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Forced axial segregation in axially inhomogeneous rotating systems
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Controlling segregation is both a practical and a theoretical challenge. Using a novel drum design comprising
concave and convex geometry, we explore, through the application of both discrete particle simulations and
positron emission particle tracking, a means by which radial size segregation may be used to drive axial
segregation, resulting in an order of magnitude increase in the rate of separation. The inhomogeneous drum
geometry explored also allows the direction of axial segregation within a binary granular bed to be controlled,
with a stable, two-band segregation pattern being reliably and reproducibly imposed on the bed for a variety
of differing system parameters. This strong banding is observed to persist even in systems that are highly
constrained in the axial direction, where such segregation would not normally occur. These findings, and the
explanations provided of their underlying mechanisms, could lead to radical new designs for a broad range of
particle processing applications but also may potentially prove useful for medical and microflow applications.
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I. INTRODUCTION

Granular flows in rotating drums are widely used to
study mixing, segregation, and pattern formation [1]. While
most studies focus on a circular cylinder geometry, several
recent works have explored different drum geometries [2–8],
including asymmetric configurations [9]. Noncircular drums
are important from both an application perspective, as they
are used in various industries, and from a theoretical perspec-
tive, to further validate and develop theoretical approaches
developed primarily from simpler cylindrical configurations.
Segregation is known to occur in rotated drums containing
granular materials; species-separation in the radial direction
occurs after a few rotations [2]. Additionally, for adequately
long drums, if rotation continues for a suitably large period of
time (typically of the order of hundreds of drum rotations),
axial segregation may also appear [10,11]. Even after the
initial axial separation of the system, the segregated bands
of differing particle species produced are known to often be
metastable [12] and their positions irreproducible in repeated
runs [13,14]. This raises two interesting questions: how can we
accelerate axial segregation, and how can we produce stable,
reproducible regions of segregated particles?

The role of geometry in segregation is well known [15],
with experiments looking at a variety of convex [5,16–20] and
concave [7,21–23] drums, including geometries commonly
used in industry, such as the double-cone and V-blender
[24–26]. In particular, work by McCarthy et al. [9] provides a
detailed overview of the effects of system geometry on radial
segregation, considering both simple polygonal and complex,
nonconvex tumbler geometries. Work by Hill et al. [27] also
demonstrates the important influence of system shape on
segregation, focusing on the competition between order and the
chaos induced by the introduction of noncircular geometries.
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This study also provides valuable insights into the origins of
segregation in the axial direction, demonstrating its presence in
noncircular systems, even in the absence of a radial core, which
had previously been suggested to be a necessary precursor to
axial segregation [11].

However, to the best of our knowledge this current work
provides the first investigation of mixed convex-concave
systems. In geometry concave polygons are defined by two
numbers {n/m}; n is the number of sides (points on a circle)
and the polygon is formed by connecting every mth point
with straight lines. We chose the simplest regular concave
polygon the {5/2}-star polygon, or pentagram. In this paper,
we first focus on the dynamics of monosized particles in simple
concave drums and later explain how the novel combination
of concave and convex shapes can be used to accelerate axial
segregation and even deliberately impose specific segregation
patterns on a system.

II. EXPERIMENTAL DETAILS

A. Setup

Drums of fixed size D = 119 mm (with D the diameter of
the circle in which all polygons investigated are inscribed) and
width �z ∈ (10,24) mm are partially filled with glass beads
of diameter d = 3.5 ± 0.3 mm and rotated at a constant rate
� = π/2 rad/s. The coordinate system used within this article
is defined such that the z axis lies parallel to the drum’s axis of
rotation and perpendicular to the direction of gravity (i.e., the
drum is not inclined), the y axis lies in the vertical direction
opposing gravity and the x axis lies perpendicular to the z and
y axes.

