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Stress partition and microstructure in size-segregating granular flows
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When a granular mixture involving grains of different sizes is shaken, sheared, mixed, or left to flow, grains
tend to separate by sizes in a process known as size segregation. In this study, we explore the size segregation
mechanism in granular chute flows in terms of the pressure distribution and granular microstructure. Therefore,
two-dimensional discrete numerical simulations of bidisperse granular chute flows are systematically analyzed.
Based on the theoretical models of J. M. N. T. Gray and A. R. Thornton [Proc. R. Soc. A 461, 1447 (2005)]
and K. M. Hill and D. S. Tan [J. Fluid Mech. 756, 54 (2014)], we explore the stress partition in the phases
of small and large grains, discriminating between contact stresses and kinetic stresses. Our results support
both gravity-induced and shear-gradient-induced segregation mechanisms. However, we show that the contact
stress partition is extremely sensitive to the definition of the partial stress tensors and, more specifically, to
the way mixed contacts (i.e., involving a small grain and a large grain) are handled, making conclusions on
gravity-induced segregation uncertain. By contrast, the computation of the partial kinetic stress tensors is robust.
The kinetic pressure partition exhibits a deviation from continuum mixture theory of a significantly higher
amplitude than the contact pressure and displays a clear dependence on the flow dynamics. Finally, using a
simple approximation for the contact partial stress tensors, we investigate how the contact stress partition relates
to the flow microstructure and suggest that the latter may provide an interesting proxy for studying gravity-induced
segregation.
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I. INTRODUCTION

When a granular mixture involving grains of different sizes
is shaken, sheared, mixed, or left to flow, grains tend to separate
by sizes in a process known as size segregation. In the simple
case of free surface flow under gravity, larger grains rise to the
surface while smaller grains sink at the bottom of the flow. Seg-
regation occurs in a wide variety of contexts—either industrial
or natural [1–6]—for which it represents an engineering and
scientific challenge. Kinetic theory offers a well-established
framework to describe segregation in dilute granular systems
[7,8]; however, its applicability is limited in the case of dense
flows, where grains interact through long-lasting contacts
rather than binary collisions. Since the seminal work by
Savage and Lun [9] and the introduction of the random kinetic
sieve, much progress has been achieved in understanding
segregation mechanisms, both experimentally [10–22] and
using numerical simulations [23–32]. In this respect, because
they allow for very well-controlled configurations and provide
access to the inner structure of the flow, discrete numerical
simulations have proven a fruitful tool and provide significant
insight to inform continuum modeling [4,30,33–36].

One of the challenges posed by granular size segregation
lies in the task of identifying the actual driving mechanisms
[27,31,33,37–39]. Experimental evidence for the lift force that
drives an intruder upwards in a quasistatic shear flow was
recently given and shown to scale like Archimedes force [16].
It seems reasonable to suppose that such lift forces are at play in
size-disperse dense granular flows, although the dependences
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on the flow composition and dynamics have to be established.
In the absence of an explicit generic formulation for the
segregation force, a fruitful hypothesis was proposed by Gray
and Thornton [33]: smaller grains, while percolating through
the network of larger grains, are screened from average stress
and thus carry less of the lithostatic pressure than larger grains
do. This hypothetical mechanism translates mathematically
into a departure from classical continuum mixture theory; it
allows for the recovery of important features of segregation
in depth-averaged equations [33]. It has since been the
subject of various improvements [29,30,34,38]. Yet the basic
ingredient, namely, the fact that the partial pressure in the
phase of smaller grains is less than simply proportional to
their volume occupation, has to be unambiguously established.
While Weinhart et al. do observe such asymmetry in discrete
numerical simulations [39], the results obtained by Fan and
Hill [27] and Hill and Tan [31] are inconsistent with this
hypothesis. More recently, it was proposed by Fan and Hill
that, in addition to gravity—or in place of it—kinetic stresses
play a crucial role in size segregation [37]. They identify the
gradients of velocity fluctuations as the driving mechanism
[27,31].

