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Shear-induced segregation of particles by material density
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Recently, shear rate gradients and associated gradients in velocity fluctuations (e.g., granular temperatures or
kinetic stresses) have been shown to drive segregation of different-sized particles in a manner that reverses at
relatively high solids fractions (〈f 〉 > 0.50). Here we investigate these effects in mixtures of particles differing
in material density through computational and theoretical studies of particles sheared in a vertical chute where
we vary the solids fraction from 〈f 〉 = 0.2 to 0.6. We find that in sparse flows, 〈f 〉 = 0.2 to 0.4, the heavier
(denser) particles segregate to lower shear rates similarly to the heavier (larger) particles in mixtures of particles
differing only in size. However, there is no segregation reversal at high f in mixtures of particles differing in
density. At all solids fractions, heavier (denser) particles segregate to regions of lower shear rates and lower
granular temperatures, in contrast with segregation of different-sized particles at high f , where the heavier
(larger) particles segregate to the region of higher shear rates. Kinetic theory predicts well the segregation for
both types of systems at low f but breaks down at higher f ’s. Our recently proposed mixture theory for high
f granular mixtures captures the segregation trends well via the independent partitioning of kinetic and contact
stresses between the two species. In light of these results, we discuss possible directions forward for a model
framework that encompasses segregation effects more broadly in these systems.
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I. INTRODUCTION

Granular materials tend to segregate when particles in
the mixture differ in size, material density, shape, or other
properties. Segregation due to differences only in material
density (often called density segregation, e.g., Refs. [1–3])
has wide implications for a variety of natural and industrial
processes. For example, in a vibrofluidized bed, density
difference between an impurity and the rest of the particles in
the bed creates problems for a variety of processes employing
this mechanism for transport (e.g., Ref. [4]). In longitudinal
bars of braided rivers, this segregation can give rise to local
accumulations of economically important denser materials
(e.g., gold, uranium, and diamonds) due to the separation
of these minerals from particles that are less dense (e.g.,
sand and gravel) [5]. The implications of segregation for
geomorphological issues are even broader, as evidence points
to the influence of local variation of particle density on local
variability of erosion rates [6] and sediment transport rates [7]
compared to expected rates (e.g., Ref. [8]).

Segregation according to particle density has been studied
experimentally and computationally under a variety of bound-
ary conditions and methods of excitation, including vibrated
systems [2–4,9] and sheared systems such as gravity-driven
flows in rotating drums [10–15] and down-inclined planes [16],
and shear bands in split-bottom cells [17]. In vibrated systems,
several factors have been shown to play important roles in
the segregation process, including convection [1], gravity [4],
interstitial air [9], and granular temperature (essentially, the
kinetic energy associated with velocity variances) [1,18].
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In sheared flows, similar mechanisms have been shown to
influence the segregation processes, including variations in
particle concentration (e.g., Refs. [17,19]). In this paper,
we distinguish between segregation according to “particle
density” (the focus of this paper) and segregation associated
with variations of “concentration,” or solids fractions by
restricting our use of the words “dense” and “less dense” to
refer to the material density of the particles ρm and use phrases
such as “high or low concentrations” (or “sparse flows”) to
refer to relative solids fractions f .

In sparse sheared flows, kinetic theory (e.g., Refs. [20–23])
has been used successfully to model and predict segregation
in simulations [20] and experiments [24]. The segregation
predictions may represent segregation according to several
competing elements: gravity, granular temperature, pressure,
and diffusion “forces” (e.g., Refs. [20,22,23]). For example,
gravity segregates denser particles downward (in the direction
of gravity) relative to less dense particles (e.g., Ref. [23])
while a gradient of granular temperature segregates denser
particles to lower granular temperature (e.g., Refs. [20,21]).
For low-to-moderate system-averaged solids fractions (〈f 〉 up
to 0.4), kinetic theory predicts segregation trends well [25].
Kinetic theory has been shown to be similarly effective in
predicting segregation by temperature gradient in mixtures of
different-sized particles at low-to-moderate f ’s [25,26], where
the heavier (larger) particles also segregate to regions of lower
temperature. However, as we detail shortly, for sufficiently
high f ’s, we have shown that for particles of different sizes,
the segregation reverses, that is, heavier (larger) particles
segregate to regions of higher shear rates and higher granular
temperatures [17,26], a phenomenon kinetic theory fails to
capture. These trends at high f have not been investigated for
segregation of particles differing in material density.
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In most studies of sheared systems of relatively high
system-averaged solids fractions 〈f 〉, the primary focus of
segregation of granular mixtures has involved the effect of
gravity, while the effect of granular temperature has not been
thoroughly explored. Typically, in high-f flows, similarly
to sparse flows, denser particles sink relative to equal-sized
lighter neighbors, and less dense particles rise. In high-f flow,
Khakhar et al. [10] proposed a “buoyancy” mechanism, which
was shown to successfully reproduce gravity-driven segre-
gation according to particle density in rotating drums [11].
Specifically, particles lighter than the surrounding mixture of
particles experience a buoyancy force greater than their weight
and rise, and particles denser than the surrounding mixture
sink. For example, for flow of such a mixture down an plane
inclined by θ relative to the horizontal, the segregation flux
of the denser particles normal to the flow may be expressed
according to:

fd (vd − v) = K[(ρd − ρl)/ρd ]f φdφl. (1)

Here K = CVρdgcosθ is a characteristic “segregation ve-
locity,” where C is inversely related to resistance to local
relative motion and V is the volume of a particle. vi is the
velocity component of species i in the segregation direction,
typically normal to the system-averaged flow direction. ρi is
the material density of species i, fi is the local solids fraction
of species i, and φi is the local concentration of particles of
species i (φi = fi/�ifi). The subscripts i = d and l denote
denser and less dense particles, respectively. For the variables
associated with the mixture dynamics no subscript is used
(e.g., f = fd + fl). We note one potentially confusing issue:
While one would expect v, the system-averaged velocity for
the segregation direction, to be zero, there are exceptions in
some practical applications of this framework. For example, in
the flow of particles in a thin surficial layer in a rotating drum
(an original application for Eq. (1) in Ref. [10]), the particles
dilate as they move through the first half of the flowing layer
and then they contract though the second half. Still, the local
value for v is typically taken to be the velocity in the spatially
averaged flow direction rather than the normal direction at each
location. To account for cases such as this, for the purposes of
the discussion in this paper, we keep the explicit representation
in v in Eq. (1) and related expressions of the segregation flux.

More recent work by Khakhar and colleagues
(Refs. [13,27,28]) illuminated the form of the inverse drag
function C by considering movement of particles differing in
density through an effective medium and showed the drag
increased with an effective temperature. While this latter
work demonstrated how temperature should influence the drag
coefficient, it did not address the issue of temperature as a
driving force of segregation alone. When considering results
from mixtures of different-sized particles, one would expect
temperature gradients to have the ability to segregate particles
in high-f systems as well.

In particular, we recently showed that gradients in granular
temperature (or kinetic stress) associated with shear rate
gradients can drive segregation in high-f sheared mixtures of
different-sized particles [19,29,30]. Further, we showed that
at relatively high solids fraction f , the segregation tendency
reversed. That is, on the one hand, we found that in sparse
systems large particles segregate to regions of low granular
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FIG. 1. (Color online) (a) Sketch of a vertical chute. [(b)–(d)]
Time-averaged profiles of kinematic quantities for four mixtures at
steady state, here t = 5–6 s for 〈f 〉 = 0.2 (green solid curve), t =
20–30 s for 〈f 〉 = 0.4 (blue dash-dotted curve), t = 30–40 s for
〈f 〉 = 0.5 (red dashed curve), and t = 300–310 s for 〈f 〉 = 0.6
(black dotted curve): (b) streamwise velocity w of the mixture, (c)
kinematic granular temperature T = (u′u′ + v′v′ + w′w′)/3 of the
mixture, and (d) local solids fraction of the mixture f .

temperature and low shear rates, consistent with previous
reports (e.g., Refs. [20–23,25]). On the other hand, we found
that at higher solids fractions, f ≈ 0.5 to 0.6, the large
particles segregate to regions of high granular temperature.
To this point, no analogous study has been performed for
mixtures of particles differing only in density. Further, one
would expect the segregating effects of granular temperature
gradients should compete with the “buoyancy effect” in these
mixtures, an important detail for predicting and possibly
manipulating segregation in high-f sheared flows.

