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Equation of state for five-dimensional hyperspheres from the chemical-potential route
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We use the Percus-Yevick approach in the chemical-potential route to evaluate the equation of state of hard
hyperspheres in five dimensions. The evaluation requires the derivation of an analytical expression for the contact
value of the pair distribution function between particles of the bulk fluid and a solute particle with arbitrary
size. The equation of state is compared with those obtained from the conventional virial and compressibility
thermodynamic routes and the associated virial coefficients are computed. The pressure calculated from all
routes is exact up to third density order, but it deviates with respect to simulation data as density increases, the
compressibility and the chemical-potential routes exhibiting smaller deviations than the virial route. Accurate
linear interpolations between the compressibility route and either the chemical-potential route or the virial one
are constructed.
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I. INTRODUCTION

The thermodynamic and equilibrium statistical-mechanical
behavior of liquids and dense gases can be conveniently
described by means of distribution functions [1–4]. The
most widely used one is the pair correlation function or
radial distribution function (RDF) g(r), which is particularly
appropriate for the study of systems of particles interacting
with a pairwise additive potential. For such fluids, there exists
a set of well-established, rigorous relationships connecting
thermodynamic quantities with configuration integrals over
RDFs. In particular, the compressibility, energy, and pressure
(or virial) equations provide well-known routes to the thermo-
dynamic properties of the fluid [1–5].

Thermodynamic properties can also be obtained from
another route that connects g(r) with the chemical potential
μ through the charging process of a test particle in the fluid
[1,6,7]. This represents the chemical-potential route (μ route),
which has remained almost unexplored until recent years,
when it was used to obtain a new Percus-Yevick (PY) equation
of state (EOS) for the hard-sphere system [8]. Subsequently,
this has been formally generalized to arbitrary multicomponent
systems and applied to additive hard-sphere (AHS) mixtures
[9]. In addition, the EOS of sticky hard spheres (or Baxter
model [10]) was derived and the critical point associated with
a liquid-gas transition was captured by PY results in this way
[11].

All these routes (virial, energy, compressibility, and μ) are
formally exact and thermodynamically equivalent, provided
that the exact RDF is employed [5]. Actually, however, only
approximate evaluations of g(r) are available for systems in
dimensions d > 1 with nontrivial interactions. In general,
the RDF is obtained with some accuracy from numerical
simulations [3], by solving integral equation approximations
(e.g., the PY [12] and hypernetted chain approaches [13,14])
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or from density functional theories [15,16]. In this context, the
μ route has demonstrated to provide an alternative and useful
path for the study of the thermodynamic properties of fluids.

With the aim of extending the use of the μ route and to
gain insight into its properties, in this paper we apply the
μ method to find the EOS of the hard hypersphere fluid at
spatial dimension d = 5. Besides the intrinsically interesting
properties of hard particle systems, they are an important basis
for constructing more complicate models, so that there are
active theoretical efforts to study them in dimensions d > 3
(see, for instance, Refs. [17–33] and references therein).

The μ route is based on a charging process where a
test particle (solute) with tunable interaction is inserted into
the bulk fluid (solvent particles). As a consequence, the
application of the method requires the solute-solvent RDF of
the corresponding binary system in the infinite dilution limit.
To our knowledge, the only systematic theoretical method for
the evaluation of the RDF of AHS fluid mixtures at dimensions
higher than d = 3 is the so-called rational-function approxi-
mation (RFA) [34]. Its simplest implementation provides the
solution of the Ornstein-Zernike relation coupled with the
PY closure for AHS mixtures in odd dimensionalities [35].
Therefore, we adopt the RFA technique at the PY level in the
present study.

This work is organized as follows. In Sec. II we present the
basic formulation of thermodynamics routes for hypersphere
systems. Section III gives, within the PY theory, the five-
dimensional RDF for a coupled particle with arbitrary size,
a key quantity for evaluating the EOS in the μ route. The
technical details are elaborated in the Appendixes. The results
are presented in Sec. IV. Finally, in Sec. V we offer some
conclusions.

