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Emergence of traveling density waves in cyclic multiparticle transport
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Multiparticle flow through a cyclic array of K connected compartments with a preferential direction is found to
be able to organize itself in traveling waves. This behavior is connected with the transition between uniform flow
and cluster formation. When the bias in the system is large, the particles flow freely in the preferred direction,
with all compartments being equally filled at all times. Conversely, when the bias is small the particles cluster
together in one compartment. The transition between these two regimes is found to involve an intermediate state
in which the flow exhibits a density peak traveling periodically around the system. We relate the emergence of
this traveling wave to a Hopf bifurcation and analytically derive the critical value of the “symmetry parameter”
at which this bifurcation occurs. This critical value proves to be independent of the number of compartments,
but the width of the intermediate regime (and thus the chance of observing traveling wave solutions) decreases
sharply with growing K. The reverse transition follows a different course and takes place at a significantly lower
value of the symmetry parameter; it is an abrupt transition from a clustered state to a uniform flow without an

intermediate regime of stable traveling waves.
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I. INTRODUCTION

One of the characteristic properties of inelastic many-
particle flows is the tendency to form dense clusters. This may
be traced back to the fact that the particles interact with each
other in a dissipative way, which causes density differences
in the system to be enhanced rather than to be smoothed out.
One may think, for example, of cars on the highway, which
as a result of the velocity-decreasing interactions between the
cars tend to form traffic jams [1,2], or of cluster formation in
transport devices for granular matter (such as coal or cereals)
due to the nonelastic collisions between the grains [3,4].
Depending on the parameters of the system, sometimes the
flow prevails, allowing the tendency to cluster to cause only
minor density variations, while in other cases the clustering
wins, bringing the flow to a complete halt.

The present paper is concerned with the crossover between
these two regimes, when flow and clustering compete for dom-
inance, and about the dynamical phenomena that accompany
this transition. As we shall see, one of the most prominent of
these phenomena is the emergence of density enhancements
(“proto-clusters”) that travel around the system. The statement
“around the system” should be taken literally here, since we
study a model with periodic boundary conditions.

The system we will work with is depicted in Fig. 1:
it is a ring of K connected compartments, through which
material can flow from one compartment to the next. The
flow from the kth compartment in the clockwise direction is
governed by a flux function Fg(ny) (where ny stands for the
normalized number density in the compartment). Likewise, the
flow in the counterclockwise direction is governed by a flux
function Fy(ny). The relative strength of these flux functions
is expressed by the symmetry parameter §, which is 1 in the
fully symmetric case when Fg(n;) = Fp(n;) and tends to zero
in the asymmetric limit Fg(ng) > Fp(ng). In our system, the
mobility of the particles is such that they form clusters in the
case § = 1, whereas they flow freely when 6 — 0. At some
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point between these two extreme cases we find the crossover
mentioned above.

The form of the flux function we work with is inspired
by the specific case of agitated granular matter, but similar
flux functions also hold for other multiparticle systems, such
as for traffic flow where the flux function is known as the
“fundamental diagram” [2]. A particularly clear example of
the emergence of traveling density waves in traffic flow was
given by Sugiyama et al. [5]: these authors experimentally
studied the dynamics of 22 cars on a circular road with a
circumference of 230 m (meaning that the average vehicle
density exceeded the critical value above which jams form
spontaneously): starting from an initial state in which the cars
were homogeneously distributed over the road, all with equal
speed, tiny (unavoidable) fluctuations from this state were
observed to grow into marked density enhancements traveling
around the system, at a well-defined velocity, in the direction
opposite to that of the individual cars. These traveling density
enhancements represent the early stages of a traffic jam, or
in our nomenclature protoclusters. Analytical models of ring
road dynamics show the same type of density waves [6-9].

Other closely related systems include pedestrian flows in
ring corridors [10], the spontaneous emergence of traveling
waves along a cyclic array of asymmetrically coupled non-
linear oscillators [11], or concentration oscillations observed
in chemical reaction cascades with a feedback loop [12].
One paradigmatic example of the latter is the so-called
Brusselator, in which two compounds with concentrations X
and Y influence each other via a cyclic series of chemical
reactions in which also other elements are involved [13].
At low concentrations of the auxiliary elements, X and Y
settle in a stable equilibrium state, but when the concentration
of the auxiliary elements is raised above a critical level,
this equilibrium state undergoes a Hopf bifurcation and
the concentrations X and Y start to perform self-sustained
oscillations. During the past three decades, many systems with
a similar oscillatory behavior have been discovered. Today
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FIG. 1. Schematic top view of the cyclic system consisting of
K compartments. The particle flux in the clockwise direction (from
compartment k to k + 1) is governed by the flux function Fg(n;), and
in the opposite direction (from k to k — 1) by a smaller flux function
Fy(ny); see Eq. (3). The total number of particles in the system is
conserved.

more than 100 “chemical clock reactions” are known that
exhibit self-sustained oscillations [12].

Also hormonal cycles (such as the testosterone production
sequence controlled by the hypothalamus) operate with a
built-in feedback mechanism to regulate the level of the
hormone in question, and this gives rise to a nonconstant,
pulsating hormone release [14]. In the same context we
mention autoimmune diseases (such as rheumatoid arthritis
and type I diabetes) in which the immune cells cause damage
to the host tissue, inducing the release of self-antigens that
further activate the immune response [12,15]. In all of these
systems, the presence of a feedback loop is essential for the
occurrence of a Hopf bifurcation and the associated appear-
ance of self-sustained oscillations with a specific periodicity.
The same is true for the model we study in the present paper,
and vice versa: no Hopf bifurcation occurs in the absence of
feedback.