B. Positron emission particle tracking

Data is acquired from the experimental system using both
optical techniques and positron emission particle tracking
(PEPT), enabling the bed’s exterior and interior to be explored.
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PEPT is a nonintrusive technique that records the motion of a
single “tracer” particle in order to extrapolate of a variety of
time-averaged quantities pertaining to the system as a whole. In
order to perform PEPT, a single particle—physically identical
to others of its species—is irradiated with a 3He beam from
the Birmingham cyclotron, producing β+ activity within the
tracer. The annihilation of the positrons emitted with electrons
within the tracer medium produces, due to conservation of
momentum, a pair of 511 keV γ rays whose trajectories are
separated by 180◦. The straight-line trajectories of these γ

photons, when detected simultaneously by the two detectors of
a dual-headed positron camera (a “coincidence event”), allow
their path to be reconstructed. Thus, by detecting multiple γ -
ray pairs, the position of the tracer particle can be triangulated
to submillimeter accuracy in three-dimensional space. For
adequately active particles, the high rate of coincidence events
allows particle motion to be tracked with a temporal resolution
on the millisecond scale. Moreover, the use of energetic, highly
penetrating γ rays allows particle motion to be tracked and
recorded even deep within the bulk of large, dense, and/or
opaque systems.

For systems in an ergodic steady state, the single-particle
motion recorded using PEPT can, through the use of appro-
priate time averages [28], be used to acquire a variety of
whole-field quantities, such as one-, two-, or three-dimensional
packing density and granular temperature fields [29], velocity
vector fields [30,31], convection strength [32], or for bi-
and polydisperse systems, segregation intensities [33] and
concentration fields [34]. For a steady-state system such
as ours, the fractional residence time, τf , of the tracer in
any given region of the experimental volume is directly
proportional to the time-averaged local packing density within
the same region [28]. Thus, for a two-component granular
bed, by subdividing the experimental system into a series
of equally sized, three-dimensional voxels and comparing
the residence time of a single particle of each constituent
within a given pixel, the time-averaged local fractional
concentration of each species can be simply determined as

φ1 = τ
f

1

τ
f

1 +τ
f

2

, where the indices 1 and 2 represent differing

particle species. By performing this calculation for each voxel
and then depth-averaging through a given spatial dimension,
concentration plots such as those shown in Figs. 4 and 5
may be produced. In a similar manner, by averaging the
velocities of all transits made by a tracer particle through
a given voxel, one may produce two-dimensional velocity
vector fields such as those presented in Fig. 6. Although not
necessary to the understanding of this paper, for the interested
reader, a more comprehensive overview of the PEPT technique
may be found in our reference [35], while a proof of the
equivalence between time-averaged single-particle data and
ensemble-averaged whole-field data is presented in Ref. [28].

III. SIMULATIONS

Simulations are performed using the MercuryDPM soft-
ware package [36–39] developed at the University of Twente.
In simulations, experimental system dimensions and particle
properties are used. We simulate a collection of bidispersed
spherical particles of different diameters ds and dl , with the

same density ρ; each particle i has a position r i , velocity
vi , and angular velocity ωi . It is assumed that particles are
spherical, soft, and the contacts are treated as occurring at
single points. The relative distance between two particles
i and j is rij = |r i − rj |, the branch vector (the vector
from the center of the particle to the contact point) is bij =
−(di − δn

ij )n̂ij /2, the unit normal is n̂ij = (r i − rj )/rij , and
the relative velocity is vij = vi − vj . Two particles are in
contact if their overlap,

δn
ij = max[0,(di + dj )/2 − rij ],

is positive. The normal and tangential relative velocities at the
contact point are given by

vn
ij = (vij · n̂ij )n̂ij (1)

and

vt
ij = vij − (vij · n̂ij )n̂ij + ωi × bij − ωj × bji . (2)