In this paper, we describe our computational and theoretical
efforts to understand the effects of granular temperature
gradients on segregation of binary mixtures differing only
in material density, particularly for high solids fractions. To
isolate the effect of shear rate gradients from the effect of
gravity, we present discrete element method (DEM) simula-
tions of mixtures of particles differing only in density sheared
in a vertical chute [Fig. 1(a)]. The vertical chute is ideal for
studying the effect of shear rate gradients and associated
granular temperature gradients on segregation because of
its simple geometry but inhomogeneous flow structure. To
determine whether there is a segregation transition analogous
to that in mixtures of particles differing only in size, we
simulate mixtures over a range of solids fractions, from sparse
to high solids fractions. We investigate two theories for their
ability to reproduce segregation in these systems: (1) kinetic
theory and (2) our mixture theory previously derived for
mixtures of different-sized particles [19,29]. We show that
kinetic theory is qualitatively effective at all solids fractions
we investigate but breaks down quantitatively at high solids
fractions. Our mixture theory, focused on effects associated
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with shear rate gradients, such as gradients in granular
temperature and kinetic stress, adapts reasonably well to these
mixtures of particles differing only in density. In present form,
though, our theory lacks quantitative detail. In our discussion
and conclusion sections, we point out shortcomings of this
new model and describe ongoing work to improve upon the
details.

II. SIMULATION METHOD AND SETUP

For our computational simulations, we use the DEM [31]
with a soft sphere model so that each interparticle contact
typically endures over several time steps. As is typical, we
calculate the forces on each particle at each time step, and
from these deduce the subsequent movements and positions
of all particles throughout the simulations. We use a nonlinear
interparticle contact model based on Hertzian and Mindlin
contact theories [32] with damping components calculated
based on experimental data (Ref. [33]). The interparticle
forces FFF = FFFn + FFF t ; each has components normal (FFFn) and
tangential (FFF t ) to the plane of contact:

Fn = −knδ
3/2
n − ηnδ

1/4
n δ̇n, (2a)

Ft = min
{−ktδ

1/2
n δt − ηtδ

1/4
n δ̇t , μFn

}
, (2b)

In these equations, δn and δt denote deformations from
interparticle contact as effective overlap in the directions
normal and tangential to the plane of contact; throughout
these equations, subscripts n and t refer to the directions
normal and tangential to the plane of contact, respectively.
VVV n = (dδn/dt)nnn and VVV t = (dδt/dt)ttt are relative velocities
of contacting particles. nnn and ttt are unit vectors in each
direction. kn, kt , ηn, and ηt are interaction coefficients derived
from material properties as described in Refs. [32] and [33].
Sliding occurs according to the Coulomb law of friction when
|FFF t |/|FFFn| exceeds the coefficient of friction μ. The material
properties to calculate the interaction coefficients are based
on particles 2 mm in diameter with all properties similar to
“glass” particles, except material density: one particle density
is similar to that of glass and the other to that of steel (Table I).
The interaction coefficients for all contacts in the mixtures we
describe in this paper are shown in Table II. For the simulations
described here, we use an equal volume of the two types of
spheres. Each species has a 10% polydispersity in the particle
diameters to impede particle ordering.

The boundary conditions for our simulations are those of
a vertical chute of dimensions D = 20 mm, W = 50 mm,

TABLE I. Material properties used in DEM simulations. The less-
dense particles have similar properties to glass, although to reduce
the computational time we reduce the Young’s modulus by a factor of
O(102), similarly to our previous studies [29,30]. The denser particles
have the same properties except density, which is close to that of steel.

Property Less dense Dense

Material density (kg/m3) 2520 7800
Young’s modulus (GPa) 0.1 0.1
Poisson ratio 0.22 0.22

TABLE II. Values of contact parameters used in the force model
for the DEM simulations for the three possible pairs of interacting
particles, as indicated in the first row.

Less dense
Parameters Less dense Denser Denser

kn (N/m3/2) 1.57 × 106 1.57 × 106 1.57 × 106

kt (N/m3/2) 2.06 × 106 2.06 × 106 2.06 × 106

ηn (N s/m5/4) 2.85 × 10−1 5.01 × 10−1 3.50 × 10−1

ηt (N s/m5/4) 3.26 × 10−1 5.74 × 10−1 4.01 × 10−1

μ 0.4 0.4 0.4

and L = 50 mm in the x, y, and z directions, respectively
[Fig. 1(a)]. Our chute has one pair of vertical side walls
(perpendicular to the y direction), which are roughened using
2-mm spheres in a random close-packed arrangement. The
boundaries are periodic in the z (vertical) and x directions.
We perform simulations for several different total system-
averaged solids fractions from 〈f 〉 = 0.2 to 0.6 by varying
the total numbers of particles in the systems (from ≈2500 to
8000 particles). We denote the velocity uuu = uxxx + vyyy + wzzz

according to the directions noted in Fig. 1(a).
For each simulation, the particles are initially arranged

randomly in the chute and then released with small random
velocities. After their initial release, particles collide with
one another and with the vertical walls. Dissipation of energy
through interparticle and wall-particle interactions limits the
velocity throughout the cell, and a steady-state velocity is
reached for most of the simulations after a time between a
fraction of a second and several seconds, as will be discussed.
Exceptions will be noted below. We monitor the segregation
and other kinematics until the segregation appears to have
reached steady state and then terminate the simulations (as
discussed in Sec. III).

III. SIMULATION RESULTS

The steady-state profiles of the streamwise velocity w,
the sum of the mean-square velocity fluctuations (what one
might call the kinematic granular temperature T = (u′u′ +
v′v′ + w′w′)/3), and the solids fraction f for the mixture are
plotted in Figs. 1(b)–1(d). (Here and throughout we use the
notation q to denote the time average of measured quantity
q. We average over the results over relatively short times in
the segregation process, typically 0.5-s intervals.) We note
these results are similar to those previously published for
mono-disperse systems (e.g., Refs. [34–36]) and for mixtures
of particles differing only in size (Refs. [19,26,29]). At high
〈f 〉, the velocity profile w(y) resembles a plug flow with high
shear rates at the side walls, while at the lower solids fractions,
the velocity is higher and the profile is roughly parabolic
[Fig. 1(b)]. In all cases, T is highest near the walls where
the shear rate γ̇ = |dw/dy| is the greatest and increases at
every point as 〈f 〉 decreases [Fig. 1(c)]. Regions of high T

and high γ̇ (near the walls) correspond to regions of low f

[Fig. 1(d)].
Figure 2 shows snapshots at the beginning and the end of

the simulations for three representative solids fractions (〈f 〉 =
0.2,0.4, and 0.6). Segregation occurs in the horizontal direction
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FIG. 2. (Color online) Snapshots of three mixtures at the begin-
ning and steady state of each simulation. (The steady-state time is
determined using data plotted in Fig. 4.) (a) The beginning of the
simulations (t = 0 s). From left to right, 〈f 〉 = 0.2, 0.4, and 0.6,
respectively; (b) the steady state of the simulations. From left to
right, 〈f 〉 = 0.2 at t = 5 s, 〈f 〉 = 0.4 at t = 10 s, and 〈f 〉 = 0.6 at
t = 300 s, respectively. The different species are distinguishable by
color: 2-mm denser particles, blue (dark); 2-mm less-dense particles,
green (light).

under gradients of shear rate and granular temperature for
all three 〈f 〉’s. In all cases, all of the particles show some
tendency to concentrate to regions of low T , low γ̇ , and high
f in the center of the chute, though the denser particles do so
more effectively. In contrast with our results for different-sized
particles [26], there is no segregation transition, or reversal,
at intermediate solids fractions for different-density particles.
This distinction may point toward an important difference
in the segregation drivers of each at higher system solids
fractions. We comment on this more in the conclusion section.