The paper is organized as follows: in Sec. II we introduce
the mathematical model, including the flux functions and the
symmetry parameter §. In Sec. III we then study, for the
relatively simple case of K = 3 compartments, the crossover
between the smooth flow regime at 6 < 1 and the clustering
at § = 1. It turns out that, at a certain critical value § = §.,,
the uniform density profile associated with the smooth flow
{ny,no,n3} = {%ntot, %ntot,%nmt} becomes unstable via a Hopf
bifurcation, giving rise to a stable limit cycle that represents the
density wave traveling around the system. This limit cycle is
destabilized at some higher value of §, when its size exceeds a
critical level beyond which clustering becomes inevitable. The
material then heaps up in one of the three compartments [16]
while the other two compartments are being emptied. In Sec. I1I
we also explain why the transition in the reverse direction,
from the clustered state to the uniform flow, is an abrupt one
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(without any intermediate regime of stable traveling waves)
and why it takes place at a different value of §.

In Secs. IV and V we show that the same scenario also holds
for K > 3 compartments. In particular, we demonstrate that
the Hopf bifurcation of the uniform flow always takes place at
the same value §;, irrespective of the number of compartments.
We also discuss various special features that do depend on the
value of K. One example is the pairwise limit cycle dynamics
in the case when K is even, which is not present when K
happens to be odd. Another example is the width of the limit
cycle regime, which decreases rapidly with growing K. This
means that for large values of K the intermediate regime has
negligible width and the transition becomes indistinguishable
from an abrupt one.

Finally, in Sec. VI we close with concluding remarks and a
discussion of the case of K = 4 compartments, which presents
several special features not found for any other value of K.

II. MATHEMATICAL MODEL

The model transport system described in the Introduction,
with particles going from compartment to compartment via
permeable walls, is governed by the following set of balance
equations (k =1, ...,K) [17-19]:

dl’lk
—— = Fr(g—1) = Fp(ng) — Fr(n) + FrL(neg), (1)

dr

where ni(r) is the dimensionless number density in the
kth compartment at the instant 7. We use cyclic boundary
conditions: ngi(t) =n;(r). The above set of equations
express the mass balance for each compartment: the time
rate of change of ni(r) is equal to the inflow rate into
this compartment minus the outflow rate. The sum of all K
equations is zero: Z,’Zf dny/dt = 0, in agreement with the
overall conservation of mass in the system. So the total number
of particles is conserved:

k=K
> (@) = ni, )
k=1

with n a positive constant. The above set of equations is fully
nondimensional and properly normalized [17,18].

In the present paper, the flux functions will be taken to be
of the form (see Fig. 2) [18]:

Frop(ng) = nie Brini, A3)

where the indices R and L denote the flow towards right and
left, respectively.

The initial values of n,(0) (and hence the value of ny,) can
in principle be chosen freely, but if one wants to see the kind
of competition between flowing and clustering that we are
interested in, one should choose values such that BLn,%(O) ~
1.8 on average. For the case of B, = 0.7, which we will use in
many examples, this means that the initial densities lie around
ny(0) = /1.8/B; = 1.6 and the corresponding value of ny is
simply 1.6K . (Note that the above typical values are all roughly
of order 1, which is a natural consequence of the fact that we
study a system that has been brought into nondimensional
form).
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FIG. 2. (Color online) The flux functions Fg(n;) and Fp(ny)
given by Eq. (3), which govern the particle flow from compartment
k to its neighbors at the right- and left-hand side, respectively. The
parameters used for this plot are B = 0.1 and B, = 0.2.

The specific form of the flux functions in Eq. (3) is inspired
by Eggers’ model for the dynamics of a granular gas in a
compartmentalized setup [4], which was later generalized
to describe the flow of granular matter along a conveyor
belt [17-19]. The same model also represents (at least
qualitatively) other multiparticle flows in which the particles
interact dissipatively, such as vehicle traffic and pedestrian
flows [2,20]. The characteristic one-humped form of the flux
functions (see Fig. 2) signifies that the flow in all these systems
is anonmonotonous function of the number density ny. It starts
out from a zero flux atn; = 0 (when the compartment is simply
empty) and initially grows with increasing density. However,
due to the fact that the particles become less energetic when
their density increases, the flux does not grow indefinitely
but instead reaches a maximum (at an intermediate value of
ni) and thereafter goes towards zero again. It is thanks to
this nonmonotonicity that clustering can occur, because this
requires that the total flux from a well-filled compartment (for
a large value of ny) be balanced by the fluxes from the almost
empty neighboring compartments (with small 7).

Evidently, the parameters Bgz and B, play an important
role here. They are a measure of the difficulty with which the
particles flow (in the right and left directions, respectively),
which depends on the amount of dissipation involved in each
interaction and on the permeability of the walls to the right
and left [18,21]. For instance, for Bg = 0 the right wall would
be fully permeable. In our system, however, both Bg and By,
will generally have a nonzero value.

The ratio between By and B, indicates how symmetric
the system is. Without loss of generality we will assume that
Br < By (if there is any preferred direction at all, we take
it to be the clockwise direction) and introduce the symmetry
parameter §:

Bp )
=", with 0<8§< 1. 4)
Br
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FIG. 3. (Color online) The flux functions Fg(n;) and Fy(n) in
the two limiting cases of the symmetry coefficient §: For § =1
(symmetric case with Bgp = B;) the flux to the right is identical
to the flux to the left, while for § = 0 (fully asymmetric case with
B = 0) the material flows towards the right without any limitations.
The flux towards the left is the same in both cases, with B;, = 0.7.

In Fig. 3 we show the flux functions Fg (n;) for the two
limiting cases § = 1 and § = 0, respectively. For § = 1 the
flow is fully symmetric: the flux to the left is equal to the flux to
the right, Fgr(n;) = Fr(ny). In the opposite limit for § = 0 the

FIG. 4. Top view of the system with K = 3 compartments studied
in Sec. III. The flux in the clockwise direction is larger than in the
opposite direction, as the length of the arrows indicates.
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parameter By is zero. In this case, as noted above, the particles
meet no difficulty at all in the clockwise direction. The flux
function Fg(n;) [Eq. (3)] then loses its exponential tail and
reduces to the monotonically increasing form Fr(n;) = An%.