Particles are assumed to be linearly viscoelastic; therefore,
the normal and tangential forces are modeled as a spring-
dashpot with a linear elastic and a linear dissipative contribu-
tion [40,41]. Hence, the normal and tangential forces, acting
from j on i, are given by

f n
ij = knδn

ij n̂ij − γ nvn
ij , f t

ij = −ktδt
ij − γ tvt

ij , (3)

where kn and kt are the spring constants and γ n and γ t are
the damping constants. The elastic tangential displacement,
δt

ij , is defined to be zero at the initial time of contact, and its
evolution is given by

d

dt
δt

ij = vt
ij − r−2

ij

(
δt

ij · vij

)
r ij , (4)

where the second term corrects for the rotation of the contact,
so that δt

ij · n̂ij = 0. When the tangential to normal force ratio
becomes larger than the microscopic friction coefficient, μ, the
tangential spring yields and the particles slide, truncating the
magnitude of δt

ij as necessary to satisfy | f t
ij | < μ| f n

ij |. Specif-
ically, normal and tangential spring constants kn = 100 Nm−1

and kt = 2
7kn are used, while the corresponding damping

coefficients are taken as γn = γt = 0.002 s−1, such that the
frequency of normal and tangential contact oscillations, and the
normal and tangential dissipation are equal. The microscopic
friction coefficient is set to μ = 1. A more detailed description
of the contact law used can be found in Weinhart et al. [42]
and for a detailed discussion of contact laws, in general, we
refer the reader to the review by Luding [41]. The total force
on particle i is a combination of the contact forces f n

ij + f t
ij

between all particle pairs i,j , currently in contact, and external
forces, which for this investigation will be limited to only
gravity. We integrate the resulting force and torque relations in
time using Velocity-Verlet [43] and forward Euler with a time
step �t = tc/50, where tc is the contact duration for a head-on
collision, which is given by

tc = π

/√
kn

mij

−
(

γ n

2mij

)2

, (5)

where mij = mimj/(mi + mj ) is the reduced mass [41].
The drum rotation is achieved by changing the direction of

gravity at fixed angular velocity � = π/2 rad/s in order to
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FIG. 1. (Color online) Simulation data showing instantaneous
velocity fields for F = 60%, �z = 10 mm. Arrows represent ve-
locity, v, projected on the x-y plane for all particles. The horizontal
arrow in the top-right panel represents 0.25 ms−1. The velocity vectors
shown corresponds to a single “snapshot” of the system, each arrow
representing the velocity of a given particle within the system.

consistently provide a continuous free-surface avalanche [44].
Simulations are conducted with periodic boundary conditions
in the axial direction, as well as with rigid “end walls” allowing
both direct comparison with experimental results in the case of
the convex-concave (pentagon-pentagram) drum, and investi-
gation of the effect of drum geometry on flow for purely convex
or concave systems using periodic walls. Specifically, the data
presented in Figs. 1 and 2 and discussion relating to simulations
of homogenously convex and/or concave drums correspond,
unless specifically stated otherwise, to data acquired using
periodic boundary conditions. All other numerical results
detailed in the article (including all discussion of simulated
axially inhomogeneous systems) are, unless otherwise stated,
derived from simulations in which solid end walls are
implemented.

FIG. 2. (Color online) Kinetic energy vs. time during one cycle
for a simulated (convex) pentagonal drum (solid, black), a (concave)
pentagram (red, dashed), and the model for the pentagon (blue,
dotted). Data averaged over 30 s of simulation taken 8 s after the
start of the simulation.

IV. RESULTS AND ANALYSIS

A. The effect of the filling fraction

We observe four differing flow regimes depending on the
filling fraction, F , defined as the fractional volume of the
container occupied by grains. If grains occupy a volume
smaller than one leg of the pentagram, they flow intermittently
from leg to leg. If the F increases such that there are always
grains in at least two legs, flow is constant but its angle
changes continuously. When two to four legs are filled, flow
is continuous but with two qualitatively different flow profiles
depending on the drum’s angle. Once grains occupy more than
four legs, flow becomes intermittent and grain displacement
is strongly limited, decreasing transport in the bulk, with
dynamics mostly due to geometrical rearrangements. We
focus on the regime 40% � F � 60%, where unsteady flow
is produced by a concave drum rotating at a constant rate.
The geometric shape naturally causes periodic changes in the
flowing layer as a function of the instantaneous orientation of
the pentagram, as recently reported in other geometries [8].

