy minimum closest to {ri(t)}.
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FIG. 1. (Color online) Soft spots and space-time bubbles. (a) Burnished excitations for the d = 2 supercooled WCA liquid mixture [10],
with �r̄i = [|r̄i(�t) − r̄i(0)|]iso. (b) Excitation lines for a subsection of the system shown in (a). (c) The functions Z(r) and F (r) demonstrating
correlation holes for inactive subsystems of a supercooled d = 3 WCA liquid mixture [23].

The renderings in Fig. 1 refer to [a(r,t)]iso, where

a(r,t) =
N∑

i=1

|r̄i(t + �t) − r̄i(t)| δ[r − r̄i(t)]. (1)

Here, we take �t to be 103 integration steps, which is roughly
the average time to complete an enduring displacement of one
atomic diameter [10], and [· · · ]iso indicates isoconfigurational
averaging, which averages many trajectories of length �t , all
starting from the same configuration [16]. Particles colored red
in Fig. 1(a) are those for which the isoconfiguration averaged
r̄i(�t) is more than 0.6 σ from r̄i(0), where σ is a particle
diameter. Smaller enduring displacements are colored by
interpolating between red and blue, as noted in the color scale.
The figure thus shows that enduring displacements occurring
over a short period of time, �t , take place in sparse localized
regions of space. These regions are the excitations [10] in an
otherwise rigid material.

Similar pictures illustrating arrangements of enduring
displacements are found without isoconfiguration averaging;
see Fig. 1 of Ref. [10] and also Video 1 and its accompanying
figure of Ref. [10]. Isoconfigurational averaging serves to
burnish those pictures [17]. Without that averaging, localized
excitations are already evident but more irregular. Importantly,
the excitations, often referred to as soft spots [18], change little
in size as the liquid is cooled, and further, provided the system
remains liquid, there are no interexcitation correlations at equal
times [10].

Correlations develop over time through dynamics, ulti-
mately leading to static correlations in the nonequilibrium
glass. But before considering glass, we focus first on the
equilibrium dynamics with Fig. 1(b). That picture shows
constant-value surfaces of [a(r,t)]iso. The surfaces form
connected tubes or lines in space time—excitation lines
[19]—indicating that excitations facilitate birth (and death)
of adjacent excitations. Larger amplitude fluctuations of the
surface occur less frequently than smaller amplitude fluctua-
tions, indicating that the facilitated dynamics is hierarchical
[20]. Lowering temperature reduces the number of excitations
or soft spots, which reduces the probability that soft spots can
connect, which reduces the rate at which the system can relax.

This behavior is found consistently in glass-forming liquids
for all temperatures below the onset, i.e., T < To [10].

Throughout this regime, it is characterized by simple equations
for space-time scaling and for the equilibrium distribution of
distances between neighboring soft spots, Peq(�):

�/σ = (τ�/τo)1/β̃γ (2)

and

Peq(�) = �−1
eq exp(−�/�eq) , �eq = σ exp(β̃/df), (3)

Here, β̃ = Jσ /T − Jσ /To, where Jσ is the energy of an
excitation with enduring displacements of the characteristic
structural length σ , 1/τ� is the relaxation rate on length scale
�, df is the fractal dimensionality of dynamic heterogeneity,
and γ is the proportionality constant for logarithmic growth
of excitation energy with respect to length scale [21]. The
parabolic law [10–12], τ = τo exp(β̃2γ /df ), follows from
space-time scaling, Eq. (2), evaluated at � = �eq.

Contributions to Peq(�) with short interexcitation lengths,
� < �eq, come from regions with excitation lines that connect
and reorganize. Contributions with � � �eq come from regions
of rigidity—the empty regions of Fig. 1(b), so-called “bubbles”
in space-time [19]. When the liquid transforms into glass, the
temporal extents of those bubbles grow to very long times,
and excitation lines rarely or never touch, yielding a striped
structure of trajectory space [22]. In that case, excitations
are no longer uncorrelated, and a nonequilibrium correlation
length �ne gives the average or most probable separation of
excitation lines.