The above two limiting cases have been studied extensively:
For the symmetric system (6§ = 1) it was found that, if the
parameter Bgr = B, exceeds a certain critical threshold, the
particles cluster together in one compartment [22-25]. (For
details and various interesting variations, for instance, in zero
gravity, or using bidisperse granular mixtures, we refer to the
extensive literature on the symmetric case; see Refs. [26-31]
and references therein.) On the other hand, for the fully
asymmetric system (6 = 0) it was found that no clustering
occurs and the particles collectively flow to the right [17]. In
the present study we will focus on the crossover between these
two limiting behaviors.

III. THREE COMPARTMENTS

A. Phenomenology

Given the fact that the case with K = 1 compartment is
trivial, and the case with K = 2 compartments is by definition
symmetric (in the clockwise and counterclockwise rotational
sense), the smallest system in which we can study the crossover
from symmetric to asymmetric behavior is that with K =3
compartments, see Fig. 4.

For the time being we set By = 0.7 in order to restrict the
system dependency to one parameter only (§ or equivalently
Bg). As initial condition we take a slightly perturbed homo-
geneous distribution; a good choice [see our discussion below
Eq. (2)] is, e.g., n1(0) = 1.6,n,(0) = 1.7,n3(0) = 1.6.

Numerical evaluation of the equations of motion (1) shows
that the transition from free-flow behavior to clustering occurs
in a relatively narrow interval around § = 0.40. In Fig. 5 we
show the evolution of the densities n(t), n,(t), and n3(t) for
three representative values:

(1) For § = 0.370 [Fig. 5(a)] we see a rapid convergence
to a uniform flow profile. Already after 60 time steps the
three densities have, for all practical purposes, become equal,
i.e., ni(t) = ny(r) = n3(r) = 1.6333 for all T > 60. In the
inset figure we witness in the three-dimensional density space
(from the initial condition at T = 0 to the long-time limit for
T = 5000) how the system converges to the steady state. The
observant reader may note that the dynamics in density space
actually takes place on the two-dimensional surface defined
by ny + ny + n3 = ny; we will come back to this later.

(i) As we make our system more symmetric, when § =
0.388 [Fig. 5(b)] we see that the excess material is passed
from one compartment to the next in a periodic manner. This
exchange goes on indefinitely, as can be seen also from the
inset picture (for t = 0 to T = 5000), where we see that the
densities now trace out a stable limit cycle.

(iii) Finally, for § = 0.411 [Fig. 5(c)] we witness that the
system is incapable of maintaining the limit cycle, and, after
approximately 50 time steps, most of the particles cluster
together inside the first compartment while the other two are
nearly emptied. This is confirmed by the orbit in the density
space, which evolves to a point very close to {ny,0,0}. Note
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FIG. 5. (Color online) Phenomenology of the system with K = 3
compartments at three successive values of the symmetry parameter.
(a) § =0.370: The three densities {n(t),n,(t),n3(t)} are seen to
converge to the evenly distributed equilibrium state indicated by
the horizontal dashed line. After 60 time units they have become
indistinguishable from each other. Their trajectories in the three-
dimensional density space spiral inward to a fixed point; see figure
inset. (b) § = 0.388: The densities, instead of converging to the
uniform state, now vary periodically. The density maximum is being
transferred from one compartment to the next, thus forming a density
wave that travels around the system. In the inset this behavior shows
up as a stable limit cycle. The main plot depicts a time interval when
the convergence to the limit cycle is fully completed. (c) § = 0.411:
The limit cycle has become unstable, and the system is seen to form
a cluster in one single compartment, while the other two are left
practically empty. This is also clearly visible in the inset. Note the
different scale of the vertical axis in this case.
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that, for other initial conditions, the cluster could also have formed in the second or third compartment.
In the next subsection we will explain the above observations, starting with a linear stability analysis of the uniform distribution.

B. Stability analysis

In the case of three compartments (K = 3), the system of coupled ODEs (1) takes the form

di’ll
dt

dnz
dt

dn3
dt

= Fr(ny) — Fr(na) — Fr(nz) + Fr(n3),

= Fr(n3) — Fr(n1) — Fr(ny) + Fr(n),

(&)

= Fr(ny) — Fr(n3) — Fr(nz) + Fp(ny).

An obvious fixed point of the above system, that always exists, though not necessarily stable, is the evenly distributed profile.
Indeed, when all three particle densities are equal,n; = n, =n3 =n (:%ntot), their time derivatives dn; /dt (k = 1,2,3) become
identically zero. In order to study the stability of this uniform profile we consider the Jacobian matrix of the system (5) in the
fixed point [noting that the flux functions defined by Eq. (3) are indeed differentiable]:

[— 7= [Fr(n1) + Fr(m)] =Fr(ny) L Fr(n3)
J = = Fr(m) — - [Fr(n2) + Fr(n2)] T Fi(n3)
L - Frnn) an: Fr(n2) — k) + Feo)]
[—(R+L) L R
= R —(R+1L) L , ©)
L L R —(R+1L)

where, for notational convenience, we denote the derivative

of Fg(ng) in the fixed point n; = n by the letter R, and the

analogous derivative of Fy (n;) by the letter L:

dFgr(ny)
dl’lk

R =

)

e 7
dFp(ng)

dnk

nr=n

The above Jacobian matrix has one real (A1) and a pair of
complex conjugate (1, 3) eigenvalues:

3 3
A =0, Ayz= _E(R + L) :I:i%(R —L).

(®)
The eigenvalue A; = 0 is associated with the conservation
of mass in our system. The corresponding eigenvector in
density space is [1,1,1], and any motion in this direction
would mean adding or subtracting equal amounts of material
to (or from) the three compartments, which would violate mass
conservation.

As for the other two eigenvalues A, 3, we note that their
imaginary part (corresponding to periodic behavior) becomes
zero when Fg(n) = Fp(n) or § = 1, meaning that in the fully
symmetric case no Hopf bifurcation to a limit cycle can
ever occur [23]. This is true not only for the case of K =3
compartments, but for any value of K, as we will demonstrate
in Sec. V.