II. FRAMEWORK

The EOS for a single component system of hard d-sphere
particles can be expressed as a relationship between the
compressibility factor Z = P/ρkBT (where P is the pressure,
ρ is the average particle density, kB is the Boltzmann constant,
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and T is the temperature) and the packing fraction η = vdρσ d ,
with σ the diameter of the particles and vd = (π/4)d/2/�(1 +
d/2) the volume of a d-dimensional sphere of unit diameter.
In the μ route, the EOS is given by [5,8,9,36]

Zμ(η) = − ln(1 − η)

η
+ (2d − 1)η

[
g(η) −

∫ 1

0
dt tg(ηt)

]
,

(2.1)
with

g(η) ≡ d

2d − 1

∫ 1

0
dξ (1 + ξ )d−1g(η; ξ ), (2.2)

where g(η; ξ ) ≡ g12(σ+
12) is the contact value of the solute-

solvent RDF, which depends on both η and the coupling
parameter ξ . The latter is defined as the ratio between the
solute and the solvent diameters, so that the minimum possible
distance between solute and solvent particles is

σ12 = 1 + ξ

2
σ. (2.3)

Thus, ξ regulates the strength of the interaction between
the test particle and the rest of the fluid. When ξ = 0 the test
particle is a point that cannot penetrate the solvent particles,
while when ξ = 1 the test particle is indistinguishable from
any particle of the bulk fluid. This charging process is
schematically illustrated by Fig. 1.

For comparison, the compressibility factor in the virial and
compressibility routes are expressed by [25]

Zv(η) = 1 + 2d−1ηg(η; 1), (2.4)

and

Zc(η) =
∫ 1

0
dt χ−1(ηt), (2.5)

where χ (η) is the isothermal susceptibility. Since hard spheres
are athermal, the energy route to the EOS becomes useless.

In order to evaluate g12(σ+
12) within the RFA approach [34],

it is convenient to introduce the Laplace functional defined by

Gij (s) =
∫ ∞

0
dr rgij (r)θn(sr)e−sr , (2.6)

ξ = 0 ξ = 0.2 ξ = 0.4

ξ = 1 ξ = 0.8 ξ = 0.6

FIG. 1. (Color online) Cartoon of the charging process of the
solute from a point particle (ξ = 0) to a particle equivalent to any
solvent particle (ξ = 1).

where gij (r) is the RDF of the pair (i,j ) and θn(sr) is the
reverse Bessel polynomial of order n = (d − 3)/2 [25]. This
functional is directly related to the static structure factors Sij (k)
of a multicomponent fluid,

Sij (k) = xiδij + (2π )(d−1)/2ρxixj i
Gij (ik) − Gij (−ik)

kd−2
,

(2.7)
where k is the wave number, xi is the mole fraction of species
i, and i is the imaginary unit. The functional Gij (s) provides
us with all the necessary information about the structure and
thermodynamics of the fluid state. In particular, the contact
values are [34]

σ
(d−1)/2
ij gij (σ+

ij ) = lim
s→∞ s(5−d)/2eσij sGij (s), (2.8)

σij being the contact distance of the pair (i,j ).

III. PY APPROACH

The exact solution of the PY approximation for d-odd
AHS mixtures with any number of components has been
described in detail in Ref. [34] within the framework of the
RFA method. For the sake of consistency, the main expressions
particularized to five-dimensional (5D) binary mixtures are
presented in Appendix A. From them one can take the limit
of solute infinite dilution to obtain the solute-solvent contact
value g(η; ξ ). The details are worked out in Appendix B and
here we only quote the final result:

g(η; ξ ) = 2 + 3η − ζ + 3(1 − η + ζ ξ )ξ + ζ 2ξ 3/(1 − η)

(1 + ξ )2(2 + 3η − ζ )(1 − η + ζ ξ )
,

(3.1)
where

ζ =
√

1 + 18η + 6η2. (3.2)

In the special case ξ = 1 one recovers the solvent-solvent
value, namely

g(η; 1) = ζ 3 − 1 + 33η + 87η2 + 6η3

60η(1 − η)3
. (3.3)

In the opposite limit ξ = 0 one obtains the exact results
[8] g(η; 0) = 1/(1 − η) and ∂g(η; ξ )/∂ξ |ξ=0 = 5η/(1 − η)2.
Figure 2 shows the ξ dependence of g(η; ξ ) for the represen-
tative packing fraction η = 0.2.