Additionally, we note that the degree of segregation in the
steady-state segregation patterns appears most pronounced for
the intermediate value of 〈f 〉; in other words, qualitatively,
the particles appear less segregated at the smallest and highest
system solids fractions. This was also not observed in the case
of mixtures of different-sized particles, where, in the steady-
state segregation pattern, the segregation appeared equally well
pronounced for the mixtures of different-sized particles for all
solids fractions (〈f 〉 = 0.2 to 0.6) we investigated.

The profiles of the solids fraction and segregation fluxes for
each component in Fig. 3 support the qualitative observations.
We plot the solids fraction profiles f i of each component i

(i = d for denser particles and i = l for less dense particles)
and for the mixture f at the steady state 〈f 〉 = 0.2, 0.4, and
0.6 in Fig. 3, row 1. The data for f clearly show the result of
the migration of all particles to the center of the chute. At the
larger values of 〈f 〉 (e.g., 0.4 or 0.6), the maximum local solids
fraction of mixture is as high as 0.71, close to hexagonal close
packing. The relative segregation of the particles at steady
state is also apparent in these plots. In all cases, the denser
particles have a higher solids fraction in the middle region of
the chute than the less-dense particles; this is most pronounced
for 〈f 〉 = 0.4, supporting our observations that segregation
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FIG. 3. (Color online) Segregation kinematics of three systems
with 〈f 〉 as noted on top of each column for the mixture (m)
[green (lighter line)] and dense (d) [red (darker line)] and less
dense (l) [blue (bold dark line)] particles. Row 1: f i at steady state
(SS). Row 2: Segregation fluxes f i	vi as defined in text averaged
over t = 0 − 1 s (row 2). Row 3: Kinematic granular temperature
Ti = (u′

iu
′
i + v′

iv
′
i + w′

iw
′
i)/3 at steady state. We note that the scales

of the vertical axes in rows 2 and 3 vary for the different solids
fractions.

seemed most pronounced in the snapshots from 〈f 〉 = 0.4 in
Fig. 2.

Row 2 of Fig. 3 shows the profiles of the horizontal
segregation fluxes f i	vi = f i(vi − v) at the beginning of
the simulations for these systems. For all three 〈f 〉’s, the
horizontal fluxes are strong and clear: the denser particles
have positive fluxes in the left half of the chute and negative
fluxes in the right half of the chute, indicating denser particles
segregate to the center of the cell, while the less dense particles
segregate to the walls. The relative segregation fluxes decrease
for higher values of 〈f 〉, which is possibly due to a decrease of
gradients of γ̇ and T as 〈f 〉 increases [see Figs. 1(b) and 1(c)].

Row 3 of Fig. 3 shows the profiles of T which we
include because of its demonstrated importance in driving
segregation in certain systems (e.g., Refs. [20,21,29]). In
the sparse flow, the less-dense particles have a higher value
of T than denser particles, which one might expect when
considering momentum exchange among particles of different
density (e.g., Ref. [37]). On the other hand, in the system
of highest solids fraction (〈f 〉 = 0.6), the difference between
species kinematic temperatures is minimal, especially at the
center of the chute cell. This is consistent with our previous
observations of highly concentrated mixtures in a drum [37],
where we argued that in high solids fraction sheared flows,
the velocity fluctuations did not differ for particles of similar
size, regardless of their relative density because of geometric
considerations of the particle movements.

We consider two quantities to determine the temporal
evolutions of the mixture dynamics. The first is the width-
averaged vertical velocity of the particles in the chute 〈w〉.
We used this to estimate the time dependence of the average
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j=0 f j , where wj and f j are the average vertical velocity
and average solids fraction of the mixture in bin j and Nbin = 2500 is the number of bins in the y direction and the second row shows plots of
a measure of the segregation in the chute S [see Eq. (3)]. Symbols are data measured from DEM simulations and solid lines are exponential
fits to the data. For 〈f 〉 = 0.2 and 0.4, the fit equations are f (t) = A + B exp(−t/τ ). For 〈f 〉 = 0.6, when t < 100 s (stage I), the fit equation
is the same as those at 〈f 〉 = 0.2 and 0.4, and when t > 100 s (stage II), the fit equation is f (t) = A + B exp[−(t − t0)/τ ]. Here A, B, t0,
and τ are fitting parameters: A + B and A represent the initial and final values for each variable, τ is the time scale, and t0 is indicative of the
effective start time of the exponential decay during stage II for 〈f 〉 = 0.6. The fitting coefficients are shown in Table III.

kinematics of the mixture. The second measure we used
provides a systematic measure of the rate and degree of
segregation, S, essentially, the standard deviation of mean
concentration Si of each species i at each time step t :

Si(t) =
√√√√Nbin∑

j=1

{[φi(t)]j − 〈φi〉}2/(Nbin − 1). (3)

Here Nbin = 2500 is the number of bins in the y direction,
[φi(t)]j = (fi/f )j is the mixture concentration of species i

in bin j at time t , and 〈φi〉 = 〈fi〉/〈f 〉 is mean (volume)
concentration of this species in the system (0.5 for both
species). Since 〈φd〉 = 〈φl〉 = 0.5 and [φd (t)]j + [φl(t)]j = 1
(for all t), Sd = Sl , which we denote by S.

Figure 4 shows the time dependence of 〈w〉 [Figs. 4(a), 4(c),
and 4(e)] and S [Figs. 4(b), 4(d), and 4(f)] for the same
three systems presented in Figs. 2 and 3. For a sense of
the spatial resolution of the evolving segregation patterns
in these systems, we plot the spatiotemporal profiles of the
concentration of the denser particles in Figs. 5(a)–5(d). In all
systems at early times, 〈w〉 and S grow asymptotically from
0 to constant values, at which point the mean flow kinematics
and segregation reach a steady state. For 〈f 〉 = 0.6, this growth
takes place in two stages: first, 〈w〉 and S increase to relatively
constant values within a few seconds and remain essentially
steady until t ≈ 100 s [see Fig. 4(e)], and then the particles
suddenly accelerate again and segregate further until another
set of relatively constant values for 〈w〉 and S is reached; 〈w〉
and S remain steady once again until we stop the simulation
at t ≈ 300 s [Fig. 4(e)]. The time of this transition from one
apparent metastable state to the next differs with different

initial conditions. We see evidence for a similar transition for
our moderate density system [t ≈ 10 s in Fig. 4(c)], though the
effect on segregation rate, if any, is negligible [Fig. 4(d)]. The
reacceleration of the flow is possibly due to a relatively minor
but sudden rearrangement of particles in the near-close-packed
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FIG. 5. Spatiotemporal profiles of concentration of denser par-
ticles (φd = fd/f ) for (a) 〈f 〉 = 0.2 at t = 0–5 s, (b) 〈f 〉 = 0.4
at t = 0–20 s, (c) 〈f 〉 = 0.6 at t = 0–100 s, and (d) 〈f 〉 = 0.6 at
t = 0–300 s. The legend indicates the shade of gray that corresponds
to particular fraction of denser particles. For example, φd = 1 for
white pixels and φd = 0 for black pixels.
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TABLE III. Values of fitting coefficients for 〈w〉 and S.