As long as the real part of A, 3 is negative, the uniform
state is stable. It becomes unstable when the real part passes
through zero and turns positive. Provided the imaginary part
is finite this happens via a Hopf bifurcation, in which a stable
limit cycle is created [32]. Setting Re(%, 3) = 0, the bifurcation
condition thus reads

R+L=0, 9)

or equivalently (d/dl’lk)[FR(l’lk) + FL(I’lk)]{nk:n} =0.

With the flux functions given by Eq. (3), and writing Bg =
8B (since we are now focusing on the critical value of §),
the above condition becomes

2 _ 2

—2An[8chane_5°'B"” — ¢ duBun
_ 2

— ¢ Bun ]=o.

Solving this equation for 8. we obtain the bifurcation value
in analytical form:

4+ B nle B’ (10)

1 — W[(Bn? — 1)e~ B =D]
BLl’l2

where W(x) denotes the Lambert W function (i.e., the inverse
function of f(x) = xe* [18,33]). The above expression gives
the critical value of § at which the Hopf bifurcation occurs.
The solid curve in Fig. 6 shows §..(By ,n) as a function of n,
for fixed B;, = 0.7. For values of (n,6) lying under this curve,
the even distribution is stable, i.e., the densities converge to

Scr(BL 7n) =

, (D
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FIG. 6. (Color online) Phase diagram showing the various dy-
namical behaviors observed in the three-compartment system (for
B; = 0.7) when one starts out from a flow with uniform density
ny = ny = n3 = n. (i) For all combinations (n,5) below the solid
curve § = 8..(0.7,n), the uniform flow is stable; (ii) the shaded area
contains the values of (n,8) for which the uniform profile gives way
to a limit cycle (i.e., a density wave traveling periodically around the
system); (iii) for points (n,8) lying above the shaded area the material
forms a cluster in one compartment. The horizontal dashed line at
6 = 1 indicates that one cannot get beyond this value.

the uniform profile as in Fig. 5(a). For (n,§) inside the narrow
shaded region, the densities converge to a stable limit cycle as
in Fig. 5(b). Finally, for values of (n,5) above the dashed line
the system settles into a clustered state as in Fig. 5(c).

Figure 7 shows the corresponding bifurcation diagram for
the particular value n = 1.633 (which we also used in Fig. 5),
i.e., when we follow a vertical path through Fig. 6. For § < &,
the uniform state is stable, indicated by the solid horizontal
line, and becomes unstable via a forward (supercritical) Hopf
bifurcation at § = §., = 0.387498, where the limit cycle is
born. Beyond this § value, until § = 0.4104, the limit cycle
increases in size, meaning that the amplitude of the traveling
density wave increases. The associated wave speed decreases
for increasing §, which can be understood from the fact
that the tendency to flow decreases as the system becomes
less biased; so the period of the limit cycle grows. As the
amplitude of the density enhancement becomes larger, and
the speed with which it proceeds smaller, the traveling wave
increasingly looks like a “protocluster” moving slowly from
one compartment to the next.

Finally, when 6 > 0.4104 the density inside one of the
compartments will exceed the clustering threshold: the limit
cycle here intersects the crossed branches corresponding to the
unstable clustered state, thereby entering the basin of attraction
of the stable clustered state (see also Fig. 8). In physical
terms, the energy dissipation in the compartment containing
the density peak becomes so large that the balance between
in- and outflow can no longer be maintained. A positive net
inflow into this compartment is established (at the cost of the
densities of the other compartments) resulting in a cluster.
The limit cycle thus loses its stability, and the system settles
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FIG. 7. (Color online) The bifurcation diagram of the three-
compartment system. As the symmetry coefficient § is increased, the
uniform profile {n,,n,,n3} = (1.633,1.633,1.633) becomes unstable
via a Hopf bifurcation at § = §., = 0.387498, where a stable limit
cycle is born. Raising § further we observe that the limit cycle
increases in size, until at the value § = 0.4104 it suddenly loses
it stability and the system goes into the stable clustered state. This
clustered state has come into existence via a saddle-node bifurcation at
& = 0.3288, together with its unstable counterpart, and has co-existed
with the uniform state ever since. The unstable counterpart of the
clustered state is responsible for the destabilization of the limit cycle;
see Fig. 8.

in a stable clustered state, corresponding to the solid curved
branches in the bifurcation diagram of Fig. 7.

In fact, the clustered state already existed from 6 = 0.3288
onward, and if we would not have started out from the basin
of attraction of the uniform flow (or the limit cycle) the system
could have formed a cluster much earlier. Figure 7 reveals
that the stable clustered state comes into existence by way
of a saddle-node bifurcation (at § = 0.3288) together with its
unstable counterpart represented by the crossed curve. While
the stable state develops into an increasingly pronounced
cluster for growing §, the unstable clustered state becomes less
pronounced. As we see in Fig. 7, when the limit cycle comes
into existence (at § = §.;), the density values of the unstable
cluster already lie close to those of the limit cycle, and when § is
increased further they actually meet the limit cycle, rendering
it unstable. This moment is illustrated in Fig. 8: the three
points corresponding to (the three equivalent permutations of)
the unstable clustered state coincide exactly with the corners
of the triangular limit cycle. It is here that the limit cycle loses
its stability and clustering sets in.

The complete sequence of events is recapitulated in the six
plots of Fig. 9. As mentioned above, the dynamics in density
space takes place entirely on the triangular surface defined
by ny + ny + n3 = ny (and ny,n,,n3 > 0), so we restrict our
attention to this surface. In Fig. 9(a), at § = 0.320, we see just
one solid point in the center of the triangle. This corresponds
to the uniform flow n; = n, = n3, which at this value of
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FIG. 8. (Color online) Destabilization of the limit cycle at § = 0.4104. The unstable orbit which came into existence at § = 0.3288 as the
(unstable) counterpart of the clustered state has closed in upon the limit cycle and meets it at the point {n,n,,n3} = (1.0483,2.3338,1.5213),
and the two cyclic permutations of this point. At this precise moment of intersection, the limit cycle loses its stability. Note that the entire
dynamics takes place on the surface defined by n, + ny 4+ n3 = n = 4.9 with ny,np,n3 > 0.