Once g(η; ξ ) has been analytically determined, the integral
in Eq. (2.2) can be evaluated with the explicit result

g(η) = 5

62ζ̂ 3(2 + 3η − ζ )

[
2 + 3η

1 − η
ζ̂ (5ζ̂ − 2) + 2

− 5ζ̂ + 20

3
ζ̂ 2 + 2

3
ζ̂ 3 + 31

15
ζ̂ 4 + 2(1 − ζ̂ )2

×
(

2 + 3η

1 − η
− ζ̂ − ζ̂−1

)
ln(1 + ζ̂ )

]
, (3.4)

where ζ̂ ≡ ζ/(1 − η). The compressibility factor in the μ

route can be easily evaluated from Eq. (2.1) by numerical
integration.
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FIG. 2. (Color online) Plot of the solute-solvent contact value
g(η; ξ ) vs the solute-to-solvent size ratio ξ at a packing fraction
η = 0.2. The values of g(η; ξ ) and its slope at ξ = 0 are exact, but
the full curve is the approximate prediction of the PY theory [see Eq.
(3.1)].

Equation (3.3) can be used to evaluate the virial route to
the EOS from Eq. (2.4). Finally, the isothermal susceptibility
of 5D hyperspheres in the PY approach is [25,37]

χ (η) = (1 − η)2

ζ 2
[5(1 + 6η + 3η2) − 2(2 + 3η)ζ ]. (3.5)

From here one can obtain the compressibility route to the EOS
via Eq. (2.5) as

Zc = 2ζ 5 − 2 + 135η + 1230η2 + 3645η3 + 990η4 + 252η5

225η(1 − η)5
.

(3.6)

IV. RESULTS

A. Virial coefficients

We start this section by considering the virial expansion

Z(η) = 1 +
∞∑

n=2

bnη
n−1 (4.1)

for the 5D fluid as predicted by the three routes in the PY
approximation. The virial coefficients b(v)

n and b(c)
n correspond-

ing to the virial and compressibility routes are obtained from
Eqs. (3.3) [combined with Eq. (2.4)] and (3.6), respectively.
As for the μ route, Eq. (2.1) implies that

b(μ)
n = 1 + 31(n − 1)gn−2

n
, (4.2)

where the coefficients gn, which are defined by the expansion

g(η) =
∞∑

n=0

gnη
n, (4.3)

are easily obtained from Eq. (3.4).
Table I contains the first 12 virial coefficients obtained

from the three routes in the PY theory. As is well known,
the PY theory yields the exact virial coefficients up to third
order, regardless of the thermodynamical route. However,
discrepancies among results from different routes appear for
upper order coefficients (n � 4). As a peculiar feature, it may
be observed that, in contrast to the three-dimensional (3D)
case [8], the μ route yields irrational virial coefficients (due to
the logarithmic term) for n � 5. On the other hand, the virial
and compressibility routes yield rational numbers for the virial
coefficients of hypersphere systems in all odd dimensions [38].

Table II shows the three sets of PY virial coefficients in
numerical format and compares them with the exact result for
n = 4 [23] and with recent accurate values for 5 � n � 12
[33]. The relative deviations are displayed in Fig. 3. It is quite

TABLE I. First 12 virial coefficients obtained from the PY theory according to the virial (b(v)
n ), compressibility (b(c)

n ), and μ (b(μ)
n ) routes.

n b(v)
n b(c)

n b(μ)
n

2 16 16 16

3 106 106 106

4 196
1459

4

3561

16

5
1697

2

2147

2
2000 ln 2 − 1607

3

6 −2999
12 233

8
−303 125

3
ln 2 + 19 465 513

288

7
164 989

4
10 591

47 221 875

14
ln 2 − 64 427 077

28

8 −466 319 −3 790 541

64
−2 998 209 375

32
ln 2 + 49 556 094 191

768

9
184 953 797

32

24 293 447

32
2 345 096 875 ln 2 − 87 495 533 291

54

10 −1 193 474 849

16
−1 124 833 117

128
−1 756 815 571 125

32
ln 2 + 19 449 143 196 527

512

11
63 809 313 739

64

3 463 610 957

32

431 924 172 778 125

352
ln 2 − 224 301 227 394 011

264

12 −109 613 124 547

8
−704 051 293 633

512
−6 786 922 855 865 625

256
ln 2 + 2 369 375 540 853 543 359

129 024
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TABLE II. Comparison between the numerical values of the virial
coefficients for 4 � n � 12 as obtained from several routes in the
PY approximation and the exact values (b(ex)

n ) for n = 4 [23] and
5 � n � 12 [33].

