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Flow of wet granular materials: A numerical study
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We simulate dense assemblies of frictional spherical grains in steady shear flow under controlled normal stress
P in the presence of a small amount of an interstitial liquid, which gives rise to capillary menisci, assumed
isolated (pendular regime), and attractive forces, which are hysteretic: Menisci form at contact, but do not
break until grains are separated by a finite rupture distance. The system behavior depends on two dimensionless
control parameters, inertial number I and reduced pressure P* = a P /(7 T"), comparing confining forces ~a*P
to meniscus tensile strength Fy = 7w ["a, for grains of diameter a joined by menisci with surface tension I". We
pay special attention to the quasistatic limit of slow flow and observe systematic, enduring strain localization
in some of the cohesion-dominated (P* ~ 0.1) systems. Homogeneous steady flows are characterized by the
dependence of internal friction coefficient w* and solid fraction ® on / and P*. We also record normal stress
differences, fairly small but not negligible and increasing for decreasing P*. The system rheology is moderately
sensitive to saturation within the pendular regime, but would be different in the absence of capillary hysteresis.
Capillary forces have a significant effect on the macroscopic behavior of the system, up to P* values of several
units, especially for longer force ranges associated with larger menisci. The concept of effective pressure may be
used to predict an order of magnitude for the strong increase of u* as P* decreases but such a crude approach is
unable to account for the complex structural changes induced by capillary cohesion, with a significant decrease
of & and different agglomeration states and anisotropic fabric. Likewise, the Mohr-Coulomb criterion for
pressure-dependent critical states is, at best, an approximation valid within a restricted range of pressures, with
P* > 1. Atsmall enough P*, large clusters of interacting grains form in slow flows, in which liquid bonds survive
shear strains of several units. This affects the anisotropies associated with different interactions and the shape
of function u*(7), which departs more slowly from its quasistatic limit than in cohesionless systems (possibly

explaining the shear banding tendency).
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I. INTRODUCTION

Over the past decade, constitutive modeling of dense
granular flows has been proposed [1,2] in terms of internal
friction laws directly applying to normal stress-controlled
steady shear flows, for which the internal state of the material
is characterized by a single dimensionless number, the inertial
parameter / [3]. Number / might be regarded as a reduced,
dimensionless form of shear rate y = dv;/dx;, related to the

stress o, normal to flow direction x as I = y+/ (#122, with m
denoting the particle mass and a its diameter. The constitutive
law relating the effective internal friction coefficient, w*,
defined as a stress ratio, u* = o12/02, to inertial number
I should be supplemented with a similar relation of solid
fraction @ to I [1,4-6]. I characterizes dynamical effects,
and the quasistatic limit is that of vanishing /. In this limit
of I — 0, the material is in the so-called critical state of soil
mechanics [7], i.e., quasistatic plastic shear flow at constant
solid fraction @, under constant stresses and effective internal
friction p}. In various experimental and numerical studies,
the constitutive law, suitably generalized, was shown to apply
to different grain shapes and flow geometries [8—10]. On
regarding inertial number / as the sole state parameter in a
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granular material in shear flow, it is implicitly assumed that
small contact deflections due to the finite elastic stiffness of the
grains are irrelevant; this is the rigid limit. A major advantage
of the “w*(I) and ®(I)” approach is its ability to deal with both
the quasistatic limit and the rigid limit without any divergence
or singularity.

In the presence of attractive forces between neighboring
grains, contacts are endowed with a finite tensile strength Fp,
whence one gets a new dimensionless parameter, P*, areduced
pressure comparing the applied confining stress P (say, the
controlled normal stress value o,, in shear flow) to force scale
Fy, as P* = “ZF% (similarly a “cohesion number” n = 1/P*
was defined in Ref. [11]). Under small P*, cohesion stabilizes
loose structures [12,13], which collapse upon increasing
P* [14,15]. In steady shear flow, generalizing rheological laws
to the cohesive case involves expressing the internal friction
coefficient and density as functions of both numbers / and P*
or n [16].

In wet granular materials cohesion arises from capillary
forces due to small liquid bridges joining particles touching
or in close vicinity to each other [17,18]. The effect of such
forces has been investigated in quasistatic deformation [19-21]
and some of its consequences in terms of microstructure were
discussed [22]. In the pendular regime of saturation [17,18]
those bridges are small enough and do not merge, so that
capillary forces are pairwise additive. Those attractive forces
act as a source of cohesion and are also characterized by a
small range and some dependence on intergranular distance,
as a liquid meniscus might join grains that are not in
contact.
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A traditional approach of partially saturated granular
materials in geomechanics [23], which has been investigated
in recent studies by “discrete element” simulation methods
(DEM) [24,25], is to resort to the concept of effective stresses,
or stresses such that, if applied to the dry material, would
produce the same deformation and plastic flow of the granular
skeleton as the ones observed in the wet material. Proposed
definitions of such an effective stress tensor in the unsaturated
case generalize the Terzaghi principle [26] applying to satu-
rated media and involve a correction of the average pressure
related to saturation and capillary pressure [27].

On the macroscopic scale, the effect of adhesive forces are
sometimes described in the quasistatic limit of slow flow by
the phenomenological Mohr-Coulomb law [7,28,29],

UIZ =C+MTGZZ’ (1)

characterized by macroscopic cohesion ¢ and internal friction
coefficient pu}.

The present paper investigates the constitutive laws apply-
ing to wet model granular materials in the pendular regime and
discusses the influence of capillary effects on macroscopic
behavior and microstructure. Similarly to Refs. [11,16], the
rheology and micromechanical aspects are studied for varying
P* and [ values (with special emphasis on the quasistatic limit
of I — 0). As in dry granular systems and in previous studies
on two-dimensional (2D) cohesive materials the material
rheology is described in terms of apparent friction coefficient
(stress ratio) n* and solid fraction @ as functions of I and P*,
and the applicability of a Mohr-Coulomb relation is tested.
Rheological and microstructural features, such as normal stress
differences and formation of large clusters bonded by liquid
bridges, are also investigated.