5 happens to be the only equilibrium state in the system.
Irrespective of the initial condition, all orbits are necessarily
attracted to this state: its basin of attraction is the entire
surface. In Fig. 9(b), at § = 0.360, six more equilibrium points
have come into existence. These are the stable and unstable
clustered states, denoted by solid and open dots, respectively.
Evidently, the three stable clustered states are all equivalent
(corresponding to the cyclic permutations of the densities over
the three compartments), and the same holds for the unstable
ones. The three unstable points enclose a triangular region
around the fixed point in the center, which defines its new
reduced basin of attraction. All initial conditions outside this

triangular region lead to one of the three stable clustered
states. In Fig. 9(c), at § = 0.389, the central fixed point has
become unstable by means of a Hopf bifurcation and it is now
surrounded by a stable limit cycle. This limit cycle is traversed
in the direction of the arrow, corresponding to a density
elevation moving periodically from one compartment to the
next. In Fig. 9(d), at § = 0.405, we see how the limit cycle has
expanded, and meanwhile the three unstable clustered states
have moved closer to the center of the surface. In Fig. 9(e),
at § = 0.4104, they meet each other, and the limit cycle is
destabilized (this is the same moment as depicted in Fig. 8).
Finally, in Fig. 9(f) at § = 0.415 we see that the only stable

(0,0, ngy)
© °
& . o 3
o ©
o
° . L e
(Nt 0, 0) (a) (0, Nt 0) (b) C)
o o o
e 3 ®
o o o ° ° 6
o o7 - ®
(] L) (] L) ( o
(d) ® U]

FIG. 9. (Color online) The triangular surface in density space defined by n; 4 n, 4+ n3 = ny, (on which the dynamics of the three-
compartment system takes place) for six successive values of the symmetry parameter §. (a) At § = 0.320 the uniform flow (corresponding
to the solid point in the center of the triangle) is the only equilibrium in the system and its basin of attraction is simply the entire triangle;
(b) at § = 0.360 the fixed point in the center is still stable but by now six more equilibrium points have come into existence by means of a
saddle-node bifurcation, corresponding to three stable clustered states (solid dots) and their unstable counterparts (open dots); (c) at § = 0.389
the fixed point has just become unstable (by means of a Hopf bifurcation), and around it we discern a stable limit cycle, which is traversed in
the direction indicated by the arrow; (d) at § = 0.405 we see how the three unstable clustered states and the limit cycle close in upon each other;
(e) at 6 = 0.4104 they meet each other, thereby rendering the limit cycle unstable, and finally (f) at § = 0.415 we see how an orbit starting out
from the neighborhood of the central fixed point (uniform flow) ends up, via one of the unstable clustered states, in the stable clustered state in
the lower left corner, with almost all material in the first compartment.

022205-7



KANELLOPOULOS, VAN DER MEER, AND VAN DER WEELE

FIG. 10. (Color online) The critical surface corresponding to the
Hopf bifurcation in three-dimensional {B;,n,5} parameter space,
generated from Eq. (11). For parameter combinations below the
surface the uniform flow is stable. It is seen that for sufficiently
small values of B, and n (strong shaking and small average density,
respectively) the uniform flow never becomes unstable, since the
surface here exceeds the upper bound § = 1.

equilibria remaining in the system are the three clustered states.
In the plot we see an orbit starting out from the neighborhood
of the central (unstable) fixed point, which first moves to one
of the unstable clustered states, and from there to the clustered
state in the lower left corner. This is precisely the behavior we
also witnessed in Fig. 5(c).

Let us also say a few words about the reverse transition,
when § is decreased (from 1 to 0), and we follow the fate of the
clustered state. In this case, the system remains in the clustered
state until we meet the saddle-node bifurcation at § = 0.3288,
where the cluster simply ceases to exist as an equilibrium state.
At this point we witness a sudden collapse of the cluster [25],
and the material spreads out over all compartments. This
involves a transient density wave (which in the limit § — 0
takes the form of a Burgers shock wave [17]), gradually
diminishing in height until the flow becomes uniform. So
we see that the crossover between the uniform flow and the
clustered state is markedly hysteretic.

C. The influence of the parameter B,

The results we have presented until now were all for the
fixed parameter value B; = 0.7, and for a given density level
n = ny/3 = 1.6333, in order to highlight the transition from
smooth flow to clustering as a function of the symmetry
parameter §. In fact, however, the behavior of the system
is affected also by the value of the parameter B; and the
choice of n = n/3. In Fig. 10 we depict the critical surface
corresponding to the Hopf bifurcation in three-dimensional
{Bp,n,8} parameter space, generated from Eq. (11). We see
that §.; = 8¢(Bp,n) is very small when B, and n are relatively
large; this stands to reason, since large B; means that the
system is only weakly vibrated, and large n means that there are
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many particles in the system, both of which are favorable for
clustering. Vice versa, when By, and n are small (corresponding
to strong shaking and a small number of particles, respectively)
the conditions are such as to favor the uniform smooth flow;
when B; and n fall below a certain critical threshold (indicated
by the dashed curve in Fig. 10) the predicted value of §;
even exceeds the upper limit 1, which means that the Hopf
bifurcation never occurs at all. So in this case the particles will
always keep flowing, without ever forming a traveling density
wave (limit cycle), let alone a cluster.

An alternative way to see this is by following the trajectories
of the nonzero eigenvalues X, 3 in the complex plane. Figure 11
shows three characteristic trajectories (for three different
values of By, keeping n = 1.633 fixed) as the value of §
is gradually increased from O to 1. In all three cases the
eigenvalues are seen to start out (for § = 0) with a negative
real part, corresponding to a stable uniform flow. In the case
By, = 0.700 (rightmost trajectories, relatively weak shaking)
the eigenvalues cross the imaginary axis at the well-known
value &, = 0.3875, where the Hopf bifurcation occurs. They
meet at some point along the positive real axis when § = 1,
long after the uniform flow they represent has become unstable.