n 104b(ex)
n /bn−1

2 104b(v)
n /bn−1

2 104b(c)
n /bn−1

2 104b(μ)
n /bn−1

2

4 759.7248 478.5156 890.5029 543.3655

5 129.5219(16) 129.4708 163.8031 129.7955

6 9.8184(19) − 28.6007 14.5829 − 23.3475

7 4.165(2) 24.585 6.313 22.061

8 − 1.127(4) − 17.372 − 2.206 − 15.557

9 0.789(5) 13.457 1.768 12.130

10 − 0.468(10) − 10.855 − 1.279 − 9.824

11 0.309(11) 9.068 0.984 8.235

12 − 0.23(2) − 7.79 − 0.78 − 7.09

clear that the compressibility route gives the closest agreement
with the exact values, while the values calculated from the μ

and virial routes are rather similar, with a slight improvement
of b

(μ)
n over b(v)

n . It is interesting to remark that the three PY
routes capture the alternating sign change between n = 7 and
n = 12, while a negative sign of b6 is wrongly anticipated by
the virial and μ routes. In the PY case, the alternating character
is related to the existence of a branch point singularity on the
negative real axis (at η = −3/2 + 5

√
3/6 � −0.0566), which

determines the radius of convergence of the virial series [38].
Regarding the closeness between b

(μ)
n and b(v)

n , it turns out
to be higher in five dimensions than in three dimensions. While
in the 3D case the ratio b(v)

n /b
(μ)
n monotonically decreases from

0.955 (n = 4) to 4
5 (n → ∞) [8], in the 5D case the ratio first

increases from 0.881 (n = 4) to a maximum value 1.225 (n =
6) and then (from n = 8) monotonically decreases towards an

FIG. 3. (Color online) Normalized differences between the virial
coefficients in the virial (squares), compressibility (circles), and μ

(triangles) routes, with respect to the exact values [23,33].

asymptotic value 1.0646. It can then be speculated that the
general similarity between b

(μ)
n and b(v)

n tends to increase with
increasing dimensionality. We will return to this point at the
end of Sec. IV B.

B. Equation of state at finite density

As said before, the compressibility factor of 5D hyper-
spheres in the PY μ route can be obtained through numerical
integration from Eq. (2.1) by making use of the explicit
expression (3.4). The virial and compressibility routes yield
Eqs. (2.4), combined with Eq. (3.3), and (3.6), respectively.

Figure 4 shows the density dependence of Z(η) according
to the PY theory in the virial (ZPY

v ), compressibility (ZPY
c ),

and μ (ZPY
μ ) routes. Predictions of computer simulations [28]

are denoted by symbols, while the dash-dotted line represents
a Z[4,5] Padé approximant [28,39] based on high precision
calculations of the first ten virial coefficients [24]. The
freezing (ρσ 5 ≈ 1.06, η ≈ 0.174) and melting (ρσ 5 ≈ 1.25,
η ≈ 0.206) densities calculated for the D5 lattice [27] are also
indicated. As expected, all three PY routes converge to the
exact results at very low density. On the other hand, as the
packing is increased, the compressibility route overestimates
Z, whereas the virial and μ routes underestimate it, the values
from the μ route being slightly better than those from the virial
route.

The relative deviations of ZPY
v , ZPY

c , and ZPY
μ from the

exact compressibility factor Zex are plotted in Fig. 5. It can be
observed that the deviations of the compressibility and μ routes
from computer simulations are very similar (but with different
sign) within the fluid phase (η < 0.2). For instance, at η = 0.1,
the deviations between simulation or Padé-approximant results
and the PY theory become 3.2%, 2.2%, and 2.5% for the virial,
compressibility, and μ routes, respectively, while they increase

FIG. 4. (Color online) Compressibility factors evaluated from
computer simulations [28] (symbols) and from an accurate Padé
approximant Z[4,5] (dash-dotted line) [28,39] are compared with PY
results in the virial (long dashed line), compressibility (short dashed
line), and μ (solid line) routes. The dotted vertical lines mark the
freezing and melting packing fractions [27].
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FIG. 5. (Color online) Relative differences between the com-
pressibility factor Zex evaluated from computer simulations (η >

0.14) [28] or from the Padé approximant Z[4,5] (η < 0.14) [28,39]
and the PY results in several routes (filled symbols). Open symbols
correspond to the interpolations Zv,c (squares) and Zμ,c (triangles)
from Eqs. (4.4) and (4.5), with α = 0.44 and α = 1

2 , respectively.

to 11.7%, 9.8%, and 9.3%, respectively, when the packing
fraction η = 0.2 is reached.