In the following, we first introduce (Sec. IT) the microscopic
ingredients of the model material and then report, in Sec. III,
on the conditions in which homogeneous steady states are
observed in shear flows, enabling material constitutive laws
to be deduced. Such laws are measured, depending on the
relevant dimensionless parameters and on some features of
the microscopic model, in Sec. IV. Next, in Sec. V, we
investigate the role of capillary forces and distant interactions
in the material rheology and revisit the traditional concepts of
effective stress and Mohr-Coulomb cohesion. Additional stud-
ies of microstructural and micromechanical aspects follow:
force distributions (Sec. VI), agglomeration effects (Sec. VII),
structural anisotropy (Sec. VIII). The results are discussed and
put in perspective in the final, conclusive Sec. IX.

II. MODEL MATERIAL AND SIMULATION SETUP

We consider a granular assembly composed of N equal-
sized spherical beads of diameter a, made of a material with
Young modulus E and Poisson ratio v. The contacts are
frictional, satisfying Coulomb’s law with friction coefficient
. The granular flow is set by imposing a uniform shear
rate y to a rectangular parallelipipedic cell with edge lengths
(La)1<a<3- In order to avoid wall effects, periodic boundary
conditions are used in all three directions. The periodicity,
in the direction of the flow gradient (direction 2), is applied
with the Lees-Edwards procedure [30] and in the two other
directions the boundary condition is simple periodic. The
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system size L, is allowed to fluctuate in order to keep normal
stress op, constant, equal to a prescribed value P, while L
and L, are fixed [5].

A. Force model

Elastic and frictional forces are jointly implemented in
contacts as in Ref. [31], in which a simplified Hertz-Mindlin-
Deresiewicz force model is used for the elastoplastic contact
behavior. This model combines the normal Hertz force Fl,
depending on contact deflection £, as

Fy = E_ﬁ W32, )
3

in which we introduced notation E = E/(1 —v?), with a
tangential elastic force Fr, to be evaluated incrementally
in each time step of the simulation. The simplification of
tangential elasticity adopted is that of Ref. [31], involving
a constant ratio (2 — 2v)/(2 — v) of tangential (K7) to normal
(Ky) stiffnesses in contacts, both depending on Fy, as,
from (2), one has Ky = % o F'3. Caution should be
exercised to avoid spurious creation of elastic energy with
such laws, and K7 should be suitably rescaled in cases of
decreasing normal force and deflection. For the details of the
elastic model, for the enforcement of the Coulomb condition
IFr|l < nwFy, and for the objective implementation of the
force law, with due account of all possible motions of a pair
of contacting grains, the reader is referred to [31].

An estimate of the typical contact deflection under con-
fining stress P defines a dimensionless parameter, stiffness
number « [32], such that /a o k~'. For a Hertzian contact,

one may use [31]
_ (£ v (3)
K = 7 .

Two values of x, 8400 and 39000, used in this study,
respectively correspond to glass beads with E = 70 GPa and
v = 0.3 under pressures 100 and 10 kPa, as in Ref. [5]. Finally,
the force model of [31] which is used here may also comprise
a viscous damping term opposing normal relative motion
of contacting grains, chosen to correspond to a restitution
coefficient close to zero in normal collisions. We do not
comment this feature, as it was shown [1,5] to have very little
influence in the slow shear flows of the present study.

The presence of a small amount of an interstitial wetting
liquid introduces additional capillary forces, transmitted be-
tween contacting or neighboring grains by a liquid bridge, or
meniscus, as sketched in Fig. 1.

We consider a perfectly wetting liquid, with contact angle
0 equal to zero. As in Ref. [17], we assume that the menisci
only form for touching particles, but break for gaps larger than
a certain rupture distance Dy, as observed in [33]. Dy relates
to meniscus volume V as Dy ~ V173 [34-37].

For the attractive force between particles separated by
distance h < Dy, we adopt the Maugis approximation [38],
which is appropriate for small enough meniscus volume, for
its simplicity. The maximum attractive force (tensile strength)
is reached for contacting particles and is equal, according to
this model, to Fp = wal' (" is the liquid surface tension)
independently of the meniscus volume. The capillary force
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FIG. 1. (Color online) A meniscus between two spherical grains
of diameter ¢ = 2R, with distance & between solid surfaces, filling
angle ¢, contact angle 6.

varies with the distance & between particle surfaces as

—F(), h < 05
1
Feap _ —Fo[l Ry ] 0<h<Do (4
0, h > Dy,

where h < 0 corresponds to an elastic deflection of the
particles in contact. This formula is a simpler, analytical form
of the toroidal approximation with the “gorge method” [34] for
the capillary force in a meniscus, which describes the meniscus
as limited by circular arcs in a plane containing the two sphere
centers.

An alternative form was given by Willett et al. [35], while
Soulié et al. [20,39,40] proposed a parametrized numerical
solution. Figure 2 compares functions FP(h) according to
Maugis and to Soulié ef al. Some comparisons between several
formulas and experiments are given in [36].

B. Saturation range of pendular state

The morphology of partially saturated granular materials
depends on the liquid content [18,41]. The present study,
like a number of previous ones [19,21,40], is restricted to the
pendular state of low saturations, in which the wetting liquid is
confined in bonds or menisci joining contacting grains. Liquid
saturation S is defined as the ratio of liquid volume €2; to
interstitial volume €2,. It is related to meniscus volume V,
solid fraction ® = 1 — 2,/ €2, and wet coordination number

1 \ \

Maugis, V/a3210:2

Soulie, V/a’=107 -----

~~,

FIG. 2. (Color online) Force law FP(h), for two different
meniscus volumes, according to the Maugis model and to the Soulié
formula.
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z (the average number of liquid bonds on one grain) as

Q 3z @V
== (5)

S = .
Q, nl1-®ad

In our study, we fix the value of meniscus volume V. Such
a choice does not conserve the total liquid volume, which is
proportional to the varying coordination number z of liquid
bonds. Its consequences have to be assessed, and we check
that the results are not significantly affected within the range
of investigated material states.