At the value By = 0.375 (middle trajectories, stronger
shaking) the eigenvalues never really cross the imaginary axis,
but just manage to reach the origin of the complex plane
as § — 1. This corresponds to the aforementioned critical
threshold marked by the dashed curve in Fig. 10, at which
the Hopf bifurcation ceases to exist.

For the still smaller value B;, = 0.275 (leftmost trajectories,
very strong shaking) the real part of the eigenvalues A3
remains negative right up to 6 = 1, where they meet at some
point along the negative real axis.

IV. MORE THAN THREE COMPARTMENTS

In this section we generalize the system by increasing the
number of compartments. Just as before, the total number of
particles in the system is conserved. This means that, just as
the dynamics for the three-compartment system took place on
the two-dimensional surface defined by Zi:l ny = constant,
for K compartments the dynamics takes place on the positive
segment of the (K — 1)-dimensional hypersurface defined by
S, ni = constant.

In order to study the crossover from the free flow regime
to the clustered state, we again focus on the stability of the
uniform flow givenby ny = ny = - -- = ng = n. Our first step
is thus to determine the eigenvalues of the corresponding K X
K Jacobian matrix. For K = 4 we find

Ar=0, A=-2(R+1L),
(12)
Ma4=—(R+L)+i(R—L).
Similarly for K =5,
A =0,
—5+4/5 i
by = = (R+ L)+ Y26+ V3R —L), (13)

A5 =

%ﬁm T+ 2,/2(5 — V3R - L),
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FIG. 11. (Color online) Three trajectories of the eigenvalue pair
A2.3 in the complex plane, for three different values of B, and a fixed
average density n = 1.6333. The value of § gradually increases from 0
to 1 along each trajectory from left to right. The rightmost trajectory
corresponds to the value B, = 0.700 used in the previous figures;
for this value the eigenvalue pair crosses the imaginary axis (i.e.,
the Hopf bifurcation occurs) at § = 0.3875. The leftmost trajectory
corresponds to B, = 0.275, for which the real part of the eigenvalues
A23 remains negative right up to 6 = 1 (where they meet at some
negative value along the real axis) so no Hopf bifurcation occurs in
this case. The middle trajectory corresponds to the intermediate case
B; = 0.375 for which the eigenvalues meet precisely at the origin
foré = 1.
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Comparing these eigenvalues with those for the case of three
compartments [see Eq. (8)] we note that the real and imaginary
parts are always of the same form (R + L) and (R — L),
respectively, and only the prefactors differ. This means that
the Hopf bifurcation, where the real parts become zero, occurs
at the same value é.(Bp,n) [given by Eq. (11)] for all K.
The eigenvalues evaluated thus far show this explicitly for
K =3,...,6,but we can in fact prove that the same holds for
an arbitrary number of compartments. The proof (including
the analytical form of the eigenvalues for all possible K) will
be given separately in the next section.

In Fig. 12 we show the trajectories in the complex plane of
the (K — 1) nonzero eigenvalues for the cases K = 4,5,6, as
the symmetry parameter § is gradually increased from 0 (left)
to 1 (right). The other two system parameters B; = 0.700
and n = 1.633 are kept fixed. We observe that all depicted
eigenvalues (irrespective of the value of K) cross the imaginary
axis at exactly the same value of 6 = 8., = 0.387498. Another
thing to note is the fact that for § = 1, at the right-hand side
of the plots, all eigenvalues fall upon the real axis. In this
case, when the system is not biased towards any flow direction
anymore, the system ceases to support periodic solutions
(neither stable nor unstable). The vanishing of the imaginary
part of the eigenvalues of the uniform flow corroborates this.

In Figs. 13 and 14 we present the bifurcation diagrams
for K =5 and 6 compartments, along with plots of the
density oscillations in the system (corresponding to the
limit cycle behavior) at § = é.; + 0.0001, i.e., just after the
Hopf bifurcation. The case for K = 4 compartments will be
discussed in the concluding section, since it presents some
special features that make it nonrepresentative for the other
values of K. Here we focus on the main trend.

Comparing the bifurcation diagrams for K = 5 and 6 with
the corresponding diagram for K = 3 compartments, two
major things capture the eye. First, the interval of § for which
a stable limit cycle exists is seen to decrease for growing K.

dfor K =6, . . .
anclor Second, in the density oscillations for K = 6 we see a marked
A =0, r=-2R+1L), tendency for pair formation (an alternating pattern of high and
Na low densities) which is absent in the cases K = 3 and K = 5.
Aia = _é( R+L)+ i—3( R—1L), (14) With respect to the first observation we have also inves-
' 2 2 tigated several cases for K > 6 and indeed found that the
1 V3 interval corresponding to the stable limit cycle diminishes
As6 = _E(R +L)=+ lT(R —L). rapidly as K grows. For instance, whereas the width of the
il Im K=4 3 &l Im K=5 3 3 Im K=6
6\ 2- \ 2 3 \ 21
N
L1 L I, H1 -1
5__, ! Re . Re 5 —» N Re
3 2 4 1 2 3 3 -2 1 |7 2 3 3 2 4 1 2 3
-1 b-1 -1
-2 -2 -2
-3- -3 -3-

FIG. 12. (Color online) The trajectories (as function of the symmetry parameter §, which is being varied from O to 1, while the other
parameters are fixed at B, = 0.700 and n = 1.633) for the nonzero eigenvalues of the systems with K = 4, K =5, and K = 6 compartments,
respectively. The Hopf bifurcation (which takes place when the eigenvalues cross the imaginary axis from left to right) occurs at exactly the
same value of § in all three cases. The arrows indicate the direction of increasing 8, with the color coding running from cyan (light) at § = O to

orange (dark) at§ = 1.
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FIG. 13. (Color online) (a) Bifurcation diagram for K = 5 compartments. For simplicity, the curves corresponding to the unstable clustered
states (which are born via a saddle-node bifurcation together with the stable clustered states at § = 0.164) have not been included. The Hopf
bifurcation occurs at the same value J, as for the three-compartment system (see Fig. 7), but the width of the interval in which the associated
limit cycle is stable is significantly smaller, namely, 0.0070; see also the close-up of this region in the inset. (b) The limit cycle dynamics
at § = 8 + 0.0001, just after the Hopf bifurcation. The time interval has been chosen on purpose at a well-advanced stage; this not only
guarantees that the oscillatory motion has converged to its final frequency and amplitude but also serves to illustrate that the periodic exchange
between the compartments goes on indefinitely.

interval for K = 3 was found to be A§ = 0.0229, and for
K =6 still A =0.0036, for K = 15 compartments it has
reduced to A§ = 0.0006, and for even longer arrays it becomes
practically negligible.