Looking for a better agreement with numerical experiments
from PY solutions, one can construct new EOSs through
Carnahan-Starling-like interpolations of the form

Zv,c(η) = αZPY
v (η) + (1 − α)ZPY

c (η), (4.4)

Zμ,c(η) = αZPY
μ (η) + (1 − α)ZPY

c (η). (4.5)

To test this possibility, one can define density-dependent
weight functions αv,c(η) = [ZPY

c (η) − Zex(η)]/[ZPY
c (η) −

ZPY
v (η)] and αμ,c(η) = [ZPY

c (η) − Zex(η)]/[ZPY
c (η) −

ZPY
μ (η)] to check to which extent they are weakly dependent

on η. This is done in Fig. 6, which shows evaluations of the
parameter α(η) from available data. Variations observed at the
lowest densities (η < 0.07) are due to the ratio of very small
values; actually, all three routes yield accurate results for very
dilute gas conditions. On the other hand, it is clear from Fig. 6
that there is not a unique value of αv,c(η) or αμ,c(η) in the fluid
phase region (η < 0.2). However, it is to be noted that α = 1

2
and α = 0.44 may be reasonable choices for Zμ,c and Zv,c,
respectively. It can be observed from Fig. 6 that the value
α = 0.44 in Eq. (4.4) is better in the region η ≈ 0.2 than the
simpler value α = 2

5 proposed in Ref. [40]. Data obtained
from the hybrid compressibility factors Zv,c (with α = 0.44)
and Zμ,c (with α = 1

2 ) are also included in Fig. 5. Both EOSs
have discrepancies with respect to simulation results lower
than 0.3% for η < 0.2.

The improvement of the μ route over the virial route
observed in the virial coefficients (see Table II and Fig. 3)
as well as in the EOS at finite densities (see Figs. 4 and 5)
can be rationalized by the following heuristic argument [8].
Comparison between the exact statistical-mechanical formulas

FIG. 6. (Color online) Ratio α = (ZPY
c − Zex)/(ZPY

c − Z) with
Z = ZPY

v (squares) and Z = ZPY
μ (triangles), using the compress-

ibility factor Zex obtained either by simulations [28] (filled symbols)
or from the Padé approximant Z[4,5] [28,39]. As reference, horizontal
lines denote the values α = 1

2 , α = 0.44, and α = 2
5 , and vertical

lines refer to the freezing and melting packing fractions [27].

(2.1) and (2.4) shows that, while the μ route is related to
the (weighted) average g(η) of the contact value g(η; ξ ) in
the range 0 � ξ � 1, the virial route is directly related to the
local value g(η; 1). Since both g(η; ξ ) and its first derivative
∂g(η; ξ )/∂ξ are given exactly by the PY approximation at
ξ = 0 (see Fig. 2), it seems reasonable that the average value
g(η) is better estimated than the end point g(η; 1) by the PY
approximation. In this respect, it is also worth noting that
the weight function (1 + ξ )d−1 in Eq. (2.2) increases with ξ

(except in the one-dimensional case, d = 1), so that the average
value g(η) is more influenced by the approximate values of
g(η; ξ ) near ξ = 1 than by the quasiexact values near ξ = 0.
This bias strongly increases with increasing dimensionality
[in fact, (1 + ξ )d−1 → (2d/d)δ(ξ − 1) in the limit d → ∞],
which explains why the discrepancy between the PY μ and
virial routes is much smaller with d = 5 than with d = 3.