The pendular state to which our model applies is only
relevant in some limited saturation range. On the one hand,
a minimum liquid volume is necessary for menisci to form
at contacts, as the liquid will first cover the grain surface
asperities. This minimum saturation Sy,;, for bridges to form
might be roughly estimated upon introducing a roughness scale
8, assuming a layer of thickness & covers the surface of the
grains, as

6Ps

Smin = T i
(1 — d)a

(6)
For ® = 0.5 and § ~ 10~*a the minimum value for saturation
is slightly below 1073, comparable to experimental observa-
tions [17]. Using (5) and typical values for z (5 or 6) and ®
(0.5 or 0.6), this sets a lower bound to meniscus volume, of
order 10~*a?>. On the other hand, the upper saturation limit for
the pendular state corresponds to the merging of the menisci
pertaining to the same grain, which, considering a triangle
of spherical grains in mutual contact, happens as soon as
filling angle ¢ (see Fig. 1) reaches 77 /6. The analytical formula
for V [34], within the toroidal approximation, as a function
of ¢ (setting h = 0, and § = 0), then yields a% ~ 8 x 1073,
corresponding, using (5), to a maximum saturation between
0.05 and 0.1, similar to experimental observations [17,18].

C. Choice of parameters

Table I gives the values of parameters employed in our
simulations. While stiffness number « and friction coefficient
w are kept fixed, reduced pressure varies from the dry case
P* = 0o down to the lowest value 0.1, for which cohesive
effects are strong, while the investigated range of I values
allows us to approach the quasistatic limit with some accuracy,
as well as assess the effects of inertia in faster flows (although
rapid, strongly agitated flow is not studied here). The meniscus

TABLE I. List of parameter values: N particles of diameter a,
interacting with friction coefficient p, forming menisci of volume
V at contacts, are subjected to normal stress-controlled shear flow
for which inertial number /, reduced pressure P* (evaluated with
normal stress 0,, ), and stiffness parameter « take values as prescribed.
Attractive forces fall to zero at distance Dy = V1/3,

K 8400 (occasionally 39 000)

I 0.3

N 4000 (8000)

I From 10~ to 0.562 by factors of +/10
P* 0.1;0.436; 1; 2; 5; 10; 00

V/a? 1073 (1072, 5% 1073; 2% 1074; 107%)
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volume is chosen as V = 1073a? in most simulations. A few
tests are carried out with different values (as given within
brackets) of the number of particles, the stiffness number,
and the preset meniscus volume. Taking I' = 7.3x1072
Jm™? for water and ¢ = 0.1 mm, P* =1 corresponds to
0, = (wI'/a) >~ 2.3 kPa, the pressure, under gravity, below
a granular layer with a thickness of a few tens of centimeters.
In our study, stiffness number « is chosen so as to approach
the limit of rigid grains (see, e.g., Ref. [42] for the effect of
softer contacts).

III. HOMOGENEITY AND STATIONARITY
A. Steady states and macroscopic measurements

Starting from a dense initial configuration, with solid frac-
tion close to the random close packing value (®rcp > 0.64),
we impose a constant shear rate y and wait until a steady state
is reached before measuring constitutive relations for stresses
and solid fraction, which are identified as averages over time
series. Stresses are measured using the standard formula for
all coordinate index pairs «, 8,

1
Oup = a vaf‘vi —i—ZFi‘;rg , 7

i<j

involving a kinetic contribution with a sum over grains i, of
velocities v;, and a sum over all pairs with center-to-center
vector r;;, interacting with force Fj;, © denoting the sample
volume.

The evolution of solid fraction ® with strain y is shown in
Fig. 3: ® decreases until it approaches its steady state value
for y > 5inthis case. Figure 4 shows the evolutions of o,, and
o,, with y. (Note that o, is negative with our sign convention).
We thus check that normal stress o,, is well controlled since
its fluctuations about its prescribed value P are very small.
Shear stress o,, exhibits a fast increase and an overshoot at
small strain and then decreases, approaching its steady state
value, after a few strain units, over a strain interval similar to
the one corresponding to the transient evolution of . Stresses
and solid fraction fluctuate in the steady state, and a careful
evaluation of measurement errors on their time averages is

0.57

0.565 1
0.56
]
0.555

0.55

0.545 : : :

FIG. 3. (Color online) Solid fraction & versus shear strain y.
Time series is obtained with P* =1, I = 0.1, and N = 4000 when
the rupture distance is Dy = 0.1.
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0.92

0 5 10 v 15 20
FIG. 4. (Color online) Shear stress |o,,| (lower curve, red, left
axis) and normal stress o, (upper curve, blue, right axis) versus shear
strain y. Note the different scales on left and right axes. Time series
obtained with P* =1, I = 0.1, and N = 4000 when the rupture
distance is Dy = 0.1.

required (especially for shear stress, for which fluctuation
levels reaching about 20% of the mean value are apparent
in the example of Fig. 4). We use the blocking technique of
Ref. [43] to estimate error bars on averages over finite time
series.

B. Shear localization
1. Velocity profile

Instantaneous velocity profiles v*[= (v,(x2))s;] are com-
puted on averaging particle velocities along the mean flow
direction within slices of thickness 0.01L,. We observe a
strong shear strain localization for the smallest value of the
reduced pressure, P* = 0.1, for both slow and fast flows. As
represented in Fig. 5(a), the velocity gradient, initially uniform,
gradually concentrates within a shear band of thickness H <
3a, which may move vertically but persists for all values of
strain y > 250. Localization tendencies in slow flow of dry
granular materials are sometimes reported [1,5,44], although,
for uniform strain rates, usually not observed as an enduring,
systematic phenomenon. In the present study persistent local-
ization profiles are also detected in nearly quasistatic flows,
with a shear band thickness between 5a and 10a. However, for
the intermediate values of the inertial number (1072 < I <
10~") this effect diminishes and strongly localized profiles
are less frequent. Measurements of constitutive laws are then
limited to intervals of time for which the velocity profile is
devoid of shear banding (a criterion is specified below).

For all P* > 0.436, localization is not frequently observed
and remains temporary, even in the quasistatic limit. The
velocity profiles for P* = 0.436 and I = 1073, as represented
in Fig. 5(b), are nearly linear and on average the flow is
homogeneous.