Aw (m/s) Bw (m/s) τw (s) t0,w (s) AS BS τS (s) t0,S (s)

〈f 〉 = 0.2 −8.53 8.83 0.61 – 0.21 −0.22 0.18 –
〈f 〉 = 0.4 −8.05 8.05 0.69 – 0.35 −0.28 1.08 –
〈f 〉 = 0.6(I)a −0.88 0.85 0.82 – 0.12 −0.12 6.60 –
〈f 〉 = 0.6(II)a −2.77 2.00 33.90 101 0.19 −0.077 26.22 100

aI and II represent two stages of the flow.

region similar to cage-breaking in similarly dense sheared
flows [38]. These dynamics could also be related to a jamming
transition, a matter that is currently under investigation.

To compare the rate for each system to reach steady state
and the segregation rate at different systems, we fit the curves
of 〈w〉 and S in Fig. 4 using one of two exponential relations:

f (t) = A + B exp(−t/τ ), (4a)

g(t) = A + B exp[−(t − t0)/τ ], (4b)

where fitting parameters A and B are the fitted initial (A + B)
and final (A) values for each variable, and τ is the time scale
of each process. We fit the data from 〈f 〉 = 0.2 and 0.4 using
Eq. (4a). During the first stage of 〈f 〉 = 0.6, we fit the variables
using Eq. (4a), and during the second stage (from t = 100 to
300 s, determined empirically) we use Eq. (4b), where t = 100
s is our empirically determined start time for the second stage
of the system evolution.

The values of these fitting parameters for 〈w〉 and S for
the three different 〈f 〉’s are listed in Table III. The time scale
for both 〈w〉 and S (τw and τS , respectively) increase as 〈f 〉
increases, though the increase of τw is not as pronounced as
for τS . The average flow in the sparsest system (〈f 〉 = 0.2),
takes longer for the mean flow to reach the steady state than the
essential segregation (τw > τS). When 〈f 〉 increases to 0.4, τw

is comparable to τS . For 〈f 〉 = 0.6, τS is 8 times larger than
τw in stage I, indicating segregation of the two species is still
evolving when the mean flow has reached steady state.

As mentioned, segregation in the sparse system has been
previously shown to be driven by the gradients of granular tem-
perature, which can be modeled by the kinetic theory [21,25].
We have shown that segregation can also be driven by gradients
in shear rate and granular temperature gradients [26]. In
Sec. IV A, we use a kinetic theory approach to model the shear-
induced density segregation in the vertical chute. The kinetic
theory captures the segregation trends and fluxes at sparse
systems (e.g., 〈f 〉 = 0.2), but it overestimates the segregation
fluxes when the system concentration increases (〈f 〉 � 0.4).
Next, we adapt a recently developed theory [29] based on
a mixture theory to understand the driving mechanisms for
shear-induced density segregation for the higher 〈f 〉 systems.

IV. TWO MODELS FOR SHEAR-INDUCED SEGREGATION

We consider these results in the context of two models.
The first is kinetic theory for binary mixtures of slightly
inelastic particles as detailed in Ref. [23]. The second is
based on a model we previously proposed for different-sized,
same-density particles, described in detail in Refs. [19,29].

A. Kinetic theory adapted for the vertical chute problem

To compare our simulation results with those predicted
by kinetic theory, we consider that our particles are slightly
dissipative (restitution coefficient e ≈ 0.9) and that what
we might call the dynamic temperature of each species
[the kinetic energy of the velocity fluctuations, TD = miTi

typically differ from one another (mi is the particle mass
of species i)]. As in Ref. [30], we use expressions derived
under the framework of kinetic theory assuming a Maxwellian
velocity distribution and allowing the particles to be slightly
inelastic and that includes the effect of nonequipartition of
temperature [37,39,40] according to expressions in Ref. [23]
(similar to those in Ref. [20]).

To compare predictions from kinetic theory with our
simulation results, we focus on segregation in the y direction
(see Fig. 2) within the first 1 s of the simulation. In
Fig. 6, we plot the difference in the average “segregation”
or “diffusion” velocities vl − vd of the two species from the
DEM simulations and as predicted according to expressions
developed from kinetic theory. (We note that the details on
how the theoretical values are calculated are included in
Appendix A.)

In all cases, kinetic theory successfully predicts the segrega-
tion trend. Specifically, the dense particles segregate toward the
center, and the less-dense particles segregate toward the walls.
For the sparse system (〈f 〉 = 0.2), kinetic theory successfully
predicts the relative segregation velocities both qualitatively
and quantitatively. The predicted fluxes are slightly larger
than those measured from the simulation. This is probably
due to the existence of “density waves” of locally high
concentrations of particles as reported by Liss et al. [41] in
this system [apparent in Fig. 2(b)], which is not accounted
for in the development of the predictions we report here from
kinetic theory (Appendix A). However, when the system is
more concentrated (〈f 〉 � 0.4), kinetic theory overpredicts
the relative segregation velocities. At 〈f 〉 = 0.6, the predicted
segregation fluxes are one order of magnitude larger than fluxes
from the simulation. These results indicate that kinetic theory
can qualitatively predict segregation fluxes in agreement with
previous work [21,25]. However, as the system becomes
more concentrated (〈f 〉 � 0.4), kinetic theory overestimates
segregation fluxes as also found by Xu et al. [25], and
the difference between theory and results increases as 〈f 〉
increases.

B. Mixture theory with “temperature effects”
adapted to density variations

We next consider a model we developed to account for
the effect of temperature gradients on segregation in sheared
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FIG. 6. (Color online) Profiles of the relative diffusion velocities vl − vd between less dense and denser particles in the y direction averaged
across the width of the chute and over the first 1 s for three different systems with 〈f 〉 indicated in the figure. Solid lines denote vl − vd = 0 to
guide eye.

high-〈f 〉 systems for particles differing only in size to
determine whether it can be adapted to model the segregation
effects we see here for mixtures of particles differing in
material density. Our mixture theory model is more simplistic
than kinetic theory in that it does not start at the particle scale
to develop rules for interactions between species. Rather, the
interaction forces are based on some macroscopic assumptions
of the mechanics of the interactions. In that way, this theory
is more easily adaptable to different boundary conditions, but
one must use caution in interpreting the results.

The basic form of the model is described in detail in
Refs. [19,29], adapted to gravity-driven flow in Ref. [42]. The
model development in our earlier work was based, in part, on
the assumption that the solids fraction f is uniform throughout
for equal-density particles, and, therefore, so is what we
might call the mixture bulk density defined by ρ = fρm. For
segregating mixtures of particles differing in material density,
even if f is uniform, ρ becomes nonuniform as the mixture
segregates. In this section, we outline our theory following
much of the development we described in Refs. [19,29] but
modified to allow for a spatially varying particle density and
then compare it with our DEM results.