V. FINAL REMARKS

In this paper, we have considered an application of the
Kirkwood coupling parameter method (or μ route) to the
thermodynamics of classical fluids. Specifically, the EOS
of the 5D-sphere fluid has been derived from the μ route
by exploiting the knowledge of the exact solution of the
PY theory for this system. The basic quantity required for
this implementation is the contact value of the RDF for
a partially coupled particle, which corresponds to a binary
mixture with one infinitely dilute component. Although the
PY approximation had been solved for the 5D-sphere system
by Freasier and Isbister [37] and by Leutheusser [41], their
methods do not provide the RDF of a binary mixture required
here. For this purpose we have used the RFA method [34]
which exactly solves the PY equation for hypersphere mixtures
in odd dimensionalities. The RDF obtained in this way has an
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analytical expression and the resulting EOS in the μ route is
derived from a numerical integration over density.

By examining the first few coefficients in the density
expansion for the EOS and comparing them with available
exact or highly accurate values, it is seen that, although the PY
theory is exact up to the third coefficient, it rapidly worsens
for increasing density order. Specifically, the compressibility
equation gives in general the most satisfactory values, followed
by the μ route, which becomes somewhat better than the virial
one. Contrary to the case of 3D-sphere systems [8], linear
interpolations of the PY EOS from different routes do not
improve the evaluation of the virial coefficients.

Regarding the behavior at finite densities, the pressure
predicted by the μ route is observed to lie below to simulation
data within the fluid phase. Interestingly, the deviations of the
compressibility and μ routes with respect to the numerical
experiments are roughly of the same magnitude (but of
opposite signs) in this region and both are lower than those
from the virial route. An accurate fit to simulation data in the
fluid regime (η < 0.2) is obtained if the compressibility and μ

routes are added together with equal weights. An alternative
accurate fit to numerical experiments may be derived by a
similar interpolation between the virial and compressibility
routes with appropriate weights. These results show a rather
regular behavior of the three PY routes around the exact EOS
within the whole fluid region.

ACKNOWLEDGMENTS

The work of R.D.R. has been supported by the Consejo Na-
cional de Investigaciones Cientı́ficas y Técnicas (CONICET,

Argentina) through Grant No. PIP 114-201101-00208. A.S.
acknowledges support from the Spanish government through
Grant No. FIS2013-42840-P and by the Regional Government
of Extremadura (Spain) through Grant No. GR15104 (partially
financed by ERDF funds).

APPENDIX A: RDF FOR A GENERAL
FIVE-DIMENSIONAL BINARY MIXTURE

For an AHS binary mixture at d = 5, the exact PY solution
of the functional (2.6) may be expressed by [34]

Gij (s) = e−σij s

s2
[(L0 + L1s + L2s

2) · B−1(s)]ij , (A1)

where Lm (m = 0,1,2) and B(s) are 2 × 2 matrices. More
specifically,

B(s) = I + ρ[�0(s) · L0 + �1(s) · L1 + �2(s) · L2], (A2)

where I is the unit matrix and �m(s) (m = 0,1,2) are diagonal
matrices with elements

[�m(s)]ii = v5xiσ
5−m
i φ5−m(σis), (A3)

where

φm(t) ≡ 1

tm

⎡
⎣ m∑

j=0

(−t)j

j !
− e−t

⎤
⎦. (A4)

Furthermore,

L0 = 3

[
1 1
1 1

]
, (A5)

L1 = 3

[
σ1 σ12

σ12 σ2

]
+ 3η

1 − 6η

(
2M6

M5

[
1 1
1 1

]
+ 3

[
σ1 σ2

σ1 σ2

]
− 10

M5

[
x1σ

4
1 x2σ

4
2

x1σ
4
1 x2σ

4
2

]
· L2

)
. (A6)

Here, Mn ≡ x1σ
n
1 + x2σ

n
2 is the nth diameter moment and η = v5ρM5 is the total packing fraction. As for the matrix L2, it obeys

the quadratic equation

Q0 + Q1 · L2 + Q2 · L2 · (P0 + P1 · L2) = 0, (A7)

where

P0 ≡ 1

2

[
σ1 0
0 σ2

]
+ 2η

M5

[
x1σ

6
1 x1σ

6
1

x2σ
6
2 x2σ

6
2

]
+ 3η/M5

1 − 6η

[
x1σ

6
1 x1σ

5
1 σ2

x2σ
5
2 σ1 x2σ

6
2

]
+ 12η2M6/M

2
5

1 − 6η

[
x1σ

5
1 x1σ

5
1

x2σ
5
2 x2σ

5
2

]
, (A8)