Based on the theoretical models of Gray and Thornton
[33] and Hill and Tan [31], we explore the stress partition in
the phases of small and large grains, discriminating between
contact stress and kinetic stress, in numerical bidisperse
granular flows. The numerical method and simulation are
presented in Sec. II. Contact stresses and their partition
between small- and large-grain phases are analyzed in Sec. III.
Section IV explores the partition of kinetic stresses and its
sensitivity to the flow dynamics. The relation between contact
stresses and granular microstructure is established in Sec. V.
We finally discuss the results in Sec. VI.
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FIG. 1. (Color online) Example of bidisperse granular flow with
the volume fraction of large beads �L = 0.3 in the initial state (t = 0)
and after steady state is reached and segregation has occurred (t =
150s); the slope is θ = 23◦. The ratio of the diameter of large grains
to that ofsmall grains is dL/dS = 2 (dS = 0.005 m).

II. NUMERICAL FLOWS

The numerical systems consist of two-dimensional (2D)
granular beds of grains of two sizes allowed to flow under
gravity on a fixed plane of slope θ made of grains of the
larger size. As the flow develops, segregation occurs, and the
larger grains—initially placed at the bottom of the granular
layer—rise in the flow, as illustrated in Fig. 1. This typical
chute flow experiment is, in principle, similar to those reported
in [25,29,30,32].

This numerical experiment was performed using the contact
dynamics algorithm [40,41], assuming perfectly rigid grains.
The grains interact at contacts through solid friction: locally,
the normal and tangential contact forces satisfy ft � μfn,
where μ is the coefficient of friction at contact. Moreover,
a coefficient of energy restitution e sets the amount of
energy dissipated by collisions. The numerical values of μ

and e control the effective frictional properties of the flow
in a given configuration. They are strictly the same for all
contacts between large and small grains. In this work, we
are not interested in understanding how they may affect the

segregation process, hence, their value is set to μ = 0.5 and
e = 0.25 and is not varied.

We denote dL and dS the mean diameter of large and small
grains, respectively. To prevent geometrical ordering, likely
to occur for strictly monosized packings, both large and small
grains have diameters uniformly distributed around their mean
value so that (dmax

L −dmin
L )

dL
= (dmax

S −dmin
S )

dS
= 0.08 (a discussion of

the influence of this value on the segregation process is given
in [32]). The ratio dL/dS was not varied: dL/dS = 2.

Periodic boundary conditions were implemented to ensure
long flow durations; the width of the simulation cell is 35dL.
The basal boundary is made of a row of fixed beads of diameter
dL. In the initial state, a layer of large beads is overlaid by a
layer of small beads (Fig. 1). This is achieved by random
deposition under gravity. We denote �L the volume fraction
of large beads at the flow scale, i.e., the ratio of the volume of
large beads to the total volume of grains: �L = VL/(VS + VL).
The volume fraction of small beads is �S = (1 − �L). In the
simulations, �L is varied between 0.06 and 0.90. In addition,
we define the local volume fraction of large and small beads
φL and φS . The height of the granular bed in the initial state
is H0; irrespective of �L, H0 was kept constant and equal
to H � 60dS . The slope of the granular bed θ was varied
between 21◦ and 26◦, allowing different flow velocities. The
numerical values used for the simulations are the following:
dS = 5 × 10−3 m, ρ = 1 kg m−2, and g = 9.8 m s−2.

III. CONTACT STRESSES AND
GRAVITY-DRIVEN SEGREGATION

Contact stresses are transmitted at contacts between grains
during either short collisions or enduring contacts; its mi-
cromechanical expression is [42]

σ = 1

V

∑
α∈Nc

�f α ⊗ ��α, (1)

where �f α is the force transmitted at the contact α, ��α is the
vector joining the centers of mass of the two grains involved,
Nc is the number of contacts over which the summation is
made, V is the volume over which the stress is computed,
and ⊗ is the dyadic product. The eigenvalues λ1 and λ2 of
this stress tensor give the pressure P : P = (λ1 + λ2)/2. A
typical pressure profile is shown in Fig. 2(a) for a granular
flow with �L = 0.30 flowing at an angle of 23◦ in the steady
(i.e., segregated) state, as shown in Fig. 1. It simply obeys
a lithostatic profile P (z) = ρg cos θ (H0 − z), where z is the
depth (counted from the bottom).