B. Comparison of pentagram and pentagon

In cylindrical and general convex drums, steady flow has a
roughly constant kinetic energy, E= ∑ 1

2miv
2
i , independent

of the angle of rotation. For the pentagram, however, this
oscillates strongly: when a pentagram points up, flow is slow,
while when pointing down, flow is much faster. Figure 1
shows velocity fields for both pentagram [Figs. 1(a) and 1(b)]
and pentagon [Figs. 1(c) and 1(d)]. The pentagram shows
great variation in the magnitude of v between the up (b) and
down configuration (a): when the pentagram points down,
the avalanche occurs in a thick layer. As the drum rotates,
more space becomes available, producing a saltating flow.
This creates a fast avalanche in the down part of the flow,
and the consequent movement of all the flowing layers. Thus,
E shows five maxima during a cycle (Fig. 2). By allowing
particles more space to flow, a large, fast avalanche is produced.
This avalanche is not homogeneous along the free-surface.
Most of the kinetic energy is on the downside, where the free
volume makes it easier to flow. Eventually, the leg is filled
with particles and the avalanche recovers its slow flow, before
the process repeats. We now focus on how this feature can
be used to control segregation. To do this, one must introduce
the pentagram’s convex counterpart, the pentagon. As the
pentagon rotates, the total length of the flowing layer changes,
creating an oscillation in E with the same period as for the
pentagram (see Fig. 2). However, this flow, and its velocity,
are much more consistent in the pentagon, with a smaller
variation between minimum and maximum.

The periodic structure of the E can be understood by simple
arguments. If one considers the speed of the flowing layer and
its depth constant as much smaller than the filling height,
H , then E is proportional to the length, L, of the flowing
layer [8]. Disregarding the angle of the walls, and assuming a
straight free surface, L scales approximately as L ∝ 1/ cos(θ ),
with θ ∈ [0,2π/5] the angle of rotation modulo the shape’s
symmetry, in this case 2π/5. Hence, E ∝ 1/ cos(θ )2, with
θ = 0 corresponding to the phase during the rotation for which
the pentagon and pentagram are pointing directly upward. The
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agreement of simulations with this simple model is remarkable
(see Fig. 2), although deviations from this simple sinusoidal
form arise for the concave drum. These deviations are not
surprising, as in a pentagon the flowing layer is at the edge
of the geometric region of constant volume and this region is
always connected, giving a relatively consistent filling fraction,
F , the same does not hold for pentagrams and other concave
shapes. Consequently, both of the above assumptions are
likely to be broken for such geometries. Specifically, one
observes the presence of local maxima preceding each of
the main peaks in kinetic energy. It is also notable that the
first maximum in E is markedly higher than the following
peaks. The former of these deviations can be explained by
the fact that particles in the lower region of the surface flow
avalanche first over the lowermost leg, before being followed
by grains in the middle and upper regions, thus leading to
the observed “two-part” increase in E [45]. The first increase
in E, which only appears thanks to the geometry of the
container, forms the basis of our discussion in the following
section, where we demonstrate the manner in which an axial
segregation whose speed is comparable to the radial one may
be induced. The latter, meanwhile, can be explained by the
presence of localized jamming within the system, whereby
a collection of particles in a jammed state is able to reach
a higher point in the system before avalanching, naturally
resulting in a higher-than-average kinetic energy. It is finally
worth noting that, for a uniformly concave geometry, the
introduction of end walls acts to frustrate the smaller, local
maxima in the energy, E, as the increased confinement reduces
the system’s ability to flow, thus causing the smaller first peak
to simply merge with the larger second peak. Thus, while
the general sinusoidal evolution of E is found to persist,
the additional, localized peaks are eliminated; i.e., the concave
system approaches more closely the theoretical form. For the
case of a mixed concave-convex geometry, however, the initial
flow corresponding to the first, local maxima is not suppressed,
due to the presence of an additional free boundary at the
interface between the regions of differing geometry.