P1 ≡ −60η2/M2
5

1 − 6η

[
x2

1σ
9
1 x1x2σ

5
1 σ 4

2
x1x2σ

4
1 σ 5

2 x2
2σ 9

2

]
− 10η

M5

[
x1σ

4
1 0

0 x2σ
4
2

]
, (A9)

Q0 ≡ − η

M5

[
20η2M3

6 /M2
5

(1 − 6η)2
+ 4ηM6M7/M5

1 − 6η
+ M8

8

][
1 1
1 1

]
− η

M5

[
10ηM2

6 /M5

(1 − 6η)2
+ M7

1 − 6η

][
σ1 σ12

σ12 σ2

]

− 2ηM6/M5

1 − 6η

[
σ 2

1 σ 2
12

σ 2
12 σ 2

2

]
− 3η/2

1 − 6η

[
σ 3

1 σ1σ2σ12

σ1σ2σ12 σ 3
2

]
− η

(1 + 24η)M6

4M5(1 − 6η)2

[
σ 2

1 σ1σ2

σ1σ2 σ 2
2

]
− 1

3

[
σ 3

1 σ 3
12

σ 3
12 σ 3

2

]
, (A10)

Q1 ≡ 10η2M6/M
2
5

1 − 6η

[
x1σ

5
1 x2σ

5
2

x1σ
5
1 x2σ

5
2

]
+ 1

6

[
σ1 0
0 σ2

]
+ 5η/2M5

1 − 6η

[
x1σ

6
1 x2σ

5
2 σ1

x1σ
5
1 σ2 x2σ

6
2

]
+ 2η

3M5

[
x1σ

6
1 x2σ

6
2

x1σ
6
1 x2σ

6
2

]

+ 10η2

M2
5

[
10ηM2

6 /M5

(1 − 6η)2
+ M7

1 − 6η

][
x1σ

4
1 x2σ

4
2

x1σ
4
1 x2σ

4
2

]
+ 25η2M6/M

2
5

(1 − 6η)2

[
x1σ

5
1 x2σ

4
2 σ1

x1σ
4
1 σ2 x2σ

5
2

]
+ 5η/2M5

1 − 6η

[
x1σ

6
1 x2σ

4
2 σ 2

1
x1σ

4
1 σ 2

2 x2σ
6
2

]
,

(A11)
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Q2 ≡ 1

3

[
1 0
0 1

]
+ 3η

M5

[
x1σ

5
1 x2σ

5
2

x1σ
5
1 x2σ

5
2

]
+ 20η2M6/M

2
5

1 − 6η

[
x1σ

4
1 x2σ

4
2

x1σ
4
1 x2σ

4
2

]
+ 5η/M5

1 − 6η

[
x1σ

5
1 x2σ

4
2 σ1

x1σ
4
1 σ2 x2σ

5
2

]
. (A12)

In general, the solution to Eq. (A7) must be obtained
numerically [34]. However, an analytical form is possible for
a binary mixture with an infinitely diluted component (the
solute), as shown in Appendix B.

The asymptotic behavior of the functional Gij (s) required
in the evaluation of the RDF contact value [Eq. (2.8)] can be
derived from (A1) as

σ 2
ij gij (σ+

ij ) = lim
s→∞ eσij sGij (s) = [

L2 · B−1
∞

]
ij
, (A13)

where we have called B∞ ≡ lims→∞ B(s). It was shown in
Ref. [34] that

B∞ = I−ρ(C5 · L0 + C4 · L1 + C3 · L2), (A14)

where

Cm = (−1)m+1 (2π )2

m!

[
x1σ

m
1 0

0 x2σ
m
2

]
. (A15)

APPENDIX B: TEST PARTICLE LIMIT

The expressions in Appendix A apply for any five-
dimensional AHS binary mixture in the PY approximation.
Now, without loss of generality, we adopt the convention
i = 1 and i = 2 for solvent and solute particles, respectively,
and denote by σ1 = σ and σ2 = ξσ1 the respective diameters.
Next, we take the test particle limit for the solute, i.e., x1 → 1,
x2 → 0, so that Mn → σn. This drastically simplifies the
matrices (A8)–(A12).