2. Local solid fraction

Similarly, we record solid fraction profiles on averaging
the solid contents of slices orthogonal to the velocity gradient
(splitting the volume of one grain between different slices if
necessary). Figure 6 shows the velocity (v*) and solid fraction
(®*) profiles for two different values of shear strain, y = 1
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(a)
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Vi

0.005 0.01

FIG. 5. (Color online) Velocity profile for P* = 0.1, I = 0.178
(a) and for P* = 0.436, I = 1073 (b) at different shear strain values.

and y = 352, which belong to the simulation of Fig. 5(a). We
see that in the homogeneous flow the distribution of mass in
the system is almost uniform, but when the localization occurs
®° strongly decreases within the shear bands to a value below
0.2. It slightly increases outside the shear band, especially
in its vicinity. A slighter decrease of density within thicker
shear bands in quasistatic flow is observed. For instance, when
I = 1073, ®° decreases from 0.47 to about 0.4 inside the shear
band of thickness H ~ 7a.

3. Deviation from linear profile

The deviation from the linear profile is characterized by
parameter A:

12 L,/2 -
A@) = W ﬁL /z[vl (x2) — yx2]7dxs. 3

2

2
The normalization by % ensures a maximum value A =1
in the case of a perfect localization within a plane, as if two
solid blocks were sliding on each other. As defined in Eq. (8),
parameter A is not affected by a vertical shift in the velocity
profile, due to the periodic boundary condition in direction
Xy. If the strain rate is homogeneous within a shear band of
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FIG. 6. (Color online) Velocity profiles [lower axis, (red) dotted
curve] and local densities of grains [upper axis, (blue) continuous
curve] for two configurations with shear strain y = 20 (a) and y =
352 (b) when P* = 0.1 and / = 0.178. The average solid fraction,
(®*), is shown as a vertical (blue) dashed line, with value of 0.44 in
(a) and 0.49 in (b).

thickness H and vanishes outside, one observes

H 2
A=<1—L—). ©)

2

Figure 7 is the plot of A as a function of strain y corresponding
to the same simulation as in Fig. 5(a). It initially shows small
fluctuations near zero and suddenly increases near y = 250
when the velocity gradient localizes in a shear band.

4. Occurrence of shear banding

Large values A > 0.8 for P* = 0.1 in the faster flows (I >
0.17) indicate strong localization in this range. At I = 0.1,
A drops down to small values, typically below 0.1, but in
the quasistatic limit it increases again: At I = 1072 it mainly
fluctuates between 0.4 and 0.8. For P* > 0.436 the shear rate
is much more homogeneous. A almost vanishes in faster flows,
increases somewhat in the quasistatic limit, but rarely exceeds
0.2, even for the smallest inertial numbers.
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FIG. 7. (Color online) Deviation from linear profile, A(y),
versus strain y for P* = 0.1, ] = 0.178.

Simulations carried out with a larger stiffness number
(k =39 000) for the two smallest values of P* and for all values
of I in Table I do not record any significant influence of x on
the homogeneity of the flow. The influence of the sample size
is studied by simulating some samples with height L, twice as
large as in the standard sample, containing 8000 grains, with
P* = 0.436 and different values of /. The size dependence in
formula (9) implies then larger values of A should the shear
strain tend to localize, temporarily or permanently, within a
region of fixed thickness. In our tall, 8000 grain systems, as the
quasistatic limit is approached, A reaches peak values above
0.4 but continuously evolves and no persistent localization
pattern is detected.

Consequently, our results reveal a strong localization
tendency at P* = 0.1 for both small (below 0.03) and large
(above 0.3) values of the inertial number. We performed some
measurements at P* = 0.1 for intermediate values of I, over
strain intervals for which values of inhomogeneity parameter
A averaged below 0.1, as in the first part of the graph of Fig. 7.
The influence of cohesive forces on shear band widths was
also reported (in a different context of “forced localization™)
in Ref. [45].

A systematic fluid depletion in shear bands was reported
in [46]; this requires a model for liquid migration between
menisci, which we did not introduce in the present study. Leav-
ing detailed investigations of flow localization phenomena for
future works, we limited here our results to the issue of whether
shear banding occurs for given P* and I values. The remainder
of the paper deals with homogeneous flows, for the values of
P* for which no evidence of enduring localization effects is
observed.

IV. MACROSCOPIC BEHAVIOR AND
CONSTITUTIVE RELATIONS

We now deduce macroscopic constitutive relations from the
simulations of homogeneous flows.

A. Shear stress and solid fraction

Friction coefficient * and solid fraction ®, depending on
I for various P* values, are shown in Fig. 8 for the parameter
choice adopted in most simulations. We fit the following
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FIG. 8. (Color online) Macroscopic friction coefficient u* (a)
and solid fraction @ (b) versus inertial number / for different values
of reduced pressure P* (Dy = 0.1a = V'/3).

power law functions to those data, denoting as ug and &g
the quasistatic limits (critical state) values of the macroscopic
friction coefficient and of the solid fraction:

W= pg+cl®,
o' =) el (10)

Tables II and III give the values of the fitting parameters
introduced in Egs. (10). While the increase of u* and
the decrease of ® as functions of I are familiar trends,
similar to observations made with dry grains [1,4—6], some

TABLE II. Parameters of the fit of function p*(1) by Eq. (10) for
different values of P*.

pr e o c

0.436 0.867 & 0.003 0.70 £ 0.05 0.30£0.01
1 0.607 & 0.003 0.76 £ 0.05 0.37+0.02
2 0.473 £ 0.007 0.72 £ 0.06 0.424+0.02
5 0.387 4 0.006 0.70 £ 0.05 0.46 £+ 0.02
10 0.366 & 0.004 0.74 £0.04 0.48 +0.02
00 0.332 +0.004 0.71 £0.03 0.50+0.01
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TABLE III. Parameters of the fit of function ®(/) by Eq. (10) for
different values of P*.