In bidisperse granular flows, contacts may involve only
large grains, only small grains, or one large grain and one small
grain. In the latter mixed case, a meaningful partition of the
stress for computation of the partial stress tensors σ S and σL

is necessary. Following [39] and [31], the contribution of the
mixed cases is distributed according to the size of the grains,
namely, weighted by a prefactor dL/(dL + dS) or dS/(dL + dS)
for the phase of large and small grains, respectively (we see that
using a different partition changes the results dramatically).
We thus define the partial stress tensors σL and σ S and the
corresponding partial pressures P L and P S . In the following,
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FIG. 2. (Color online) (a) Example of the pressure profile in a
segregated flow with �L = 0.3 and θ = 23◦; the dotted line shows
P = ρg(H0 − z). (b) Ratio of the partial contact stresses σS

yy/σ
L
yy as

a function of the local ratio of the volume fractions φS/φL for flows
with �L = 0.06, 0.15, 0.30, 0.45, 0.60, and 0.75 and slope θ = 23◦;
the (red) line shows σS

yy/σ
L
yy = 0.9660 (φS/φL). (c) Proportion of

mixed contacts (between one small and one large grain) as a function
of the local volume fraction of large grains for �L = 0.06, 0.15, 0.30,
0.45, 0.60, and 0.75 and slope θ = 23◦.

however, to allow precise comparison with earlier works, we
mostly use the normal stress components σL

yy and σS
yy .

In the framework of classical continuum mixture theory,
partial stresses are expected to be proportional to the mean
stress σyy and to the volume fraction of the considered
grain species in the mixture, namely, locally in the flow:
σL

yy = φLσyy and σS
yy = φSσyy . A departure from mixture

theory as proposed in [33] implies, however, different stress
partition coefficients ψL �= φL and ψS �= φS [27,39] such that
ψL + ψS = 1 and

σL
yy = ψLσyy,

σ S
yy = ψSσyy.

Considering bidisperse flows with a volume fraction of large
grains �L = 0.06, 0.15, 0.30, 0.45, 0.60, and 0.75, and flowing
at an angle θ = 23◦, we evaluate the local contact stresses σL

yy

and σS
yy using Eq. (1), computed over horizontal layers of

width 4dS and over time intervals of 1.25 s. For the same
volumes and time intervals, the local volume fractions of large
and small grains φL and φS are also evaluated. We do not try
to separate the early stages of the segregation from the later
stages, as we found that it had no visible influence on the results
reported hereafter. We can thus plot the stress ratio σS

yy/σ
L
yy as

a function of the volume fraction ratio φS/φL [Fig. 2(b)]. In
order to filter out the extreme cases, the best fit is calculated
for 0.01 < φS/φL < 100. We find

σS
yy

σL
yy

� (0.9660 ± 0.003)
φS

φL
, (2)

which suggests a small asymmetry of the stress partition
compared to a classical mixture. In the original model proposed
by Gray and Thornton [33], the stress partition obeys the
following law:

ψL = φL(1 + BφS), (3)

ψS = φS(1 − BφL). (4)

Using (2), (3), and (4) gives B � (1 − 0.9660)/(φL +
0.9660(1 − φL)), namely, 0.034 < B < 0.035. This value is
larger than the value observed for 3D chute flows by Weinhart
et al. (who find B � 0.02) [39] and supports the plausibility
of gravity-driven segregation in the system (note that Hill and
Tan find B � 0 for 3D rotating drums [31]).