1. Overview of mixture theory

As in the description for the DEM results, we denote bulk
Eulerian properties of each species with subscripts and those
of the mixture of both species together as variables without
subscript (e.g., ρ = �iρi and ρi = ρm,ifi). We first consider
conservation of mass and momentum for the mixture:

∂ρ

∂t
+ ∇ · (ρuuu) = 0, (5a)

∂

∂t
(ρuuu) + ∇ · (ρuuu ⊗ uuu) = ∇ · σ + FFF, (5b)

and the same for the individual species:

∂ρi

∂t
+ ∇ · (ρiuuui) = 0, (6a)

∂(ρiuuui)

∂t
+ ∇ · (ρiuuui ⊗ uuui) = ∇·(σσσ i) + FFF i + βββi. (6b)

In these equations, σσσ is the stress tensor using the relatively
standard sign convention for stresses as, for example, noted
in Ref. [43], and FFF represents the net body force per unit
volume. σσσ i is the local stress borne by species i, and the total

stress σσσ = ∑
σσσ i . βββi represents the interaction force exerted

on species i by the other species.
We then consider the instantaneous value of each variable

q at position rrr as a sum of the local temporal average q(rrr)
and the difference between its instantaneous value and the
average q ′(rrr,t) = q(rrr,t) − q(rrr) (typically called “Reynolds
decomposition” [44]). We consider the results in the context
of pseudo-two-dimensional systems like the vertical chute so
the flow exhibits uniformity in the directions perpendicular
to segregation (e.g., x and z directions). We rewrite the
momentum equation (5b) for the mixture in the y direction
as

∂

∂t
(ρ + ρ ′)(v + v′) + ∂

∂y
[(ρ + ρ ′)(v + v′)(v + v′)]

= ∂

∂y
(σyy + σ ′

yy) + Fy + F ′
y. (7)

We consider systems in which the mixture velocity reaches
steady state (as in the majority of the segregation for 〈f 〉 = 0.6
in Fig. 4, row 3). We approximate the correlations between
velocity fluctuations and concentrations as negligible (as we
found in Ref. [29]). Finally, for this paper, we restrict our
discussions to cases where the only body force (particle
weight) is in the z direction, like the vertical chute. Then
the Reynolds averaged equations in the y direction may be
expressed as:

∂σccc
yy

∂y
+ ∂σkkk

yy

∂y
= 0, (8)

for the mixture and

∂σccc
yy,i

∂y
+ ∂σkkk

yy,i

∂y
− βy,i = 0 (9)

for the individual components. As in Ref. [29], we refer to
σkkk

yy ≡ ρv′v′ as a component of the kinetic stress and define
a contact stress tensor σσσccc = −σσσ so terms such as σccc

yy are
positive for our problem where there are only compressive,
not tensile, interactions between particles. We note that ρv′v′
scales roughly with T , so Eq. (8) indicates that a gradient
in T can be associated with a gradient in both σkkk

yy and σccc
yy

(of opposite signs). Since all terms in Eqs. (8) and (9) are
averaged, we drop the overbar from this point in this paper, so,
unless noted for each variable, q alone refers to the average
quantity q.
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In contrast with classic mixture theory (e.g., Refs. [45–47]),
we follow Refs. [29,42] and references within and allow the
partitioning of kinetic and contact stresses between the species
to vary from the associated solids fractions (σccc

yy,i �= φiσ
ccc
yy and

σkkk
yy,i �= φiσ

kkk
yy). Instead, we use independent stress partition

coefficients (ψccc
i and ψkkk

i ):

σccc
yy,i = ψccc

i σ
ccc
yy, and σkkk

yy,i = ψkkk
i σkkk

yy, (10)

where ψccc
i and ψkkk

i determine the proportion of normal contact
and kinetic stresses carried by species i and are not necessarily
equal to φi .

For the interaction term βy,i , we propose a similar form to
that for equal-density particles in Ref. [29], modified slightly
to account for the variable species concentrations throughout
the system:

βy,i = σccc
yy

∂

∂y
ψccc

i + σkkk
yy

∂

∂y
ψkkk

i − ρicD(vi − v) − d
∂ρi

∂y
. (11)

The first two terms on the right-hand side of the equation
ensure that, as in Darcy’s law, the segregation process is
driven by intrinsic rather than partial stress gradients (as in
Refs. [47–49]). The third term is a linear drag law, and cD is
a linear drag coefficient. The fourth term acts as a “remixing
force” that drives grains of constituent i towards areas of lower
concentration, and d is an ordinary diffusion coefficient.

Combining Eqs. (10) and (11) with Eq. (8), a segregation
flux of species i can be expressed as:

ρi(vi − v) =
(
Rccc

i − Rkkk
i

)
φi

cD

∂σkkk
yy

∂y
− d

cD

∂ρi

∂y
. (12)

Rccc
i = ψccc

i /φi and Rkkk
i = ψkkk

i /φi are stress partition variables we
introduce to facilitate a physical interpretation of the governing
features of this equation. Equation (12) is similar to, but
more general than, the equivalent expression for equal density
particles presented as Eq. (11) in Ref. [29] as:

φi(vi − v) =
(
Rccc

i − Rkkk
i

)
φi

ρcD

∂σkkk
yy

∂y
− d

cD

∂φi

∂y
. (13)

For mixtures of particles of the same material density, ρ can
be expressed by ρ = ρmf , where ρm is the material density
of all species in the mixture, so the two expressions for flux
are interchangeable. For our mixtures of particles of different
densities ρ = ρm,dfd + ρm,lfl , and the two expressions for
flux are not equal.

Otherwise, the predictions are similar. Both Eqs. (12)
and (13) predict that if Rccc

i = Rkkk
i , the species will not segregate.

However, if Rccc
i �= Rkkk

i and ∂σkkk
yy/∂y �= 0, whichever species

carries a higher fraction of the contact stress than they do
the kinetic stress should be pushed to the region of higher
temperature.

2. Mixture theory compared with simulation results

To compare the theoretical predictions with the computa-
tional results, we consider that, for the theoretical develop-
ment, we have assumed that the velocities in the system reach
steady state before the majority of the segregation process
takes place. This condition is met for the initial segregation
that occurs for the highest, 〈f 〉 ∼ 0.6, so we focus our
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FIG. 7. (Color online) The y component of total and partial
normal stresses in the y direction for the mixture and the two
species at a quasi steady state (t = 50–100 s). (a) Total, kinetic,
and contact stresses for the mixture; (b) contact stresses for the
two species; (c) kinetic stresses for the two species; (d) species
concentrations. The dashed lines in (a) are exponential fits for
the kinetic and contact stresses of the mixtures. For kinetic
stresses: σkkk

yy(y) = Aexp(|By|) based on a linearized least-squares
fit, where A = 3.6 × 10−2 N/m2 and B = 0.25 mm−1; for contact
stresses: σccc

yy(y) = C − Aexp(|By|), where A = 1.6 × 10−2 N/m2,
B = 0.24 mm−1, and C = 27.05 N/m2.

comparison on this case. We do not have a predictive form
for stresses or the coefficients of drag and diffusion. In lieu of
a direct comparison of theory and simulation, we investigate
the relationships between the segregation flux and partition
coefficients measured in the simulations and compare them
with those predicted by Eq. (12) to determine whether the
theoretical framework is consistent with the simulations. Then
we use these data to obtain estimates for the coefficients of
drag and diffusion as described shortly.

We first calculate the stresses and other dynamics in the
simulations throughout the system, including the partition
coefficients for the partial stresses and the concentration
profiles. For the stresses, we follow the same procedure
described in Ref. [29], which we summarize in Appendix B.
We have found that the stresses do not change considerably
over the course of the simulation and plot the profiles from
the data averaged over t = 50–100 s in the simulation after the
mixture kinematics first reach a quasi steady state. In Fig. 7(a),
we plot the profiles of σkkk

yy(y) and σccc
yy(y), which in many

ways are similar to those using equal-density, different-sized
particle mixtures in Ref. [29]. The profile of σkkk

yy(y) peaks
near the rough walls and dips in the middle. As one would
expect from Eq. (8), σccc

yy(y) follows the opposite trend: It is
highest in the middle and dips near the walls. The total stress
σccc

yy(y) + σccc
yy(y) is nearly constant across the chute cell. We fit

the data by exponential functions: σkkk
yy(y) = Aexp(B|y|) and

σccc
yy(y) = C − Aexp(B|y|), where the fitting parameters are
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parametric plot from the data shown in (c) and Fig. 7(d) for Rccc
L − Rkkk

L

vs φD . The dashed lines in (a)–(c) are used to indicate the case
where R

kkk,c
i = 1 for both components, i.e., indicating the values on

the plot for which the stresses would be equally partitioned between
the components. The solid line in (d) is a linear least-squared fit for
Rccc

L − Rkkk
L = BφD; B ≈ 0.8.