C. Shape-induced axial segregation

Although the influence of a nonuniform container shape
on segregation has already been reported [46,47], this is the
first time, to our knowledge, that it is used in a rotating
drum. It is also known that modifying the geometry of
the tumbler (e.g., adding obstacles or mixing blades) can
eliminate segregation [48] but it has not been shown how
to augment, accelerate, and direct it—a matter of obvious
practical importance. For bidisperse granulates in a rotating
container, small particles will typically migrate toward the
drum’s center [1,49] [see Figs. 3(a) and 3(b)]. It should be
noted, however, that, dependent on the specific geometry,
rotation rate and fill height of the system in question, this is not
always the case—previous studies have noted, under certain
circumstances, differing radial segregation patterns [9,27]. For
adequately wide systems, upon continuous rotation the system
will segregate axially [10], a process approximately two orders
of magnitude slower than radial segregation. However, if
two different geometries are used along the axial direction,
e.g., a half-pentagram, half-pentagon drum, the usually slow

(a) (b)

(c) (d)

10 5 0 5 10
0.2

0.4

0.6

0.8

1.0

z mm

φ
s

(f)

φs

0.16
0.32
0.48
0.64
0.80

10 5 0 5 10
0

10
20
30
40
50
60
70

z mm

y
m

m

(e)

FIG. 3. (Color online) Photographs of the experiment after four
revolutions in the axially homogeneous drum for (a) the pentagram
and (b) the pentagon, each showing radial segregation. Simulations
for the axially inhomogeneous, layered drum after four revolutions,
from the pentagram-shaped side (c) and from the pentagonal side (d).
Particles are colored by size with orange small and green large; black
particles correspond to those particles that belong to the opposite
side of the drum. Finally, time averaged spatial variation of the
fractional concentration of small particles, φS , for a two-dimensional
(2D) projection through the x axis (e), and as a 1D profile along
the axial (z) direction (f). In both panels (e) and (f), negative z

values correspond to the concave region of the drum and positive
values correspond to the convex region. The data is averaged over
1000 individual snapshots spanning 8 s of simulation. The simulation
results show a larger concentration of small particles close to the walls
in both sides of the drum than the experimental results (see Fig. 5).
We attribute this discrepancy to the fact that in the experimental setup
there is considerably more noise than in the simulations. This noise
will increase the diffusion in the system, and since the segregation is
forced by the geometry, a moderate noise increases it.
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FIG. 4. (Color online) Spatial distribution in the x-y (radial)
plane of the fractional concentration, φL, of large particles. The
data shown are time-averaged over the duration of the run (τr =
7200 s) and depth-averaged through the axial direction across both
concave (pentagram) and convex (pentagon) segments. Due to the
time-averaged nature of the data presented, the specific geometry of
the drum is not visible.

segregation along this axis can be enhanced and its direction
controlled [see Figs. 3(c) and 3(d)]. Not only this, it is also
possible to induce strong, two-band axial segregation even
in extremely short systems [ �z

D
O(0.1)] where such banding

would not normally occur. In both experiment and simulation,
two sections of equal width are combined. We use particles
of d = 4.0, 2.5 mm, in an equal volume distribution. The
rapid axial segregation happens only with a convex-concave
(pentagon-pentagram) combination, as for convex shapes there
exists little difference in the level of the flow, just the length
of avalanching layer [50]. We performed several experiments,
putting together circular and square sections, pentagonal and
square, and differently oriented square sections. None of these
configurations presented axial segregation on the time scale
of observation (∼20 revolutions). A clearer representation
of the segregation—both axial and radial—achieved in the
convex-concave system described above may be seen in
Figs. 3, 4, and 5. Figures 3(c) and 3(d) show the typical
radial distribution of particles for a given instant in time,
while Fig. 4 illustrates the time-averaged radial distribution of
particles as acquired from experimental PEPT data. Figure 5
demonstrates the experimentally obtained axial distribution
of small particles in both one and two dimensions. In all
images shown, positive positions along the z axis represent
the convex region of the drum, while negative z corresponds
to the system’s concave regions.