P* D, v e

0.4360 0.5243+2.10~* 1.73+£0.05 0.497+£0.017
1 0.5559+10~* 1.34£0.012 0.512+0.005
2 0.5726 £ 107 1.21 £0.01 0.547 +0.003
5 0.5851+10~* 1.12+£0.01 0.580+0.003
10 0.5900+ 10~ 1.09 £0.01 0.594 +0.004
o0 0.5970+ 10~ 0.96 £0.015 0.562 +0.008

other features are remarkable. The quasistatic limit is quite
nearly approached for / < 0.01 and is strongly influenced by
capillary forces. Internal friction coefficient p*, compared to
the dry, cohesionless value (0.332 £ 0.004), already shows a
notable increase at P* = 10, reaching values as high as 0.6
for P* =1 (i.e., as cohesive and confining forces are of the
same order), and nearly 0.9 for P* = 0.436, about 2.3 times the
cohesionless value. Our partial results for P* = 0.1, measured
in reasonably homogeneous flows (A < 0.1), indicate pu* ~
1.6 for I = 1072, Meanwhile, the material becomes looser,
with ® reaching values that cannot be observed without
cohesion in quasistatic conditions.

Such a strong influence of cohesive (capillary) forces
contrasts with the results of Refs. [11,16], in which similar
deviations between cohesionless and cohesive systems are not
observed until P* decreases to much lower values, of order
0.01. Such 2D results were, however, obtained with a different
attractive force law of vanishing range beyond contact.

B. Normal stress differences

The first and the second normal stress differences are
defined as

Ny =0, —0,,

Ny, =0, —0,. (11)

Note that those definitions coincide with the one used in
complex fluid or suspension rheology [47], but that we use the
opposite sign convention for normal stresses. Signs of N; and
N, should thus be reversed for comparisons to this literature.

Most often, considering dense flows of dry granular
materials, those differences, deemed small, are ignored or
neglected [29]. We find it worthwhile to record their values
nevertheless, since, as shown in Fig. 9, where N; and N,
are plotted versus / for different values of P*, they are
strongly influenced by capillary forces. The first normal stress
difference is very small in the quasistatic limit and for large
values of the reduced pressure. It increases with I and for
decreasing values of P*, going through a transition from
small negative values to positive values, between / = 0.01 and
I = 0.1, for P* > 5. N; variations with I are nearly parallel
for different P* values. The second normal stress difference
N, also increases for faster flows and for decreasing reduced
pressure P*. In the quasistatic limit, it is considerably larger
than N;.
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(a)

0.32

0.24

0.3

0.1 S
0.001 001 | ot 1

FIG. 9. (Color online) First (a) and second (b) normal stress
differences as functions of I for different P* values. The same
symbols and color codes apply to both figures. Both N; and N,
decrease as P* increases. Ny, for large P*, changes sign as a function
of I [N, = 0 is visualized by the thin horizontal line in graph (a)].

C. Sensitivity to capillary force model and saturation
1. Capillary force model

We tested the effect of the capillary force model by
replacing the Maugis approximation, Eq. (4), with the more
accurate parametrized capillary force law proposed by Soulié
et al. [20,48] for V = 1073a>. Although the difference in the
force models is appreciable on a plot of F* versus h (with
the Soulié force about 10% smaller at contact; see Fig. 2), the
macroscopic results are very close: The difference in stress
ratio u* and solid fraction & increases with I but does not
exceed 2%.

2. Meniscus volume and force range

Changing the meniscus volume amounts to changing the
distance at which the attractive force vanishes, rupture distance
Dy = V73, as well as the gap dependence of the capillary force
F*®(h) (Fig. 2). Figure 10 shows internal friction coefficient
w*(I) to be sensitive to meniscus volume for the lowest P*
values. For a meniscus volume of 10~%a3, as compared to the
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FIG. 10. (Color online) Macroscopic friction coefficient u* (a)
and solid fraction @ (b) versus inertial number / for different values
of P* and meniscus volume V (with Dy = V1/3).

standard value 1073a>, u* decreases by about 20%. Actually,
for such a small meniscus volume, the decay of the attractive
force (Fig. 2) is so fast that, as we checked, results are hardly
changed on setting the meniscus rupture distance to zero. The
effect on the solid fraction ® remains small.

To explore the rheological properties throughout the pen-
dular regime, we varied the meniscus volume and recorded the
solid fraction and the friction coefficient in the quasistatic limit
for the smallest studied P* value, as indicated in Table IV,
thus fully covering the corresponding saturation range (see
Sec. II B). Saturation S, by relation (5), is related to the wet

TABLE 1V. Effect of meniscus volume or saturation level on
different parameters for I = 1072 and P* = 0.436.

V/a3 Sw Z @ /'L*

1072 7.137x1072 6.863 0.520 1.071
5x1073 3.418x1072 6.556 0.522 1.003
1073 6.305x1073 5.970 0.524 0.875
2x1074 1.075x1073 5.534 0.525 0.787
1076 5.539x10°¢ 4.836 0.530 0.661

PHYSICAL REVIEW E 92, 022201 (2015)

coordination number, z, whose values are also provided in
the table. While the change in solid fraction does not exceed
0.01, the variation of the macroscopic friction coefficient
is about 20% in the pendular regime (up to 50% upon
extending the numerical study to unrealistically small menisci,
V = 107%a%). We therefore predict a moderate variation of
rheological properties within the simulated pendular regime
of the partially saturated granular assembly. Returning to the
basic assumptions of our model, one of its drawbacks is that
it ignores liquid volume conservation. Within the granular
sample, the total liquid volume is proportional to coordination
number z. As z varies with I, we should, in principle,
correct the meniscus volume to maintain a constant product
zV for different shear rates. However, the V dependence of
macroscopic properties is so slow (u* varies by 20% as V
is multiplied by 20) that the resulting correction on V (as
z changes, typically, from 6 to 4 at most) should be hardly
notable. We explicitly checked it on running two series of
simulations, for P* = 0.436 and for P* = 10, starting from
the standard value V = 1073a? for I = 0.001 and correcting
V so that the total liquid content was kept constant at larger
inertial numbers. This required slight increases of V, only
exceeding 1% for I or order 0.1. Most quantities were
indistinguishable between the unchanged and the corrected V
values. In particular, all flow characteristics in the quasistatic
limit were quantitatively unaltered. Only u* varied by about
3% at most for I > 0.1.