It should be noted that the value of B is very sensitive
to the details of the stress computation. For instance,
considering the ratio of the partial pressures P S/P L rather
than the ratio of the partial normal stresses σS

yy/σ
L
yy gives

0.045 < B < 0.047, namely, a larger value of B. Far more
dramatic is the influence of the stress distribution at mixed
contacts (between a large grain and a small grain) between the
two phases. In the analysis above, the distribution of the stress
transmitted at mixed contacts is weighted by the grain size,
namely, a prefactor of 1/3 for the contribution to the phase
of small grains and a prefactor of 2/3 for the contribution
to the phase of large grains (since dL = 2dS). Changing the
prefactors to 0.2 for the phase of small grains and 0.8 for the
phase of large grains leads to B � 0.33, namely, a massive
increase. On the contrary, changing the prefactors to 0.4
and 0.6 leads to B � −0.1, which is an inverse segregation
process. Finally, changing the prefactors to 0.5 and 0.5 leads to
B � −0.32 and brings an entirely different picture. The strong
influence of the way mixed contacts are taken into account in
the stress computation can be explained by their proportion in
the mixture, which can reach 50% locally, depending on the
volume fraction of large grains, as shown in Fig. 2(c). This
makes the interpretation of contact stress ratios awkward,
particularly if one wants to compare mixtures with different
grain sizes. In that case, the ponderation using grain sizes to
split contact forces in the partial stress computation effectively
introduces a dependence on the grain size. This dependence
may affect the relative values of partial stresses, and introduce
a bias in the interpretation of the results. In other words,
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understanding the role of grains sizes in stress partition
becomes uneasy if grains sizes are used at first to define
partial stresses.

No influence of the slope angle θ (that is, of the flow
velocity) on the value of B was observed.

IV. KINETIC STRESSES AND
SHEAR-GRADIENT-INDUCED SEGREGATION

Kinetic stresses are related to the existence of velocity
fluctuations in granular flows and can be quantified through an
analog of the Reynolds stress tensor,

σ κ = 1

V

∑
i∈Np

miδ�vi ⊗ δ�vi, (5)

where δ�vi is the fluctuating velocity of the grain i, mi its
mass, and Np the total number of grains in the volume V

over which the stress is computed. A typical kinetic pressure
profile is shown in Fig. 3(a) for a steady-state granular flow
with �L = 0.30 flowing at an angle of 23◦. The normalization
by ρgdS allows for quantitative comparison with the contact
stress profile shown in Fig. 2. Kinetic stresses are about four
orders of magnitude smaller than contact stresses, namely,
seemingly negligible. However, as stressed in [31] and [37],
the difference in behavior between the phase of small grains
and the phase of large grains is more striking than for contact
stresses. Computing the partial kinetic stress tensors σ κ,S and

FIG. 3. (Color online) (a) Profile of the kinetic pressure P κ

(normalized by ρgdS) for a granular flow with �L = 0.30 and
θ = 23◦ at steady state; the dotted line shows the best fit P κ =
0.98e−z/(14.8dL). (b) Ratio of the local partial kinetic stresses σ κ,S

yy /σ κ,L
yy

as a function of the ratio of the local volume fractions φS/φL for
�L = 0.06, 0.15, 0.30, 0.45, 0.60, and 0.75 and slope θ = 23◦; the
solid (red) line shows the best fit y = 1.44x1.0057

σ κ,L is straightforward, as it implies a summation on the
grains and not on the contacts. Plotting the kinetic stress ratio
σκ,S

yy /σ κ,L
yy as a function of the volume fraction ratio φS/φL

[Fig. 3(b)], we find

σκ,S
yy

σ
κ,L
yy

� (1.4413 ± 0.0022)

(
φS

φL

)1.0057

.