Figure 1(c) shows that the equilibrium glass-forming liquid
already contains the seeds of this nonequilibrium correla-
tion length. Specifically, for a 106-particle Weeks-Chandler-
Andersen (WCA) liquid mixture [23] in d = 3 at T = 0.7 To,
Fig. 1(c) contrasts the equilibrium concentration of excitations
with that surrounding a dynamically inactive subvolume. The
trajectory length is tobs = 50τ ≈ 103�t . The net dynamical ac-
tivity in a subvolume �v is

∫ tobs

0 dt
∫
�v

dr a(r,t). For Fig. 1(c),
we have partitioned the total volume V into cubes, each of
size �v = 125 V/N , and computed Z(r) = 〈a(r)〉�v/a. Here,
a is the equilibrium average of a(r,t), and 〈· · · 〉�v is that
average conditioned on a low activity in the subvolume at the
origin. Similarly, we have computed the radial distribution
of mobility, F (r) = 〈a(r)〉0/ag(r), where g(r)N/V is the
mean particle density at r given a particle is at the origin
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and 〈· · · 〉0 is the equilibrium average given a particle at the
origin has just then completed an enduring displacement of
at least 0.3 σ . The red lines of Fig. 1(c) refer to the 0.1%
least active subvolumes. For F (r), that means the central
displacing particle is within such a low-activity subvolume.
The equilibrium Z(r) exhibits no structure, and the equilibrium
F (r) decays over the length scale of a single excitation. In
contrast, the atypical low-activity functions show significant
anticorrelation between neighboring excitations.

III. PREPARING GLASSY STATES

The statistical weight for these low-activity regions are en-
hanced by shifting to a nonequilibrium s ensemble distribution,
Ps[x(t)] ∝ P0[x(t)] exp{−sA[x(t)]} [2–4,24]. Here, P0[x(t)]
is the equilibrium distribution functional for trajectories x(t)
of length tobs, and A[x(t)] is the net dynamical activity [25],

A[x(t)] =
∫

V

dr
∫ tobs

0
dt a(r,t). (4)

For an ergodic equilibrium system, A = tobsV a. Deviations
from this equilibrium value are measures of nonergodic
nonequilibrium behavior. Time integrals of other quantities,
not just the activity as in Eq. (4), can also serve as suitable order
parameters to distinguish ergodic and nonergodic behavior.
Time integration is the crucial feature. Fluctuations are then
intimately related to the behavior of time correlators.

Remarkably, for systems at T < To, the marginal equilib-
rium distribution for A exhibits fat tails at low activity [1], so
that the nonequilibrium mean 〈A〉s changes abruptly around
a transition value of s. For s < s∗, the material is a normal
melt, and for s > s∗, the material is an inactive amorphous
phase—a glass. The abrupt change tends to a discontinuity
as Ntobs → ∞. The “glass transition” in the s ensemble
(that is, the transition to a nonergodic state of minimal
activity) is thus a first-order transition in the ensemble of
trajectories [2–4].

Consider now the “glass transition” defined in the usual
experimental way [7] as the point at which the system falls out
of equilibrium because relaxation times become longer than
practical observation times. (The glass transition defined in this
manner is thus not a singularity but a pronounced crossover.)

Even more remarkably then, this transition can be obtained via
the s ensemble with tobs much shorter than time scales required
to produce glass from standard cooling protocols. By cooling
at a rate ν, a glass transition occurs at the temperature Tg,
where ν−1 ≈ |dτ/dT |T =Tg . The time scale for that process is
τg = τ (Tg). The transition freezes excitations separated by the
nonequilibrium length, �ne = �eq(Tg). From Eq. (2), �ne/σ =
(τg/τo)1/β̃gγ . This length must be large if the glass persists
for long times. Thus, in view of Eq. (3), β̃g > 1. Typically,
τg > 1010τo and �ne � 10 σ .

On the other hand, with the s ensemble, the same large
nonequilibrium length can be obtained with any value of β̃. In
that case, from Eq. (2), �ne/σ = (tobs/τo)1/β̃γ . As such,

tobs/τo = (τg/τo)β̃/β̃g . (5)

The ratio β̃/β̃g can be much smaller than 1. In practice,
β̃/β̃g ≈ 1/10. Thus, the simulation time required to prepare a
glassy state in the s ensemble tobs is many orders of magnitude
shorter than the time to prepare glass by straightforward
cooling, τg.

IV. ILLUSTRATION WITH THE EAST MODEL

Equation (5) follows from well-tested scaling relationships,
and there is some empirical evidence that glasses produced
with the s ensemble do indeed coincide with natural structural
glass [6,26]. Nevertheless, this relationship is not yet tested
explicitly. Here, we do so for the East model [8], the simplest
of models consistent with phenomenology of structural glasses
and glass formers [12,22,27].