3. Hydraulic hysteresis

Another feature of the meniscus model—the role of which
should be explored—is the hysteresis of the attractive force,
which appears at contact and vanishes at distance Dy. As the
number of interacting grains increases with the force range
(see the values of z in Table IV), one may expect a strongly
enhanced influence of distant interactions (as reported, e.g.,
in Ref. [49]) if menisci are assumed to form as soon as
noncontacting grains approach below distance Dy. Figure 11
compares internal friction and solid fraction for different
values of P* and I in the standard, hysteretic model and
without the capillary force hysteresis, assuming a force range
Dy between approaching grains that were not previously in
contact. Without hysteresis, ® notably increases, especially for
small values of /. The internal friction u* for I ~ 0.1 is close to
the standard case, but larger values are obtained as I decreases.
Even for the smallest values of [ investigated (/ = 0.001), the
material properties still depend on shear rate and no proper
critical state appears to be approached in our simulations. The
decrease of u* as a function of 7 in interval 0.001 < I <
0.01 should trigger shear-banding instabilities, as discussed
in [50,51]. A slightly decreasing trend of u* versus I was also
apparent in Fig. 10, for very small Dy. For the standard value
V = 10~%a> adopted in this study (as one for which laboratory
observations should be possible), the friction coefficient does
increase with 7, albeit slower and slower as P* decreases (see
coefficient c in Table II). The stabilizing effect of this growing
variation is weaker as cohesion gets stronger, consistently with
the systematic shear banding behavior at P* = 0.1 and might
be jeopardized on tampering with the capillary force model.
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FIG. 11. (Color online) Macroscopic friction coefficient u* (a)
and solid fraction @ (b) versus inertial number / for P* = 0.436 and
Dy = 0.1, with and without capillary hysteresis.

V. RHEOLOGICAL EFFECT OF CAPILLARY FORCES

We now seek to explain the strong influence of capillary
forces on the macroscopic material rheology. The roles of
different interactions, in the force network and in the stresses
are investigated. We first collect information on coordination
numbers and neighbor distances (Sec. V A). Simple relations
to average forces are recalled in Sec. V B. We split the stresses
into several contributions in order to appreciate the importance
of different types of forces. This decomposition (Sec. V C)
suggests an attempt to relate the rheology of wet grains to that
of dry ones, in terms of some “effective pressure” approach in
the quasistatic limit, which we present in Sec. V D.

A. Coordination numbers and near neighbor distances

Figure 12 shows the I dependence, for different P* values,
of coordination numbers z., for pairs of grains in contact,
and zg4, for pairs of grains attracting each other without
contact at a distance lower than Dy. The average number of
contacts per grain, z., decreases for larger inertial numbers,
as previously observed in cohesionless systems [1,5] and in
cohesive ones [16], slower for smaller P*, asin [16] too. z. also
increases as P* decreases at constant /, as previously observed
as well [16]. Note that this latter trend is opposite to that of the
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FIG. 12. (Color online) Coordination numbers: (a) of contacts,
z.; (b) of distant interactions, zg4.

solid fraction (Fig. 8): As the importance of adhesion, relative
to confinement stresses, increases, looser systems are obtained,
yet better coordinated. Grains tend to stick to one another
and may form loose aggregates, as in static or quasistatically
compressed assemblies, for which little correlation is also
observed [13,15] between density and coordination number.
On the other hand, the variations of the coordination number
of distant interactions, z4, with both parameters / and P*, are
in the opposite direction to those of z.. As I increases, so
does z4: Contacting pairs tend to separate, but some remain
bonded by liquid bridges. For stronger cohesion (smaller P*),
zq 1s correlated with the system density. The faster approach
to quasistatic limit at smaller values of P* is apparent in both
figures. The fraction of rattlers (beads carrying no force [5])
in noncohesive systems is about 5%. In the cohesive case, due
to the attractive forces, nearly all of the particles are bonded
to others and the number of rattlers tends to zero, as observed
in 2D simulation of cohesive powders [13,15]. z4 tends to
compensate for the changes of z., so that the total coordination
number z = z. + z4, throughout the investigated range of [
and P* values, exhibits rather small variations (see Fig. 13).
Within the investigated parameter range, the maximum change
in z, between 6.8 and 4.8, corresponds to a correction of
internal friction pu* should we change the meniscus volume
to maintain the total liquid volume constant below 5% (see
discussion in Sec. IV C2). The contact coordination number
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FIG. 13. (Color online) Total coordination number z = z. + zq4.

does not change much with the force range or the meniscus
volume. Setting Dy = 0 (instead of the standard value 0.1 used
in the present study) or decreasing the volume of the meniscus
from its standard value V = 10734 down to 10~%a>, merely
leads to a small decrease of z., from 5 to 4.7 in the quasistatic
limit, when P* = 0.436. However, it has a strong influence on
z4. Compared to the standard case, for P* = 0.436 and small
values of I, it decreases from 0.9 down to a value below 0.3
when we set Dy = 0.01a (still with V = 1073a>) or down to
about zero when we set V = 10~%3 (with Dy = V1/3).

Itis interesting to compare the number of distant, interacting
pairs to the total number of neighbor pairs at distance below
Dy. The coordination number, z(%), of neighbor grains at
distance below / (such that z(0) = z.) grows with & as depicted
in Fig. 14, corresponding to I = 103 (quasistatic limit). z(h),
like the contact coordination number, is a decreasing function
of P* for small h/a (below about 2.5 x 1073; see the inset
in Fig. 14). It increases with P*, like the density, beyond that
distance. In denser systems grains have more neighbors on
average, but this is only true if neighbors at some distance
are included in the count and does not apply to contacts (a
situation reminiscent of some observations in static packings
of cohesionless grains [31]). Up to meniscus rupture distance

4 L . L L _
0.00250 0.00500
I . I . I . I .

0.02 0.04 0.06 0.08 0.1
h/a

FIG. 14. (Color online) Coordination number of neighbor grains
versus interparticle distance h for different P* values and for
I =1073. The inset shows detail at small /.
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TABLE V. Distant coordination number z4 and proportion of pairs
within distance Dy joined by a meniscus, zq/[2(Dy) — zc], versus P*
for two different values of /.