This means that the transition from smooth flow to cluster-
ing for growing K becomes increasingly abrupt. For large K
it will be quite difficult to observe the intermediate stage with
the limit cycle, since it requires an extreme fine-tuning of the
parameters &, By, and n in a tiny zone above the surface ;.
So, in retrospect, we see that the case K = 3 is not only the
most convenient one for studying the transition because of its

relative simplicity, but it also happens to be the case in which
the phenomenon plays the biggest role.

With respect to the second observation, the alternating
pattern is found not only for K = 6 but for any even number
of compartments. In fact, it represents the natural way in
which granular material tends to organize itself, due to
its tendency to enhance density differences; the effect is
usually so pronounced that the density oscillations of the
high-level compartments do not cross those of their low-level
counterparts, leaving a blank zone of densities in between that
are not visited; see Fig. 14. The same tendency exists when

T 1.8 K=6

" n,(t)

8- 1 n® l ns(t)

1.7- ¢ ¢
- NI 0.099.999.99.0:
- 2% N A4 A N 2\
N [
m | ne®

0 \I —T T T T T 1.5 J T 1

0.1 0.2 0.3 0.4 4960 4980 5000
@ ¢ (b) i

FIG. 14. (Color online) (a) Bifurcation diagram for K = 6 compartments. In comparison with the previous value of K, the saddle-node
bifurcation in which the clustered states are being born (together with their unstable counterparts, not depicted) has shifted still further to the
left: it now takes place at § = 0.125. The interval of § associated with a stable limit cycle has again become smaller, 0.0036; see also the inset.
In this close-up one discerns a blank zone in the region of the limit cycle, which is typical of all systems with an even number of compartments.
(b) Limit-cycle dynamics at § = & + 0.0001, just after the Hopf bifurcation. We see that the number densities in the compartments 1,3, and 5
are consistently larger than those in the other compartments; the intermediate density values that are not visited correspond to the blank zone
observed in the inset of the bifurcation diagram of figure (a).
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the array has an odd number of compartments, but in this case the pair formation is frustrated (the odd compartment cannot
simultaneously have a high and a low density), and hence the alternating pattern fails to emerge. This explains the absence of
such a pattern in the long-time behavior for K = 3,5, and all other odd values of K.

V. INVARIANCE OF THE HOPF BIFURCATION WITH RESPECT TO K

In this section we will prove that the Hopf bifurcation occurs at the same level of asymmetry (§.) for any number of
compartments K. An extra result that emerges from the analysis is that the symmetric system (Fr = Fy) does not support

periodic density oscillations for any K.

Consider a system with K > 2 compartments; then the Jacobian K x K matrix calculated in the fixed point {n, ... ,n} has
the following form (where, as before, R = dFg/dn and L = d F /dn):
[-R—-L L 0 0 ... R
—R—-L L 0 - 0
0 R —-R—-L L ... 0
Jx = (15)
0 0 R —R-L L
| L 0 0 R —R—L |

We will show that the K eigenvalues A; ; (j = 1,...,K) are

of the form
)"j,-lk =CJ(R+L)+dJ(R—L), (16)

where the coefficients ¢; and d; (of the real and imaginary
parts, respectively) are given by

.o (T .
:—2 2 -1, :1, .,K, 17
Cj sin (K) j (17)
2jm
di=—isin{—), j=1,...,K. 18
j lSll‘l<K> J (18)

It is easily checked that the sets of eigenvalues for the
special cases K = 3, ...,6 presented earlier coincide with the
eigenvalues given by the above general expression, only with
a somewhat different ordering.

With respect to the coefficients c¢;, we see that one of them
(ck) is zero and all the others are negative real numbers. This
means that, when (R + L) goes through zero at § = §;, the
real parts of all nonzero eigenvalues switch simultaneously
from negative to positive. This is precisely what defines the
Hopf bifurcation.

With regard to the coefficients d;, one or two of them are
zero (for odd K only d is zero, while for even K both dg > and
dy are zero) and the rest of the d; are evenly divided between
positive and negative imaginary values, in such a way that the
corresponding complex eigenvalues come in conjugate pairs.
In the present context the coefficients d; play a less important
role than the c;, since the d; (belonging to the imaginary part
of the eigenvalues) are not connected to the stability of the
fixed point.