In brief, the East model consists of a d = 1 lattice
with N sites, each with variables ni = 0,1. The equilibrium
concentration of excitations is 〈ni〉 = c. At low temperatures,
c ∼ exp(−1/T ). (We take 1 as the energy scale and length
scale for the model.) Sites with ni = 1 can facilitate a spin flip
at the adjacent site ni+1. The corresponding transition rates are
given for a site i by ki,0→1 = ni−1c/(1 − c) and ki,1→0 = ni−1.
The dynamics of this model is hierarchical [8,9]. Its structural
relaxation slows by 12 orders of magnitude as T decreases
from 1 to 0.2 [28]; it obeys space-time scaling of Eq. (2) and the
parabolic law with γ ≈ 1/2 ln 2 [28–30]. (A different value of
γ applies for aging regimes [31].) An equilibrium trajectory of
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FIG. 2. (Color online) Trajectories of excitations in the East model. (a) Equilibrium dynamics for T = 0.45 over a time scale spanning
about 50 structural relaxation times at that temperature. (b) Aging dynamics after a quench from T = 1 to T = 0.25. (c) Cooling at a rate
ν = 10−5. (d) Trajectory from the s ensemble at T = 0.72 and s > s∗ ≈ 10−2, trajectories running for about 1/2 a structural relaxation time at
that temperature.
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FIG. 3. (Color online) First-order dynamical phase transition in
the s ensemble with activity measured in terms of enduring kinks.
(a) Probability of observing a trajectory with intensive activity A,
for several tobs (arrow indicates the direction of increasing tobs) for
the d = 1 East model at T = 0.72 and N = 64. (b) A as a function
of s for the same systems sampled in (a). The value of s∗ is plotted
as a function of tobs in the inset for different system sizes N . (c)
Susceptibility χ (s) as a function of s. The inset shows the peak of the
susceptibility χ (s∗) as a function of tobs for different N .

the model is shown in Fig. 2(a). Three protocols for preparing
nonequilibrium glass states are illustrated in Figs. 2(b)–(2 d).

In the first, aging, the model is initially equilibrated at
T = 1 and then instantly quenched to T = 0.25, after which it
runs at that the low temperature for times tage, where τ (1) �
tage � τ (0.25) ≈ 3 × 109. During the time tage, the system
can relax domains that are smaller than a characteristic length
[9,22] �ne = (tage/τo)1/β̃γ , with β̃ ≈ 3. We use tage ≈ 106 so
as to produce an average nonequilibrium spacing between
excitations of about 10.

In the second, cooling, the model is equilibrated at a
temperature T = 1 and then cooled to zero temperature at
a rate of ν = 10−5. A glass transition occurs at the stage where
1/ν ≈ |dτ/dT |, which gives Tg ≈ 0.48 and thus �ne ≈ 10 and
τg ≈ 106. In other words, excitations in the glass are frozen in
with a typical spacing of about 10, and the time scale to create
the material is about 106.

The third protocol for preparing a glass state corresponds
to using the s ensemble method [1–5]. Aspects of the s

ensemble results are detailed in Fig. 3. The s ensemble is
sampled according to the methods outlined in Refs. [4,33]. We
use standard transition path sampling with both shooting and
shifting moves to sample trajectory space. The s ensemble at
each state point is sampled within 20 simulation windows w,
each with a different target value of activity, Aw. Trajectories
are accepted or rejected according to a standard umbrella
sampling criterion [34], with a harmonic biasing potential
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FIG. 4. (Color online) Distributions of East-model glasses. (a)
The relative concentration of excitations a distance � from one of the
least active subregions in the equilibrium model at temperature T =
0.5 (b) Distributions of domain lengths P (�) for systems aged, cooled,
and driven with s, all designed to yield �ne ≈ 10. Here, � represents
the distance between frozen excitations (called “superspins” [9]).
Superspins were identified by rapidly quenching final configurations,
thus removing fleeting short-length-scale fluctuations and revealing
the underlying domain structure. Aging was done at T = 0.25 for
tage = 2.5 × 105 after quenching from T = 0.4. Cooling to T = 0
was done with a cooling rate of ν = 10−6. s ensemble trajectories
were carried out at T = 0.72 for a time duration of tobs = 320. (c)–(e)
Growth of �ne as a function of relevant time variables. Dashed lines
in (c) refer to �ne = (tage/τo)1/β̃γ ; dashed line in (d) refers to �eq(Tg);
dashed lines in (e) refer to �ne = (tobs/τo)1/β̃γ .

acting on the activity for each window, W = k(A[X] − Aw)2,
where A[X] is the total number of enduring kinks for the
trajectory X. At the state points considered, optimal sampling
is obtained for k ≈ 105. Replica exchange between windows
is implemented to facilitate the sampling of glassy states with
low activity, which are inherently slowly evolving. Unbiased
statistical averages are obtained using the multistate Bennet
acceptance ratio method [35].