I1=10"3 I =10"
P 2 za/[z2(Do) — zc] 2 za/[2(Do) — z.]
0.436 0.923 0.609 1.28 0.681
1 1.27 0.650 1.80 0.723
2 1.54 0.675 2.24 0.751
5 1.83 0.701 2.71 0.776
10 1.97 0.712 2.93 0.787

Dy, equal to 0.1a in the present case, each grain has, on
average, z(Dgp) — z. noncontacting neighbors, among which z4
are joined by a liquid bridge. Values of ratio zq4/[z(Do) — zc]
for different P* and I are given in Table V. The proportion
of the neighbors within range Dy that are bonded by a liquid
bridge varies from 0.61 to 0.71 for / = 10~ and between
0.68 and 0.79 for I = 10~!, slightly larger than the proportion
~50% reported by Kohonen et al. [33] in static grain packs.

If the meniscus forms as soon as grains approach at distance
Dy, rather than at contact, the number of contacts hardly
changes (z. increases by about 5% for P* = 0.436 in the
quasistatic limit), but the increase in the number of menisci is
larger than expected from the data of Table V, from a simple
count of pairs within range Dy: z4 is multiplied by 1.7 at small
P*and I.

B. Pressure and average normal forces

From Eq. (7), neglecting the deflection of contacts in
comparison to grain diameter a and ignoring the kinetic term,
one may relate [31] the average pressure, P = tra /3, to the

average normal force (FN) for all interactions, and to the
average, (FNh),, over pairs in distant interactions, of the
product of force by distance & < Dy:

® ®
P = — (FN) + —(FNh),. (12)
Ta ma

Due to normal stress differences, the ratio Z;—Dzz is only slightly
different from 1 (about 0.95) at small /. We checked that
formula (12) is very accurate for all P* values and found its
second term to be negligible, contributing less than 2% of the

pressure.

A Bond number is defined in Ref. [45] as Bo = % to

compare cohesion and confinement forces. From (12), it is
roughly proportional to 1/ P*.

C. Contributions to stresses

The contribution of the kinetic term in Eq. (7) to stresses
is quite small. Even for the fastest flow in our simulation
(I =0.562), this contribution does not exceed 2% of the
shear stress or 5% of the normal stress components, and for
I =0.178 itis nearly zero for all stress components. Therefore,
in this section we only discuss the contributions of forces to
the stress components for the different values of the control
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FIG. 15. (Color online) Contribution of distant interactions to
shear stress 0, (a) and to normal stress o,, (b).

parameters, P* and I. These contributions may be split in
different ways on distinguishing different forces.

1. Contact forces and distant capillary attraction

First, one may consider the total stress as a sum of the
contributions of the contacts and of the distant interacting
pairs as

Oup = Opp + a;jﬂ. (13)

Our results show that the contribution of contact forces
dominate in the shear stress. It is larger than 90%, regardless of
the values of P* and /. The contribution of distant interactions
to 0,,, as represented in Fig. 15(a), although not negligible,
hardly reaches 10% of the total shear stress for the smallest
values of P*.

The contribution of distant interactions to o, is displayed
in Fig. 15(b). Capillary forces being attractive, O’i is a
tensile stress. For P* = 0.436, in the quasistatic limit, this
contribution increases up to 20% in magnitude. Consequently,
the positive contribution of contact forces to o,, reaches about
1.20,, for P* = 0.436.

The relative importance of the contributions of contacts
and distant capillary forces to o, and o, is similar: In the
quasistatic limit and for P* = 0.436, one has Uﬂ /o, =~ —0.16

and 64 /0, ~ —0.25.
33

33 —
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FIG. 16. (Color online) Contribution of capillary forces to stress
0y
Accordingly, the contribution of normal contact forces is
the dominant one in normal stress differences Ny, N, (with a
notable contribution of tangential forces to N, typically 20%
at low P*).

2. Elastic-frictional forces and capillary forces
An alternative decomposition of the stress tensor is

cap

Oup = Oy + Ong + Oups (14)

in which o, is the contribution of capillary forces (either
in the contacts or for distant interacting pairs), (Toljf is

the contribution of normal elastic forces, and ogﬂ is the
contribution of tangential forces.

The normal elastic forces contribute more than 90% of the
shear stress, whatever P* and .

The contribution of tangential forces to the normal (diag-
onal) elements of the stress tensor is negligible, but that of
capillary forces is very important: For P* = 0.436, negative
terms oge (1 < o < 3) are very large in magnitude: One
observes oay < —204, for small P*, as shown in Fig. 16.
This large negative contribution is compensated by that of
the repulsive normal elastic forces, cr;\]; > 3044. Such a large
negative contribution of capillary forces to pressure implies
that the particles are strongly pushed against one another,
which increases the sliding threshold for tangential contact
forces.

Figure 17 shows the contribution of tangential forces to
the total shear stress. As P* is decreased to P* = (0.436,
the ratio o*g/a12 increases to 0.18. Capillary forces con-
tribute to the shear stress with the opposite sign (o5 is
positive, while o,, is negative). Figure 17 shows that ratio
o ® /o, is always negative and decreases down to —0.12 for
P* = 0.436.

Similarly to the case of normal stresses, the largest
contribution is that of elastic normal forces: Their (negative)

contribution to o,, compensates the (positive) term o >*P.

D. Discussion

One important clue to understand the enhanced shear
strength of the cohesive material, as compared to the
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FIG. 17. (Color online) Contributions of tangential (a) and
capillary (b) interactions to total shear stress o,.

cohesionless, dry granular assembly, is the large tensile
contribution of capillary force to normal stress,

o0 = —po,, (15)
with a coefficient 8 ranging, in the quasistatic limit, from
about 0.15 (P* = 10) to 2.1 (P* = 0.436). Upon including
the result for P* = 0.1 and I ~ 0.01 (the intermediate range
of inertial number, assumed to be close to the quasistatic
limit, for which measurements are possible in homogeneously
sheared systems), 8 reaches about 7.2. This coefficient, and its
variations with P*, can be approximately predicted from the
values of solid fraction and coordination numbers. Contacts
(z¢, on average, per grain) carry capillary force —Fj, and
distant forces (zq4 per grain) average to a fraction of — Fp.
Relation (12) can be used to evaluate the capillary contribution
to pressure P, as —% < PP L —%. (This relation
between PP and contact tensile strength Fj is sometimes
referred to as the Rumpf formula, especially in the context of a
prediction of rupture conditions [13,19,52]). Dividing by o,,,
one obtains
34 < peap bz,

< - . 16
w P* (16)

- X
*
TP 0,
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Ignoring the small difference between P and o,,, (16) provides
an estimate of coefficient 8 defined in (15). Thus, the value of
B for reduced pressure P* = 0.436 is predicted between 1.9
and 2.3 (and for P* = 0.1, it should reach about 8). Thus, quite
unsurprisingly, the (negative) relative contribution of capillary
forces to normal stress if of order (1/P*) & Fy/P, with a
coefficient that may be deduced from & and coordination
numbers, according to (16).