Proof. Since Ji is a real square matrix K x K, it may be
decomposed as follows:

Jx = STk + J¢) + (I = T%), (19)
where J Ig denotes the transpose of Jx. The term %(J xk+J ,? )
is a real symmetric matrix with real eigenvalues (including
zero), while %(JK -J ,? ) is a skew-symmetric matrix with
purely imaginary eigenvalues (and possibly zero). Moreover,

(

Jk is anormal matrix (it commutes with its transpose), and thus
the matrices %(JK + JI?) and %(]K — JI?) also commute. Now,
using a theorem by Frobenius concerning commuting matrices
(proved in 1878; see Ref. [34]), the eigenvalues of Jx may be
ordered in such a way as to follow the same decomposition:

Mt = A tugrany T AL e—aD) (20)
for j =1,...,K. From Eq. (20), combined with the fact that
%(JK +J 1? ) has only real (or zero) eigenvalues and %(JK —
JI) has only imaginary (or zero) ones, we conclude that

Re(jn) = Xjserapyy J=1....K, @D

and

MG g) =2 4 esry J =100 K. (22)

Now we observe that in our case %(JK + J,?) =(R+ L)A,
with A the real and symmetric K x K matrix given by

-2 1 0 0 1

1 -2 1 0 0

11 0 1 -2 1 0
A=— (23)

0 0 1 -2 1

1 ... 0 0 1 -2

Therefore, if we denote the eigenvalues of A by cj,
expression (21) takes the following form:
Re()\jJK) = Cj(R + L),

ji=1,... K, 24)

and we note that, because A is a negative semidefinite matrix
for all K, the coefficients ¢; can never become positive [24].
The explicit form of the c¢; given in Eq. (17) confirms this.
This completes the proof of expression (16) as far as the
real part is concerned.
Likewise, for the imaginary part we consider the matrix
%(JK — J,?) = (R — L)B, where B is the skew-symmetric
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FIG. 15. (Color online) (a) Bifurcation diagram for the case of K = 4 compartments. Unlike any other case, we see that the Hopf bifurcation
is almost instantaneously followed by a transformation of the limit cycle to a stable period-2 orbit. This orbit is rendered unstable at § = 0.402
(via a reverse period doubling bifurcation) when it meets the unstable clustered state. (b) The limit cycle oscillation immediately after the Hopf
bifurcation at § = ... At a slightly higher value of § the amplitude of the oscillations will be reduced to zero, creating the aforementioned

period-2 orbit.

K x K matrix given by

0 -1 0 0 1
1 0 -1 0 0
1o 1 0 -1 0
B=- (25)
2
0 o 1 0 -1
-1 0 0 1 0

Denoting the eigenvalues of B by d;, expression (22) then
takes the form

Im(A‘j,JK)Zd_/(R—L), ] = 1,...,K, (26)

where d; is either zero or a purely imaginary number, as is
indeed verified by the explicit form (18).

This completes the proof of expression (16) also with
respect to the imaginary part.

The above proof shows that the real parts of the eigenvalues
Aj simultaneously switch from negative to positive, at the
same value of 8. for all K > 3. In other words, we can
use the bifurcation criterion (9) regardless of the number of
compartments. Of course, it depends on the form of the flux
function whether this criterion can be solved analytically. For
the Eggers-type flux functions used in the present paper this
can be done [see Eq. (11)], whereas for other choices one
generally will have to resort to numerical solutions.

As far as the imaginary part of the eigenvalues is concerned,
the form of Eq. (26) confirms our earlier observation that in
a symmetric system (with R — L = 0) the eigenvalues do not
have an imaginary part, and hence the uniform flow cannot
undergo a Hopf bifurcation for any number of compartments.
In the same context, we note that the above proof also holds for
K =2, with (purely real) eigenvalues A; = —2(R + L) and
Ay = 0, but in this case the setup is symmetric with respect
to the clockwise and counterclockwise direction, and thus the
symmetry parameter § is identical to 1 by definition.

VI. CONCLUSIONS

In this paper we have studied the crossover between uniform
flow and clustering in a cyclic, compartmentalized system with
a bias towards one of the two flow directions. The bias is
measured by the so-called symmetry parameter &, which is 1
when the material flows with equal ease in both directions, and
0 when the flow is maximally biased towards the clockwise
direction. When § is increased the transition from free flow
to clustering occurs via a Hopf bifurcation (at the critical
value §.;) and an associated intermediate stage of limit cycle
dynamics. The width of the interval of § values corresponding
to the limit cycle decreases sharply with growing K.

The reverse transition when § is decreased takes place
abruptly (and at a value of § below J,), with a sudden collapse
of the clustered state, which then organizes itself in a uniform
flow.

One of the central points of the paper is that the value
of 8., at which the Hopf bifurcation takes place is the same
irrespective of the number of compartments in the system. Our
mathematical proof for this (Sec. V) shows that this result does
not depend on the specific form of the flux function and may
thus be transferred also to related systems such as traffic flow
and other multiparticle flows in which the particles interact
dissipatively.

Finally, let us come back (as promised) to the special case
of K =4 compartments. In Fig. 15 we show the bifurcation
diagram for this case together with a plot of the density oscil-
lations corresponding to the limit cycle immediately after the
Hopf bifurcation. The alternating pattern typical for any even
number of compartments is evident in Fig. 15(b), including
the familiar blank zone between the high-level compartments
and the low-level ones (just as for six compartments; cf.
Fig. 14).

What makes this case unique, however, is the fact that the
limit cycle has an extremely small interval of stability. Very
soon after its birth at §. its oscillating branches converge
pairwise, and from that moment on they constitute a stable,
nonoscillating orbit of period 2. At § = 0.402, this period-2

022205-12



EMERGENCE OF TRAVELING DENSITY WAVESIN ...

orbit becomes unstable via a reverse period doubling bifurca-
tion. The four branches of the unstable clustered state (which
have come into existence by means of a saddle node bifurcation
at § = 0.232) unite with the period-2 orbit and, in doing so,
render it unstable. At this point, the system has no other choice
anymore but to form a cluster.

The reverse transition, as usual, takes place abruptly at the
aforementioned value § = 0.232. Here the cluster ceases to
exist, and the material will organize itself in a uniform flow
traveling around the system.

In conclusion, we see that all cases with up to five
compartments are special in one way or the other. The case
K =1 is trivial; and all other cases with an odd number of
compartments (K = 3,5, ...) show the frustration mentioned
in Sec. IV, namely, that the natural tendency of the system to
create a limit cycle with alternating densities is thwarted. This
means that only the nonfrustrated cases with an even number
of compartments can be generic. Since both K = 2 (symmetric
by definition) and K =4 (degenerate; see above) are still

PHYSICAL REVIEW E 92, 022205 (2015)

special cases, this leaves K = 6 as the first truly “generic”
case.
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