given in the caption of Fig. 7. Figures 7(b) and 7(c) show
the contact and kinetic stresses associated with each of the
two species, and Fig. 7(d) shows the concentration profiles of
each constituent in the y direction. These results indicate that,
depending on the region of the chute, either the less dense or
the denser particles may take up a higher fraction of the local
stress, and σccc

yy,i(y) scales most closely with φi(y).
In Fig. 8 we plot the relative partial stress coefficients Rccc

i =
ψccc

i /φi and Rkkk
i = ψkkk

i /φi , averaged over the time interval t =
50–100 s. Rccc

i ≈ 1 except immediately adjacent to the wall,
where the results may be affected by the neighboring wall
particles. These results indicate that nearly everywhere the
contact stress borne by each species is proportional to its local
concentration, i.e., ψccc

i = φi . In contrast, the denser particles
carry a significantly higher fraction of the kinetic stresses than
their concentration (Rkkk

d > 1, and ψkkk
d > φd ), and the less-dense

particles carry a lower fraction of the kinetic stresses than their
concentration (Rkkk

l < 1, and ψkkk
l < φl). We briefly note here

that these results markedly differ from mixtures of particles
differing only in size, where the lighter (smaller) particles
carry a higher fraction of the kinetic stress [29,42]. We discuss
this more in Secs. V and VI.

The results in the mixtures of particles differing only in
density indicate that Rccc

l − Rkkk
l > 0 and Rccc

d − Rkkk
d < 0. Con-

sidering this in the context of the theoretical predictions
in Eq. (12), the less-dense particles should migrate in the
direction of increasing kinetic stress and the denser particles
should migrate in the direction of decreasing kinetic stress
[Fig. 8(c)]. Since ∂σkkk

yy/∂y > 0 for y < 0 and ∂σkkk
yy/∂y < 0 for

y > 0 [see Fig. 7(a)], Eq. (12) predicts that denser particles
segregate to the center of the cell and the less-dense particles
segregate to the walls, consistent with our simulation results
[e.g., Figs. 2(b) and 3].

We build on these results to develop a prediction for the
evolution of the local concentrations of the species. We first
consider the equation of conservation of mass for species i.
With no gradients in the x and z directions and assuming
the solids fraction of the mixture is time independent during
segregation (∂f/∂t = 0), we can rewrite Eq. (6a) as:

ρm,if
∂φi

∂t
+ ∂

∂y
(ρivi) = 0. (14)

We substitute the theoretical form of the segregation flux
expressed in Eq. (12) into Eq. (14), and we find:

ρm,if
∂φi

∂t
+ ∂

∂y

[(
Rccc

i − Rkkk
i

)
φi

cD

∂σkkk
yy

∂y
− d

cD

∂ρi

∂y

]
= 0. (15)

Comparing the concentration profiles in Fig. 7(d) with profiles
of Rccc

i − Rkkk
i in Fig. 8(c) indicates that the magnitude of Rccc

i −
Rkkk

i for each species is correlated with the concentration of the
other species. We plot Rccc

l − Rkkk
l versus φd for these data in

Fig. 8(d) excluding the creeping regions in the middle of the
chute (−6 mm < y < 6 mm). Though not perfectly linear [see
fit in Fig. 8(d)], we approximate it as such in Eq. (15), i.e., Rccc

l −
Rkkk

l ≈ Bφd , where B is a fitting parameter. (We determined that
B ≈ 0.8 by fitting the data in Fig. 8.) Then Eq. (15) may be
rewritten for the less dense particles as:

∂φl

∂t
+ B

cDρm,lf

∂

∂y

[
φl(1 − φl)

∂σkkk
yy

∂y

]
− d

cDf

∂2f φl

∂y2
= 0.

(16)
The spatiotemporal profiles of concentration of less dense

particles can then be obtained by solving Eq. (16) numerically,
though f (y), ∂σkkk

yy/∂y, diffusivity D = d/cD , and the ratio
q = B/cD (an indication of the segregation magnitude) must
be obtained. For f (y) and ∂σkkk

yy/∂y we use the profiles of the
mixture solids fraction [Fig. 1(d)] and normal kinetic stresses
in the y direction [Fig. 7(a)] obtained from the simulations.
We do not know D and q; for simplicity, we choose constant
values for these two parameters empirically by comparing
the predictions obtained using different values of D and q

to the simulation results. For our numerical solution, we use
initial conditions consistent with a homogenous mixture (φd =
φl = 0.5 at t = 0 for all values of y) and no-flux conditions
at the two walls [−q(1 − φl)φl(∂σkkk

yy/∂y)/ρm,l = D∂(f φl)/∂y
at y = ±25 mm for all values of t]. We then discretize the
problem and solve numerically by using a central difference
scheme for spatial derivatives and modified Euler method for
time integration.

Figure 9 shows spatiotemporal profiles of concentration
of less dense particles from theoretical predictions up to
300 s. Based on trial and error we chose q = 1 × 10−3 s and
D = 0.2 mm2/s. The value for D is similar to that we found
for a mixture of 2-mm and 3-mm particles in a drum, where
we found d = 1.26 × 10−5 m2/s2 and cD = 6.3 s−1 so D ≈
0.2 mm2/s. On the other hand cD = B/q = 0.8/(10−3 s) =
800 s−1 is significantly larger than that for the mixture of
different-sized particles (≈6.3 s−1). It is likely that both D

and cD vary with details such as the local shear rate as in
Refs. [13,28,50], so such comparisons are not so useful, but
rather the next generation of the model should consider a more
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physically representative form for these parameters, which we
discuss in the next section.

In both the theoretical predictions and simulation results
[compare Figs. 9(a) and 9(b) with Fig. 5(c) and 5(d), respec-
tively], the less-dense particles segregate to the side walls, and
dense particles segregate toward the center. In the middle of
the chute, in the slow creeping region where the gradients of
normal kinetic stresses is very small, the segregation process
is much slower than in other regions. All of these indicate
a good qualitative agreement between theoretical predictions
and simulation results. On the other hand, the theory does not
capture the sudden intensifying of the segregation pattern that
begins ≈100 s in the simulations that appears to be correlated
with an increase in average velocity. We hypothesize that
this sudden change is associated with an increase in packing
efficiency and decrease in relative magnitude of collisional
damping of the particle motion that is not captured by the
theory.

Finally, with the fitted values of q and D from above, we
compare the segregation velocity vl − vd predicted by Eq. (12)
with the simulation results for the first second and at the steady
state (t = 300–310 s), as shown in Fig. 10. Our theoretical
predictions match well with DEM simulations at both stages
of simulations, in contrast to the kinetic theory (Fig. 12),
which, based on the local kinematics in the DEM simulations,
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FIG. 10. (Color online) Comparison of profiles of segregation
velocity vl − vd vs y between theoretical predictions from Eq. (12)
and DEM simulations at (a) the first second and (b) t = 300–310 s
for 〈f 〉 = 0.6.

overpredicts the segregation velocity by approximately one
order of magnitude compared with that exhibited by the DEM
simulations.

V. DISCUSSION

These results add to the growing body of evidence sup-
porting the importance of velocity fluctuations (via granular
temperature and/or kinetic stresses) in driving segregation
in high solids fraction granular flows. Effects of velocity
fluctuations are typically discounted in high-f granular flows
as they are relatively small. For example, kinetic stress is much
smaller than contact stress (e.g., Fig. 7), and the kinetic energy
associated with velocity fluctuations is much smaller than
gravitational potential energy differences in a granular mix-
ture. The results reported here support the premise that, even
though velocity fluctuations are relatively small compared with
other dynamics in high-f flows, gradients of kinetic stress can
drive segregation in a wide variety of granular materials at
high solids fractions (high f ). Specifically, the kinetic stresses
drive the segregation direction and magnitude through: (1) the
manner in which they are partitioned among different species
compared to the partitioning of contact stresses and (2) the
gradient in the kinetic stresses. These results are qualitatively
similar in mixtures of particles differing only in size and those
differing only in density.