Grains tend to minimize their potential energy, i.e., move
toward the concave side, which also possesses more free
volume. Note that the few large grains in the run-out leg of
Fig. 3(c) will eventually fall to the pentagonal side. Radial
segregation occurs in each side, so large particles go to the
surface and small particles go to the center. Since for this

FIG. 5. Experimental data acquired using PEPT showing the
time-averaged spatial variation of the fractional concentration of
small particles, φS , for a two-dimensional (2D) projection through
the x axis, and as a 1D profile along the axial (z) direction. In panels
(a) and (b), negative z represents the concave, and positive z represents
the convex sides of a pentagram-pentagon drum. Shown also is the
1D profile for an equivalent, purely convex system (c), illustrating
the enhanced segregation produced by the dual-geometry system. In
all cases, F = 60%, �z = 24 mm.

packing fraction the avalanche in the pentagonal side of the
drum (z > 0) is slower than in the pentagram-shaped section
(z < 0), large particles can move to the empty side since they
are faster and there is space available for them. Once the
two avalanches reach the same angle there is no more flux
of particles. This process is repeated five times per revolution
[see Fig. 7(a)]. When the big particles drop from the run-out
leg of the pentagram to the pentagon, the center of mass of
the large particles shifts toward the pentagon. However, the
process is not completely irreversible; some, but fewer, large
particles go again to the pentagram side as the drum rotates.
In this way, an oscillating movement of the center of mass of
each species is observed: big particles fall to the pentagonal
side when the run-out leg is empty; once the flow covers
the run-out leg some large particles return to the pentagram
side. By this mechanism, there is a net transport of large
particles to the convex (pentagon) side of the drum. Similarly,
since the average volume fraction within the system remains
constant, conservation of mass requires an opposing flow of
small particles into the drum’s concave region, leading to a
preponderance of small particles in this region. This migration
of particles will, naturally, result in a predominance of
smaller particles in the concave section, and hence a relatively
increased angle of repose in this region [51,52]. The slope
produced between the two adjacent sections (clearly visible in
Fig. 6) will lead to a cascade of larger particles from still deeper
within the concave (pentagram) region into the convex region,
thus further exacerbating the observed segregation. Since
the above-described mechanism relies on radial segregation,
which is typically achieved in O(1) rotation [2], it is orders of
magnitude faster than the axial segregation previously reported
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(a)

(b) (d)

(c)

FIG. 6. (Color online) Time-averaged velocity fields for an ex-
perimental pentagram-pentagon system of width �z = 24 mm.
Panels (a) and (b) show, for the convex (pentagon) and concave
(pentagram) regions, respectively, the radial velocities of particles in
the cartesian x-y plane, where the x and y directions lie perpendicular
to the axial z direction in the vertical (y) and horizontal (x) planes.
Differences in angle between the free surfaces of the bed for the
two regions are emphasized through the inclusion of a red dashed
line corresponding to the concave region, and a blue dotted line
representing the convex region. Panels (c) and (d) show depth-
averaged particle flow in the z-y plane for small [panel (c)] and
large [panel (d)] particles belonging to the same system. In all images
presented, the direction and magnitude of the average particle velocity
in a given region of the experimental volume are represented by the
orientation and length of the arrows displayed. As with previous
images, z < 0 corresponds to the drum’s concave section and z > 0
corresponds to the convex region.

for axially homogeneous drums where banding appears only
after O(100) revolutions [10].

Experimental evidence of the mechanism proposed above
may be seen in Fig. 6. From these images it is clear that,
as expected, there exists a difference in the level and angle of
inclination of the bed’s surface between the convex (pentagon)
and concave (pentagram) sides of the drum. Moreover, the
velocity fields in Figs. 6(a) and 6(b) demonstrate the avalanch-
ing region on the bed’s concave side to be considerably
faster than for the convex half, again in agreement with
our hypothesis. Figures 6(c) and 6(d) show two-dimensional,
depth-averaged velocity fields for the z-y plane, where y

denotes a vertical axis perpendicular to the axial (z) axis.
In Fig. 6(d), which corresponds to the time-averaged motion
of the large particles in the system, we see evidence of the
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FIG. 7. (Color online) Top: evolution of the displacement of
the center of mass for simulations at F = 50% in a pentagram-
pentagon geometry of width �z = 22 mm. The plot is produced
by determining, for each individual snapshot, the center of mass for
each species as