Whereas aging tends to eliminate short domains because
larger domains are kinetically frozen, the s ensemble elimi-
nates short domains because of the statistical penalty imposed
by the field s. In both cases, domains that are shorter than
�ne relax on average while larger domains remain intact. For

aging, �ne ∼ t
1/β̃γ
age , where β̃ coincides with the temperature of

the quench. For the s ensemble, �ne ∼ t
1/β̃γ

obs , where β̃ coincides
with the temperature of the s ensemble trajectories.

The probability density of intensive activity, A ≡
A[X]/Ntobs, is plotted in Fig. 4(a) as a function of tobs for
s = 0. For all tobs, the activity distribution is non-Gaussian
and exhibits a fat tail for low values. This is the signature
of a low-activity phase that can be accessed by driving the
system with s. Figure 4(b) shows that, for s exceeding a
critical value s∗ (i.e., the value of s that maximizes dA/ds),
the system undergoes a phase transition into this inactive
state. The value of s∗ tends to zero as tobs → ∞, as A[X]
grows extensively with time. The sharpness of the transition is
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quantified by a susceptibility χ (s) ≡ dA/ds = 〈A2〉 − 〈A〉2,
plotted in Fig. 4(c). The length �ne exceeds the system size
N in the limit tobs → ∞, and the system forms a single
domain of length N . (The final spin cannot be eliminated
due to the boundary conditions and facilitation rules.) Activity
fluctuations at s = s∗ therefore scale proportionally with Ntobs,
as illustrated in the inset of Fig. 4(c). This scaling is the
hallmark of a first-order dynamical phase transition at s = s∗.
If �ne exceeds N , the system undergoes a first-order transition
to an ideal inactive phase; otherwise, the transition is smooth
and the system falls into a striped phase.

The s ensemble protocol produces a similar glass to aging
or cooling in a much shorter time. A similar interexcitation
distance is targeted with trajectories run at T = 0.72 for which
τ ≈ 300 and β̃ ≈ 0.3. The glass transition from the cooling
protocol occurs at β̃g ≈ 1/(1/2) − 1 = 1. Accordingly, from
Eq. (5), the s ensemble transition for trajectories at T = 0.72
produces the glass with �ne when tobs ≈ 100. To apply the s

ensemble, we use the total number of enduring kinks as a
measure of dynamical activity. An enduring kink at site i is
a change in ni that persists for at least a mean exchange time
[27]. At T = 0.72 and tobs ≈ 100, for system size N chosen,
the s ensemble glass transition occurs at s∗ ≈ 10−2 = O(1/N )
[36].

Figure 4 compares the nonequilibrium correlation lengths
and distribution functions for the three different preparation
protocols. It also shows Z(�), which is the relative con-
centration of enduring kinks a distance � from the 0.1%
least-active domains of the equilibrium East model. It exhibits
a correlation hole in a fashion similar to the analogous Z(r) in
the WCA mixture, Fig. 1. The East model thus illustrates how
preparation of glass, which necessarily requires long physical
times, can be accomplished in simulation in much shorter times
through application of the s ensemble. Equation (5) provides
the key for understanding prior successes in preparing glassy
states through applications of the s ensemble in atomistic
models. However, if the simulation box size L is smaller
than target nonequilibrium length, the s ensemble method
prepares a distribution of glassy states, all of which correspond
to inactive domains in glasses with �ne > L.

Natural dynamics changes � continuously, and at the
point where the system falls out of equilibrium �ne = �eq.
The equilibrium length, �eq = 〈�〉, is equivalent to a or c.
Because the length scale changes continuously as a glass
former falls out of equilibrium, the glass transition has the
appearance of a second-order transition. However, the time-
integrated order parameters, the distribution of �, and the
connection between � and c, all change abruptly. The change
becomes singular in the limit of infinite time, manifesting the
first-order nonequilibrium transition that underlies the glass
transition.