A striking difference between the segregation of mixtures
of different-sized particles and different density particles in
high-f flow is the segregation direction of the more massive
particles. The direction of segregation of the more massive
(denser) particles in mixtures of particles differing only in
density is opposite to the more massive (larger) particles
in mixtures of particles differing only in size. In the first
case, the more massive (denser) particles segregate along
a kinetic stress gradient toward the region of lower kinetic
stress, and in the second case, the more massive (larger)
particles segregate toward the region of higher kinetic stress.
Our results indicate that this difference is driven by the manner
in which the kinetic stress is partitioned among the different
species. In high-f flows, the smaller particles bear a higher
fraction of the kinetic stress than their larger equal-density
counterparts [19,29,30,37], and the denser particles bear a
higher fraction of the kinetic stress than their lighter equal-
sized counterparts (similar to results in Ref. [37]). Previously
published results (e.g., Ref. [37]) suggest that these differences
are driven primarily by the geometry of correlated particle
movements in these high-f flows, so, interestingly, it appears
that the geometry driving the fluctuations in these high-f flows
is a significant contributor to the segregation in these systems.

Once the kinetic stress is unevenly distributed among the
species, the species that bear a larger fraction of the kinetic
stress than their volume concentration in the mixture are driven
toward “cooler” regions (those of lower kinetic stress and lower
granular temperatures). Those that bear a smaller fraction of
the kinetic stress are driven toward “hotter” regions (those of
higher kinetic stress and higher granular temperatures). It is
not immediately obvious why this occurs, but for insight we
might consider that all particles appear driven away from high-
temperature regions. If one species bears a higher fraction of
the kinetic stress than the other, the additional random kinetic
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energy may allow that species to explore more pore spaces
among the mixture to get to the lower-temperature regions.

We have shown here and elsewhere [19,30] that kinetic
theory, perhaps the most complete physics-based predictive
theoretical framework for granular mixtures, breaks down in
its prediction of segregation in high-f flows. While kinetic
theory directly accounts for particle scale interactions in the
form of transfer of momentum and energy during collisions,
the predictions are based on the assumption that collisions are
chaotic, uncorrelated, and binary. Effects due to simultaneous
multiparticle interactions are typically not captured, though
there have been some recent attempts to extend kinetic theory
by considering macroscopic structures in granular flows [51].
The need to account for these effects may be responsible for
the breakdown in kinetic energy predictions at higher solids
fractions. We are currently investigating these questions in
detail, as they may also prove relevant for the results we present
here where small-scale rearrangements can apparently lead to
large-scale system segregation adjustments.

Other than kinetic theory, relatively little theoretical in-
vestigation has been performed for the manner in which
gradients in velocity fluctations, granular temperature, and
kinetic stresses may drive segregation. The theory described
here shows promise in its ability to capture segregation in
these systems. In the end, it is a relatively simple but critical
generalization of the theory presented in Refs. [19,29]. We
note that the theory suffers from empirical expressions for drag
and diffusion coefficients and other details of the interparticle
interactions. In that light, it is interesting to consider the
empirical results with those from other models. Most relevant
for the mixtures discussed here, Tripathi and Khakhar [27,28]
proposed a form for the drag force analagous to Stoke’s law.
Additionally, the extended form of kinetic theory proposed by
Larcher and Jenkins [51] has alternative forms for the drag and
diffusion coefficients that could be tested for their effectiveness
in application to this mixture theory.

VI. CONCLUSION

In this paper, we performed a numerical and theoretical
study of segregation of particles differing only in density
sheared in a vertical chute cell. We showed that gradients
in the shear rate and associated kinematics in the spanwise
direction can drive segregation by particle density in both
sparse and high-solids-fraction systems. This shear-induced
segregation, reported for high-solids-fraction mixtures of
particles differing only in density for the first time, exhibits
a similar segregation trend to previous reports of analogous
phenomena in sparse flow. Specifically, the denser particles
segregate to the region of a lower shear rate and granular
temperature, and the less-dense particles segregate to the
region of higher shear rate and granular temperature. This is in
stark contrast to our previous observations of shear-induced
segregation of particles differing only in size [26], which
exhibits a phase transition at intermediate concentrations.
In sparse flows large particles segregate to regions of low
shear rates, low granular temperatures, and low kinetic stress,
while in high-solids-fraction flows, large particles segregate
to regions of high shear rates, high granular temperatures,
and high kinetic stresses. This dichotomy may be related to

recent reports of an intermediate segregation state in mixtures
of particles differing both in size and density where particles
that are both larger and denser than their smaller less dense
counterparts rise to an intermediate level in a sheared system
where the shear rate is nonuniform (e.g., Refs. [12,52–54]).

Our mixture theory successfully predicts the segregation
trends observed in the simulations, though, admittedly, uses
empirical fits for some of the coefficients. In the framework
of this theory, the shear rate gradients give rise to kinetic
stress gradients—closely related to the gradients of granular
temperature—which explicitly drive density segregation. Then
the particles which bear more of the contact stress than the
kinetic stress—here the less-dense particles—are pushed to the
regions of low contact stress and high kinetic stress (or high
granular temperatures). In contrast, in high-solids-fraction
mixtures of particles differing only in size, the large particles
bear more of the contact stress than the kinetic stress and push
the large particles to the regions of low contact stress and high
kinetic stress (or high granular temperature).

Although the framework is reasonable for shear-induced
segregation, and predictions appear to correlate reasonably
well with observations, a deeper understanding of the kine-
matics of high-f sheared mixtures is needed for a complete
segregation theory. First, we need a relationship between
Rccc

i − Rkkk
i and flow properties such as particle concentrations

and flow velocities to close the governing equations. For
this, we have temporarily used a linear relationship between
Rccc

i − Rkkk
i and φj (for disparate species i and j ), though this

is clearly not completely representative, judging from the
data [Fig. 8(d)]. Coefficients of drag and diffusion also suffer
from this empirical oversimplified nature. A more mechanistic
way to obtain relationships for D and cD as they depend on
kinematics of the flow is necessary for a predictive model for
shear-induced segregation.

Finally, most segregation takes place in a gravitational
field where segregation may be driven by simultaneous effects
associated with the gravity and shear rate gradients. A more
widely applicable theory will combine the theoretical details
described in this paper and in Ref. [29] with gravity-driven
segregation effects, such as those described by Gray and
colleagues, first in Refs. [48,49], or Khakhar and colleagues,
first in Ref. [10], and more recently in Refs. [13,27,28].
Preliminary results presented in Ref. [42] show promise in
capturing the simultaneous effects of particle size and density
in segregating mixtures.
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APPENDIX A: KINETIC THEORY EXPRESSIONS
USED IN SEGREGATION PREDICTION

As in Refs. [20,23,30], The diffusion velocity of two species
i and j in the direction of the interest (e.g., y direction) can be
calculated as:

vi − vj = − n2

ninj

Dijdi, (A1)
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TABLE IV. Variables in the diffusion equation [Eq. (A1)] of kinetic theory.