∑
mizi∑
mi

, where mi and zi are, respectively, the mass
and vertical position of the ith particle within the system. Bottom:
Number ratio (R = Nbig/Nsmall) in the pentagonal side of the drum
(z > 0) versus the filling fraction normalized by the initial conditions.
Data is averaged in ten snapshots during two turns of the drum. Error
bars are the standard deviation of these measurements.

recirculatory transport discussed above, and whose effect on
the system’s mass center is shown in Fig. 7 (top panel). Note
that such motion is seemingly absent for the small particles
in the same system [Fig. 6(c)]. It should also be noted that
while the circulatory motion of large particles is clearly visible
from the time-averaged velocity vector fields presented, these
fields cannot be expected to show the net migration of large
(small) particles to the convex (concave) regions of the drum.
The reasoning for this is that PEPT data is, in order to
achieve good statistics, acquired from the steady-state of the
system over a long duration. As such, the net flux of particles
over this timescale will, naturally, be zero. In other words,
while PEPT allows us to visualize the repeated, circulatory
motion described above, which forms the driving mechanism
underlying the observed segregation, the evolving segregation
itself may only be observed from simulation.

In addition to the mechanism described above, there exists
another possible driving force behind the segregation observed
within the system. It was noted by Fan and Hill [53] that,
for a circular split-bottom cell geometry, the presence of
convective motion acted to advect large particles from upper
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regions of their system downwards along one sidewall, and
similarly carry small particles upwards along the opposing
sidewall, thus creating a horizontal gradient in φS,L. If the
velocity field observed in Fig. 6(d) is instead interpreted to
be evidence of a convection roll, it is possible that a similar
process is acting within our own system. However, the authors
doubt that such convective motion is in fact the origin of the
behaviors observed here. First, unlike the system of Ref. [53],
there exists no clear mechanism to explain the presence of
convection within our system—indeed, the observed flow
in our system more closely resembles that of the parallel
split-bottom geometry for which Fan and Hill do not observe
convection. Moreover, where Fan and Hill observe strong
convective motion for both small and large species, the same
cannot be said for our system [cf. Figs. 6(c) and 6(d)], once
more implying that the circulatory motion observed does not
correspond to convection.

A relevant test for our main hypothesis regarding the origin
of the observed axial segregation, which, as stated above, is
thought to be coupled to the existence of radial segregation,
would be to see if the process persists in the absence of a clearly
defined radial core. The use of noncircular systems such as ours
have been repeatedly shown to induce chaotic behavior in the
granular beds housed within [2,16,27,54] and thus to produce
a variety of strongly differing radial segregation patterns. It
is known [27] that certain combinations of geometry, filling
fraction and rotation rate may indeed eliminate the simple
radial core typically observed in rotated systems, meaning
that such a test is certainly feasible, and, as such, is a worthy
subject for future research.

Results obtained over a variety of differing filling fractions
demonstrate that the final degree of segregation is not equal
for every filling fraction, F . Figure 7 (bottom panel) shows
the change in the number of large particles in the pentagonal
side of the drum for different filling fractions. If F is too
low, the avalanche on the pentagram side of the drum arrives
concurrently with the one in the pentagon and axial segregation
is slower. It should be noted that the first local maxima
observed on the kinetic energy for the pentagram (Fig. 2)
are the reason for these nonsimultaneous avalanches. One
could argue that excluded volume effects make the small
particles go preferably to the pentagram side since the big
particles do not fit into the legs so easily, as reported in
Ref. [47]. However, this mechanism alone does not explain
the maximum in segregation at ∼50% filling fraction. The
observed axial segregation is dependent on both the different
flow height and the nonconcurrent avalanches in either side of
the drum—without the presence of both of these factors, any
segregation observed would occur on a considerably longer
timescale. Each side of the drum has its own dynamics and
geometry and when bringing a concave and convex section
together, these interact to create a defined, rapidly achieved,
and stable segregation pattern.