V. CONCLUSION

This paper provides two results that seem central for
understanding the nature of glass and the computational
methods available for modeling it. The first result is that
the spatial distribution of excitations in a glass prepared
either by finite-rate cooling or by quenching and long-time

aging is the same as that for rare glassy configurations of
an equilibrium system, the latter captured efficiently with s

ensemble reweighting. This result we demonstrated explicitly
with the East model, see Fig. 4, but we expect it to be valid
more broadly for glass formers given the scaling relationships
we have discussed. Furthermore, the second result of this
paper supports this expectation. Figure 1 demonstrates that
rare mesoscopic domains of low activity that occur in the
supercooled regime of atomistic glass formers exhibit nontriv-
ial interexcitation correlations: each excitation is surrounded
by a correlation hole, within which another excitation is
improbable. This is a signature at the mesoscopic level of the
anticorrelation between excitations that we expect to see as
typical in the nonequilibrium glass (in contrast to excitations
in liquid configurations which are distributed randomly; cf.
Ref. [10]).

Further demonstration of our prediction of a nonequilibrium
length, and the equivalence of standard and s ensemble
prepared glasses, with atomistic molecular simulations might
press the limits of current technology. For example, for a
d = 3 mixture like that considered in Fig. 1(c), we estimate
from Eqs. (2) and (5) and data provided in Ref. [10] that
clear emergence of the large correlation length characteristic
of a glass will require cooling a trajectory of 107 particles
over 1010 integrations steps. Corroboration with experiment
might be less formidable, either through imaging subvolumes
of colloidal glass formers driven to a glassy state with
finite rate compression, or through scattering from molecular
glass formers driven to a glassy state by finite-rate cool-
ing, comparing the glass with the melt over large length
scales.
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APPENDIX: DEMONSTRATION OF NO
CRYSTALLIZATION AT SUPERCOOLED CONDITIONS

STUDIED

When considering dynamical phase transitions it is impor-
tant to rule out crystallization [3]. The systems we consider
have never been known to crystallize during a brute force
simulation at the state points under consideration, but as
described below we have taken all precautions to rule out
this possibility. (When perturbed by umbrella sampling,
much smaller systems—like those studied with s ensemble
calculations—can crystallize if not biased against. But those
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are locally stable. (b), (c) Probability of sixfold clusters (3D WCA)
and hexagonal clusters (2D WCA) at different times. The cluster
distributions do not exhibit net growth with time at the state points
considered in the main text. The last configuration is separated in time
from the first configuration by more than 102 structural relaxation
times.

occurrences are rare events in a small system, not the behavior
found in straightforward simulation of a large system.)
Binary mixtures tend to phase-separate when they crystallize.
At high densities like those we consider, packing constraints
dictate that such crystals would likely be close-packed—
hexagonal in two dimensions and hcp and/or fcc in three
dimensions. Snapshots of the two-dimensional (2D) liquid,
such as the one of Fig. 1(a) above, do show some hexagonal
clusters of particles. These however are not an indication of
incipient crystallization, as they do not grow with time, but
rather obey a typical size distribution. The same occurs for the
3D system: there are some local clusters, but they fluctuate in
and out and do not grow.

The methods we used to establish these observations were
the following. Crystal-like clusters of size N are measured
using the methods developed for observing crystal nucleation
in simulations [37,38]. These methods measure the degree
of alignment between the first neighbor shell of neighboring
particles, where strong alignment indicates a local crystal-like
environment. The spatial density of neighbors is expanded
in spherical harmonics, chosen to match the rotational sym-
metry of the neighbor shell clusters. (In two dimensions,
we substitute the Fourier decomposition for the original
spherical harmonics decomposition.) We consider fourfold
and sixfold symmetry independently, which are sensitive to
close-packed crystals in three dimensions [39], as well as
linear combinations of n-fold symmetries with 4 � n � 12 to
account for any other unexpected crystal structures. Figure 5(a)
shows sixfold hexagonal clusters detected in this way in the 2D
system. We check for the possibility of slow coarsening of the
crystalline phase by comparing the both the size of the largest
cluster in the system and the cluster size distribution at the
beginning and end of the runs, that is, with a time separation
of several 102 α-relaxation times. Over this length of time,
we found that neither the largest cluster nor the clusters size
distribution P (N ) change. The cluster size distributions for
sixfold clusters are shown in Figs. 5(b) and 5(c) for the 2D and
3D systems. We observe similar trends for other symmetries as
well. In summary, all standard measures indicate that neither
the 2D nor the 3D systems we consider in this paper are
crystallizing at the conditions for which we study supercooled
liquid behavior.
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