Variable Expression Description

ri ri Particle radius of species i

mi mi Particle mass of species i

ni
fi

4πr3
i
/3

Number density of species i

TD,i miTi = mi
u′
i
u′
i
+v′

i
v′
i
+w′

i
w′

i

3 Dynamic granular temperature of species i

Pi ni(TDi + 	TDi) + ∑2
k=1 Kik

[
TDi + (mi	TDk+mk	TDi )

(mi+mk )

]
Dynamic granular pressure of species i

di dP + dT + dn “Diffusion force” for species i

dP

Pi
Pj

∇Pj −∇Pi

nTD

(
Pj
Pi

+1
) Pressure driven diffusion force

dT − Kij

nTD

mj −mi

mj +mi
Thermal driven diffusion force

dn −Kij

n

[∇ni

ni
− ∇nj

nj

]
Ordinary diffusion force

Dij
ninj

n

ri+rj

Kij

[ π (mi+mj )TD

32mimj

]1/2
Local diffusion coefficient between two species i and j

Kij

(
π

3

)
gij r

3
ij ninj (1 + e) Coefficient concerning the frequency of interaction

gij
1

(1−f ) + 6
(

ri rk
ri+rk

)
ξ

(1−f )2 + 8
(

ri rk
ri+rk

)2 ξ2

(1−f )3 Radial distribution function

ξ 2π (nir
2
i + nj r

2
j )/3 Area scale

where Dij is the local coefficient of diffusion and di (some-
times called a “diffusion force” [22]) represents competing
segregation and mixing factors leading to the difference
in diffusion velocities (vi − vj ) and subsequent segregation
between the two types of particles. Calculations performed
for Dij and di are listed in Table IV. The calculations involve
terms related to granular temperature TD , pressure P , and
ordinary diffusion represented by dT ,dp, and dn. We note
that the granular temperature used here is what might be
considered a dynamic granular temperature compared with
the temperature plotted in Fig. 3: TD,i = miTi . Also, pressure
Pi is distinct from the hydrostatic pressure and is derived from
considerations within the framework of kinetic theory and
conservation of momentum for the two species as shown in
Refs. [20,23].

We average the details in the x and z directions over
the first 1 s of the experiment. In our calculations, most of
the variables, such as TD , are calculated directly from the
simulations directly, while the initial solids fraction of each
species is set to be uniform, each equal to one half of the total
solids fraction [fi(y) = 〈f 〉/2].

The first row of Fig. 11 shows the profiles of TD(y) for the
two constituents at three different 〈f 〉’s. In all systems, TD

is large close to the walls and small at the center of the cell
for both species (similar to Fig. 3, row 3). As 〈f 〉 increases
from 0.2 to 0.6, temperature gradients decrease approximately
by two orders of magnitude. Furthermore, the less dense
component always has greater values of TD than the denser
particles in the regions close to the walls, where the flow is
dilute [see Fig. 1(d)]. In contrast, TD are roughly the same
in the region at the center of the cell, where the flow is highly
concentrated. This matches the observation for the flow of
granular mixtures differing only in density in the rotating
drums [37]: Granular temperature scales inversely only with
size, not with density in high-f regions, while in low-f
regions, granular temperature scales inversely with mass (or

material density for same-size particles). The second row of
Fig. 11 shows profiles of P (y). Similar to TD , P is large in the
region close to the walls and small in the region at the center
of the cell. The pressure of less dense particles is larger than
dense particles in the dilute region. In the high-f region, the
pressure of two species are almost the same.

Figure 12 shows the diffusion forces that drive the segre-
gation and diffusion fluxes (as calculated in Table IV). Based
on Eq. (A1), positive (negative) diffusion forces in the left
(right) half of the chute cell imply negative (positive) values
of vl − vd , indicating that less-dense particles segregate to
the side walls. In all three systems, the thermal “diffusion
force,” dT , that is associated with gradients of the granular
temperature is much greater than the other two diffusion
forces (i.e., dn and dp), indicating that dT is the dominating
driving forces for density segregation in vertical chute flow.
However, as shown in Fig. 6, the kinetic theory overpredicts
vl − vd at high f compared with the DEM simulation, which
implies that the thermal driven “diffusion force” as calculated
in Table IV probably overestimates the granular temperature
gradient effects on density segregation in high-f granular
flow.

APPENDIX B: STRESS CALCULATION

In this Appendix, we briefly describe our calculations of
the total and partial stresses we use for testing our theoretical
segregation predictions for the mixture theory. To do so, we
divide the chute into equal sized bins in the y direction of
width 	y = 2 mm. We calculate stresses such considering the
contribution from the part of each particle j within a bin of
width 	y centered at y.

We calculate the kinetic stress σkkk
yy,n(y) = ρnv

′
nv

′
n(y) (the y

component of the normal kinetic stress of species n) using a
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FIG. 11. (Color online) Profiles of dynamic granular temperature and dynamic pressure for two species in the y direction averaged across
the width of the chute and over the first 1 s for three systems of different 〈f 〉’s as indicated in the figure. First row: Plots of dynamic granular
temperature TD; second row: Plots of dynamic pressure P .

relatively standard procedure (as in Ref. [29]):

σkkk
yy,n(y) = ρm,n

N2

(
N∑

i=1

�jVij,n

Vbin

)

×
{

N∑
i=1

�j [vij,n − v(y)]2Vij,n

�jVij,n

}
. (B1)

Here i refers to the ith time step of which there are N and j

refers to the j th particle (of species n) that is partly or fully in
this bin (at time step i). V n

ij and vn
ij are the volume and velocity

of that particle, respectively. Vbin = DL	y is the total volume
of the bin. v(y) = �n[f n(y)vn(y)]/�nf

n(y) is mean velocity
at y. As in Sec. IV B, σkkk

yy(y) = �nσ
kkk
yy,n(y).

To calculate the local contact stress at each position y,
we consider each interparticle contact K in a bin of width
	y centered at y. Then we sum the stresses associated with
each interparticle contact in each region, as in Refs. [55,56].
Specifically, for the mixture in the y direction, we
calculate:

σccc
yy(y) =

∑N
τ=1

∑Nc(y)
K=1 FijK,y lijK ,y

NVbin
. (B2)

Here FijK,y
is the force of particle i on particle j associated

with the Kth contact in this bin, of which there are Nc(y,τ )
at time step τ . There are N such time steps. lijK,y

is the vector
from the center of particle i to the center of particle j .

Since a contact may involve particles of different species,
we consider three types of contacts separately in calculating
the species contact stresses. (1) Contacts between two less-
dense particles only contribute to the partial contact stress of
the less-dense particles, and we denote the stress associated
Kth such contact as σσσccc

K,ll . (2) Contacts between two denser
particles only contribute to the partial contact stress of the
denser particles, and we denote the stress associated Kth such
contact as σσσccc

K,dd . (3) Contacts between one less dense particle
and one denser particles contribute to the contact stress of
both species; we denote the stress associated Kth such contact
as σσσccc

K,ld . As the size of two species is the same, for each
collision between a less-dense and denser particle, we divided
the contribution of stress to the partial stresses equally between
the two species. Based on that, we calculate the partial contact
stress at y for particles of species n at time step τ as:

σccc
n (y,τ ) =

Nc,n(y)∑
K=1

σccc
K,nn +

Nc,j (y)∑
K=1

σccc
K,nj /2. (B3)

−20 −10 0 10 20−2

−1

0

1

2 secrof noisuffi
D

)
m /1(         

f = 0.2

−20 −10 0 10 20

−5

0

5

     

f = 0.4

d n
d T
d p

−20 −10 0 10 20−2

−1

0

1

2

y (mm)

f = 0.6x 102
x 102 x 103

FIG. 12. (Color online) Profiles of driving forces in the y direction averaged across the width of the chute and over the first 1 s for three
〈f 〉’s as indicated in the figure. The three different diffusion forces are dT , dp , and dn vs y.
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In this equation, σccc
K,nn denotes the contact stress associated

Kth contact between a particle of type n with another particle
of the same species in a bin of width 	y centered at y, of which
there are Ni

c(y). σccc
K,nj denotes the contact stress associated Kth

contact between two particles of different species in a bin of
width 	y centered at y, of which there are N

j
c (y). We calculate

the average stress over N time steps:

σccc
n (y) =

N∑
τ=1

σccc
n (y,τ )/N. (B4)

We note that this satisfies σccc(y) = σccc
l (y) + σccc

d (y), as
specified in Sec. IV B.
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