The stability of the segregation pattern produced by the
mechanism described here is particularly notable, as axial
segregation in circular geometries is typically observed to
undergo a process of “coarsening” [55], whereby an initial,
large number of thin, metastable bands gradually merge over
a long period of time, eventually forming fewer, wider bands.
In our system, the final, steady state is achieved without the

intermediate steps, making our process not only quicker, but
also more predictable and, importantly, reproducible.

It is finally worth noting the range of drum widths, �z, for
which results similar to those described in this paper may be
expected. The simple, two-band segregation which forms the
focus of the present work is found to persist for widths in the
range 10 � �z � 54 mm. In fact, across this range, for a fixed
filling fraction, rotation rate, and particle volume ratio, the
strength of the observed segregation is found to be invariant
of �z, at least to within experimental error. The timescale
on which the segregation occurs, meanwhile, is found to
remain of the same order of magnitude (i.e., considerably faster
than conventional axial segregation), although wider systems
seemingly take slightly longer to achieve their equilibrium
distribution; this small increase can likely be attributed to
the greater number of particles that must migrate across the
system, and the increased average distance over which these
migrations occur. It is important to reiterate, however, that
the difference in segregation rate is small [O(1) revolution
slower between the fastest and slowest cases]; i.e., the observed
segregation is still orders of magnitude faster than conventional
axial segregation.

For �z > 54 mm, the situation becomes significantly more
complicated, as additional, competing segregative mecha-
nisms emerge and, for �z � 54, become dominant. Due to the
complex phenomena observed within large �z systems (and
the fact that such systems are external to the main aims of the
current study) we will not attempt to provide a full explanation
of their behaviors here. However, certain key features of these
wider systems are directly relevant to this work. First, the
mechanism described in this paper is seemingly present for
all drum lengths, �z, although its effects are localized to
the convex-concave (pentagon-pentagram) interface for wider
systems.

Finally, preliminary results strongly suggest that the use
of alternating concave and convex sections may allow the
separation of arbitrarily wide systems to be controlled and
accelerated. These matters will be discussed in detail in future
publications.

V. CONCLUSION

In this paper we have studied granular flows inside the
simplest possible regular concave drum, that is, a penta-
gramal geometry. Different regimes are found for a fixed
angular velocity depending on the filling fraction. From
intermittent avalanching (low filling fraction) to geometrical
rearrangements (high filling) passing by continuous flow
(intermediate filling). These flow patterns differ qualitatively
from those observed in convex drums. We have used this
insight to control the segregation of a binary granular system,
achieving geometrically induced axial segregation orders of
magnitude faster than previously reported. Moreover, we
demonstrate the ability to deliberately and reliably induce a
stable and predictable segregation pattern in a rotating granular
system for a wide range of parameters, including the case of
short drums, where strong axial separation is typically not
observed.

The practical importance of this discovery can be far-
reaching in industries ranging from pharmaceuticals to mining.
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There exist several potential applications for our discovery,
including, but by no means limited to, rotating kilns—allowing
differential residence times depending on the size of the
particles—and milling devices—whereby creating a sandwich
of concave sections with a convex shape in the middle,
large particles can be conducted into the middle of the mill,
thus increasing efficiency by keeping the grinders and larger
particles in the mill while moving the fines to the ends, where
they could be removed. Our findings may even be used to
provide a more efficient and, importantly, less environmentally
damaging [56] manner by which to separate valuable materials
from electronic waste—a process that is heavily reliant on
strong segregation [57,58].

The mechanisms underlying the segregation observed
are seemingly distinct from the relatively well-understood
processes that may be modeled using continuum frameworks

such as kinetic-sieving-style models [59–61] and adaptations
such as the shear-induced segregation model [62,63]. The
introduction of this mechanism provides scope for future work
from a continuum-modeling perspective.
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