The prefactor 1.4413 implies that smaller grains experience
more of the kinetic stress than larger grains, i.e., they undergo
larger velocity fluctuations. Since they are geometrically less
constrained than larger grains due to their size, this result is
expected. Interpreting this value in the framework of the model
of Gray and Thornton [33], namely, introducing a kinetic
pressure partition coefficient Bκ such that

σκ,L
yy = φL(1 + Bκφ

S)σκ
yy, (6)

σκ,S
yy = φS(1 − Bκφ

L)σκ
yy, (7)

gives a large negative pressure partition coefficient Bκ �
−0.373, similar to the values observed in [31] and [39] for
3D flows (Bκ � −0.39 and Bκ � −0.38, respectively). The
value of Bκ is more then 10 times larger than the pressure
partition coefficient measured for contact stresses in Sec. III
and supports the proposition of a segregation mechanism
driven by granular temperature by [31]. In the chute flow
configuration, large grains are segregated towards the cooler
regions of the flow (namely, the surface) as predicted by kinetic
theory [43] but differently from what is observed in rotating
drums, for which the flow surface coincides with a higher
granular temperature [31].

We can show that the value of Bκ is sensitive to the mean
shear rate. Simulating granular flows with �L = 0.45, and
with varying slopes θ = 21◦, 22◦, 23◦, 24◦, 25◦, and 26◦,
we compute the ratio σκ,S

yy /σ κ,L
yy for each case and fit the

dependence on φS/φL with a linear law. We then derive the
mean value of Bκ from relations (6) and (7). The plot of
Bκ as a function of the normalized shear rate is displayed
in Fig. 4; we observe a monotonous increase with γ̇ /

√
g/dS .

From the analysis of the segregation time scales for similar
2D numerical flows [32], this increase in Bκ corresponds to
a shorter segregation time, i.e., a higher segregation velocity.
However, it does not coincide with a higher segregation rate,
as the final position of the center of gravity of the large grains
was shown to remain unaffected by an increasing mean shear
rate [32].

V. MICROSTRUCTURAL SIGNATURE

While one can easily picture why smaller grains are
submitted to larger kinetic stresses (simply as a result of their
greater degrees of freedom), the fact that they sustain a smaller
proportion of the contact stresses than their volume proportion
is less intuitive. From the micromechanical definition of the
contact stress tensor given in (1), we can try to approximate the
partial pressures by the mean forces and the mean coordinance
number in each phase of grains.

If NL
c is the number of contacts involving at least one large

grain, fL the mean modulus of the forces transmitted by these
contacts (in which a least one large grain is involved), and
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�L the mean distance between the centers of mass of the two
grains in contacts, then an estimate �L of the partial pressure
P L supported by the large grains is [following (1)]

�L � 1

V
NL

c fL�L.

The number of contacts NL
c involving at least one large grain

can be estimated from the number of large grains nL, and
their coordination number zL (i.e., the number of contacts
that a large grain experiences on average): NL = nLzL/2.
The volume occupied by large grains is φLV ; the mean
diameter of the large grains being dL, we estimate their number
nL = φLV/(πd2

L/4). Finally, �L can be approximated by the
diameter of one large grain, �L � dL. This gives the following
estimate for the magnitude of the partial pressure supported
by large grains:

�L � 2

πdL

zLfL × φL. (8)

In the same way, NS
c being the number of contacts involving

at least one small grain, fS the mean modulus of the forces
transmitted by these contacts (in which a least one small grain
is involved), and �S the mean distance between the centers of
mass of the two grains in contact, an estimate �S of the partial
pressure P S supported by small grains is

�S � 1

V
NSfS�S.

As before, NS = nS × zS/2. Smaller grains occupying a
volume φS , their number is nS = φSV/(πd2

S/4). Finally,
reasoning as for large grains, we suppose that �S � dS and
eventually

�S � 2

πdS

zSfS × φS. (9)

Both estimates, �S and �L, are derived from crude
simplifications and are expected to provide only a rough
guess of the real value of the partial pressures as calculated
from (1). To quantify the error made when using (8) and

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.550.34

0.35
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0.42

FIG. 4. Kinetic pressure partition coefficient Bκ as a function of
the flow-normalized mean shear rate γ̇ /

√
g/dS computed for flows

with a mean volume fraction of large grains �L = 0.45 and for slope
angles varying from θ = 21◦ to θ = 26◦. The dotted line shows the
best-fit trend y = 0.310 + 0.205x.
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FIG. 5. Mean error of the approximations �, �L, and �S of the
pressures P , P L, and P S as a function of the volume fraction of large
grains φL: for six flows with differing volume fractions of large grains,
�L = 0.06, 0.15, 0.30, 0.45, 0.60, and 0.75, flowing at θ = 23◦.