Let us write the matrix L2 as

L2 = σ 2

[
λ11 λ12

λ21 λ22

]
. (B1)

The (1,1) element of Eq. (A7) yields a closed quadratic
equation for λ11. The physical solution is identified by the
condition limη→0 λ11 = finite with the result

λ11 = 1 + 4η

20η
− (1 − η)(1 − 6η)

20ηζ
, (B2)

where ζ is defined by Eq. (3.2). Since λ11 is a coefficient related
to the bulk fluid, it does not depend on ξ and its expression
is equivalent to that of the one-component fluid [as given by
Eq. (E10) of Ref. [25]]. As for the remaining elements of the
matrix L2, they are given from Eq. (A7) by

λ12 = a12/4ζ 2 − 2η(2 + 3ξ )λ11

1 + ξ + 2η(2 − 10λ11 − 3ξ )
, (B3)

λ21 = a12 − 4ηb21λ11 + 240(3 + 5ξ + 2η)η2λ2
11

4(1 − 6η)[1 + ξ + 2η(2 − 10λ11 − 3ξ )]
, (B4)

λ22 = a22 − 8ηb22λ12 − 8η(2 + 3ξ − 10λ12)c22

8(1 − 6η)2ξ
, (B5)

where

a12 = (1 + ξ )3 + 3η(5 + 8ξ − 2ξ 2 − 4ξ 3)

+ 12η2(6 + 4ξ − 6ξ 2 + 3ξ 3) + 12η3, (B6)

b21 = 13 + 30ξ + 15ξ 2 + 6η(19 + 20ξ − 15ξ 2) + 48η2,

(B7)

a22 = 8ξ 3 + 3η(1 + 8ξ + 18ξ 2 − 20ξ 3)

+ 12η2(5 + 8ξ − 12ξ 2 + 6ξ 3) + 12η3, (B8)

b22 = 2 + 12ξ + 15ξ 2 + 6η(6 + ξ − 15ξ 2) + 6η2(2 − 3ξ ),
(B9)

c22 = 3η(3 + 5ξ + 2η)λ11 + (1 − 6η)λ21. (B10)

It can be easily checked that if the solute is equivalent to a
solvent particle (i.e., ξ = 1), then the elements λ12, λ21, and
λ22 coincide with λ11, as expected.

Now we determine the contact values. Taking into account
that η = π2ρσ 5/60 and using Eqs. (A5), (A6), (A15), and
(B1), one obtains

ρC5 · L0 = 6η

[
1 1
0 0

]
, ρC3 · L2 = 40η

[
λ11 λ12

0 0

]
,

(B11)

ρC4 · L1 = −30η

[ 1−η(1+10λ11)
1−6η

1+ξ−2η(1+10λ12)
2(1−6η)

0 0

]
. (B12)

Insertion of this into Eq. (A14) yields

B∞ =
[

ζ 2−20η(2+3η)λ11

1−6η

3η(3+2η+5ξ )−20η(2+3η)λ12

1−6η

0 1

]
. (B13)

Its inverse matrix is

B−1
∞ =

[ 1−6η

ζ 2−20η(2+3η)λ11

20η(2+3η)λ12−3η(3+2η+5ξ )
ζ 2−20η(2+3η)λ11

0 1

]
. (B14)

Finally, from (A13) one has

g11(σ+
1 ) = 1 − 6η

ζ 2/λ11 − 20η(2 + 3η)
, (B15)

g12(σ+
12) = 4

(1 + ξ )2

[
20η(2 + 3η)λ12 − 3η(3 + 2η + 5ξ )

ζ 2/λ11 − 20η(2 + 3η)

+ λ12

]
, (B16)

g21(σ+
12) = 4

(1 + ξ )2

1 − 6η

ζ 2/λ11 − 20η(2 + 3η)

λ21

λ11
, (B17)

g22(σ+
2 ) = 1

ξ 2

[
20η(2 + 3η)λ12 − 3η(3 + 2η + 5ξ )

ζ 2/λ11 − 20η(2 + 3η)

λ21

λ11

+ λ22

]
. (B18)
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As expected, g12(σ+
12) = g21(σ+

12). By inserting the explicit
expressions of λ11 and λ12 it is straightforward to check

that Eqs. (B15) and (B16) reduce to Eqs. (3.3) and (3.1),
respectively.
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1959 (2001).
[20] R. Finken, M. Schmidt, and H. Löwen, Phys. Rev. E 65, 016108
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