(9), we compare the values they provide for P L and P S

with the exact computation presented in Sec. III, averaging
over six flows with different volume fractions of large grains,
�L = 0.06, 0.15, 0.30, 0.45, 0.60, and 0.75, and flowing at
an angle θ = 23◦. The results are shown in Fig. 5, where
|�S − P S |/P S , |�L − P L|/P L, and |� − P |/P are reported
as a function of φL. We see that in spite of the simplification,
� and �L give reasonable estimates of the value of P and
P L, with a maximum error of 3% and 5% and a mean error
of 2.2% and 1.9%, respectively. The error on P S is larger
but remains less than 9% and has a mean value of 6.4%. We
observe that the error is larger for a large proportion of mixed
contacts between large and small grains, which is shown in
Fig. 2(c). As noted before, mixed contacts are the main source
of uncertainty when computing partial contact stresses.

If the approximations are too simple to give a quantitative
estimate of the stress partition coefficient B, they are sufficient
to give a qualitative picture of how B behaves with the flow
microstructure. Returning to the model of Gray and Thornton
[33], we write

�L = φL(1 + BφS) �, (10)

�S = φS(1 − BφL) �, (11)

as we did for σL
yy and σS

yy in Sec. III [Eqs. (3) and (4)].
Substituting �L and �S by their expressions (8) and (9) gives,
for B,

B �
1 − rd

zSfS

zLfL

φL + rd
zSfS

zLfL
× φS

, (12)

where rd = dL/dS = 2. From this analysis, we see that the
main ingredient that controls the contact stress partition is the
ratio of the mean force on small grains to the mean force on
large grains: the lower this ratio, the more efficient the
segregation. For rd = 2, the condition for segregation (namely,
B > 0) is that zSf

S < 1
2zLf L. We note also that the size ratio
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FIG. 6. (Color online) For a given flow with �L = 0.45 and θ =
23◦: (a) vertical position of the center of mass of the large grains
yL normalized by the flow height H0 over the course of time; (b)
coordinance number for zS and zL for small (filled circles) and large
(open circles) grains over the course of time; and (c) mean force
transmitted by contact involving at least one small grain (filled circles)
and one large grain (open circles) normalized by the weight of one
small grain mSg (f̂S and f̂L, respectively) and normalized by the

pressure seen by their center of mass ( ˆ̂fS and ˆ̂fL, respectively; inset)
as a function of time.

rd is not explicitly favorable to stress partition but tends to
decrease the value of B.

This microstructural condition for segregation can be ob-
served from direct measurements of the mean force transmitted
at contacts and direct measurement of the mean number of
contacts in which grains are involved on average for each
species. Considering a single flow (�L = 0.45, θ = 23◦), we
simply count zS and zL, the number of contacts in which
small and large grains are involved on average as a function
of time [Fig. 6(b)]. For the same flow, the position of the
center of mass of large grains yL is reported [Fig. 6(a)].
We see that the segregation process implies a significantly

larger coordinance number for large grains. This is somewhat
expected since large grains can be surrounded by many small
neighbors when the converse is not true. The difference
between zS and zL is maximum when the mixing is maximum.
More significantly, the mean forces fS and fL, transmitted
by contacts involving at least one small grain and at least one
large grain, respectively, reveal a different behavior for the two
phases of grains. The normalized mean forces f̂S = fS/msg

and f̂L = fL/msg (where mS is the mass of one small grain)
are plotted over the course of time in Fig. 6(c). At the
start of the flow, the larger grains are at the bottom and
are thus submitted to a higher pressure than the smaller
grains closer to the surface: the fact that f̂S < f̂L is expected.
However, as segregation proceeds and larger grains rise to the
top, the inequality remains true. This effect becomes more
apparent when we normalize the mean forces fS and fL

by the pressure experienced by the center of mass of each

species (yS and yL, respectively): ˆ̂fS = fS/ρg(H0 − yS) and
ˆ̂fL = fL/ρg(H0 − yL). In doing so, we filter out the influence

of the grain position in the flow and stress the fact that forces
transmitted by contacts involving large grains are significantly
larger than forces transmitted by contacts involving small
grains only.

VI. DISCUSSION AND SUMMARY

The aim of this work is to understand the size segregation
mechanism in granular chute flows in terms of the pressure
distribution within the two phases of grains, large and small,
and to relate it to the granular microstructure. Therefore,
discrete numerical simulations of bidisperse granular chute
flows are systematically analyzed. Based on the theoretical
models of Gray and Thornton [33] and Hill and Tan [31], we
compute the partial stress tensors associated with the phases
of small and large grains while separating the contributions of
contact stresses (resulting from forces transmitted at contacts)
and kinetic stresses (resulting from grain velocity fluctuations).
Comparing the contact pressure in the phases of small grains
versus large grains, we observe a slight deviation from a
classical mixture, whereby small grains experience less of
the gravity gradient than their volume fraction implies. This
result supports the possibility of a gravity-driven segregation
mechanism as proposed in [33]. We show, however, that the
contact stress partition is extremely sensitive to the definition
of the partial stress tensors and, more specifically, to the way
mixed contacts (namely, contact involving a small grain and
a large grain) are handled. As a result, the contact stress
partition coefficient is sensitive to the ratio of grain sizes.
In that case, the ponderation using grain sizes to split contact
forces in the partial stress computation effectively introduces
a dependence on the grain size. This dependence may affect
the relative values of partial stresses, and introduce a bias in
the interpretation of the results. In other words, understanding
the role of grains sizes in stress partition becomes uneasy if
grains sizes are used at first to define partial stresses.

By contrast, the computation of the partial kinetic stress
tensors is more robust since the separation between the large-
and small-grain phases, relying on the grains themselves and
not on the contacts, is straightforward. Comparing these partial
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kinetic stress tensors, we find that the phase of small grains
exhibits a significantly higher kinetic pressure than implied
by the volume fraction. Computing a kinetic stress partition
coefficient in the spirit of [33], we find a value much larger than
that obtained for contact stresses and comparable to the values
found in [31] and [39]. These results support the existence
of a segregation mechanism induced by shear rate gradients
as advocated in [31] and [37] and suggest, moreover, that
this mechanism might be more important in amplitude than
gravity-induced segregation. In our systems, large grains are
segregated towards the cooler regions of the flow (the surface)
as predicted by kinetic theory [43]. In addition, we evidence an
increase in the value of the kinetic stress partition coefficient
with the flow shear rate, corresponding to a smaller segregation
time, while no such influence on the contact stress partition
was observed.

Finally, using a simple approximation for the contact partial
stress tensors, we investigate how contact stress partition
relates to the flow microstructure. We observe that grain
coordinance (namely, a grain’s average number of contacts) is
greater in the phase of large grains and that contacts involving
at least one large grain transmit forces of higher amplitude
than other contacts.

Our results do not allow us to decide on either gravity-
induced mechanisms or shear-gradient-induced mechanisms
as being the most likely. However, the following points should
be stressed: (i) the computation of partial contact stress tensors
implies a real difficulty due to the existence of mixed contacts;
(ii) as a result, the analysis of partial contact stress ratios
lacks robustness; and (iii) the analysis of the microstructure
might provide a practical proxy for study of gravity-driven
segregation.

On the other hand, the robustness of the kinetic stress
computation and the sensitivity of the partial kinetic stress
partition to the flow state suggest that a parametric study of
these quantities varying contact properties, grain sizes, and
flow dynamics would lead to interesting new insights into
segregation.
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