Itis tempting to invoke a classical concept in geomechanics,
that of effective pressure, to describe the effect of capillary
forces on the shear resistance of the material: The attractive
forces create larger repulsive elastic reactions in the contact,
corresponding to an effective pressure equal to (1 + 8)P.
Furthermore, the local Coulomb condition in the contacts is
to be written with those enhanced normal repulsive forces.
Capillary forces also contribute to shear stress, but, as apparent
in Fig. 17, in comparison to their influence on normal stresses,
this is a small effect, and one may ignore it in a first approach.
One assumes then that the shear behavior of the material
is identical to that of a dry material under such effective
normal stress o;ff. This approach leads to a prediction for
the P*-dependent quasistatic friction coefficient (i,

no =1+ Bug a7

in which p5° denotes the quasistatic internal friction coefficient
for dry grains, P* = oco. Remarkably, if we further assume, as
suggested by (16), that B is roughly proportional to 1/P*,
B ~ b/ P*, we obtain a Mohr-Coulomb relation, Eq. (1), for
the stresses in the critical state: with the same value of internal
friction as in the dry case, uj = ug° and a macroscopic
cohesion given by

bM(O)OFQ
R

(18)

a
Figure 18 is a plot of o, versus o,,—the yield locus—
in which the predictions of relation (17), both with the
measured coefficient 8 (Fig. 16) and with the one predicted as
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FIG. 18. (Color online) o,, versus o,, in quasistatic flow, in units
of Fy/a?. Square dots, numerical results (error bars are smaller); red
crosses, predictions of (17), with exact coefficient 8; blue circles,
same with estimated 8. (Inset) Detail of numerical data for small P*,
including additional point at P* = 0.1.
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FIG. 19. (Color online) Apparent quasistatic friction coefficient
g versus 1/P*, showing the value of pug° for 1/P* = 0. Measure-
ments and predictions of (17), with exact and estimated coefficient
B; same symbols as in Fig. 18.

(z + z.)®/(2m P*) from (16), are confronted with the numer-
ical results.

The admittedly crude prediction of relation (17) appears
surprisingly close to the numerical results on this plot. The
relative error in the prediction for stress ratio ug, with the
measured value of B, is actually about 5% at P* = 10,
increasing to 20% at P* = 0.436, and the value of g for
P*=0.1 (=~ 1.6) from the measurements for I ~ 0.01 is
largely overestimated, at 2.7.

One may directly test for the validity of a Mohr-Coulomb
relation to the data by fitting a linear form for the data of
Fig. 18. Given the error bars (which are small and do not
appear on the graph), an attempted straight line fit through all
five data points with P* > 0.43 in Fig. 18 is unambiguously
rejected by the standard likelihood criterion. A linear fit
is (barely) acceptable upon ignoring the value P* = 0.436,
yielding p} = 0.340 £ 0.001 and a’c/Fy = 0.267 & 0.005
for the Mohr-Coulomb parameters. From (17) the predicted
apparent macroscopic cohesion is above 0.3 Fy/a” and varies
according to which data are used to identify b in (18). The
result u* >~ 1.6 for P* = 0.1 (corresponding to a’c,,/Fy =
w*P* = 0.16) is thus in contradiction with the Mohr-Coulomb
model, which becomes increasingly inadequate for smaller P*,
as apparent in the insert in Fig. 18.

The performance of the simple effective pressure prediction
for the P* dependence of u is better visualized in Fig. 19,
which, unlike Fig. 18, is not sensitive to stress scale.

The global increase of g is predicted, yet overestimated
for the smallest P* values.

One aspect that is not captured by this approach is the
dependence of pj on meniscus volume (Table IV): The
variations of coefficient 8 (from 1.8 to about 2.2 as V increases
from 10~%a3 to 5 x 107343) are insufficient to account for the
increase of the friction coefficient.

There are quite a few reasons for the effective pressure
approach to fail: While the mechanical properties are supposed
to be the same once stresses are corrected, the density of
the material, for one thing, is different in the dry and the
wet case (with @ varying between 0.525 and 0.595 as P*
grows from 0.46 to infinity); capillary forces also contribute
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to shear stress, the force network is bound to be different, etc.
Nevertheless, although admittedly crude, the prediction based
on (17) proves apt to capture the trend of the change of
with P*, although it overestimates its growth at small P*. As
to the Mohr-Coulomb representation of yield stresses, it might
be used as an approximation for P* > 1, but the observations
clearly preclude the definition of unique values of macroscopic
cohesion and friction coefficient according to (1) for smaller
pressures.

Pierrat et al. [52] report on a laboratory study of quasistatic
yield loci (o,, versus o,, at the onset of plastic yielding
and flow) of various kinds of wet granular assemblies in
the pendular regime, including glass beads, which offer a
suitable experimental comparison to our results. It proposes
(under the name “shift theory”) exactly the same effective
pressure approach as the one we have attempted here and
concludes that it provides a good approximation, by which
the yield condition of wet materials is deduced from the one
of the dry grains. Interestingly, the investigated P* values in
this study range from about 0.2 to ~2.5, and on the yield
locus the increase of o, with oy, is slightly sublinear, as
in our numerical results. Measured values of p* are similar
to our results (with, e.g., u* >~ 0.7 for P* = 1), and little
change is obtained by increasing saturation by a factor of 3.
Some possible differences between those experiments and our
simulations could result from the different state of the material:
The experiments are not necessarily carried out in steady
state quasistatic shear flow and could depend on the initial
assembling process. The intergranular friction coefficient
might also differ. Thus, the internal friction coefficient of dry
grains, (., appears to be larger (over 0.4) in the experiments of
Ref. [52]. However, the interesting semiquantitative agreement
between our results and those published data is to be noted.
Unlike Pierrat et al., Richefeu et al., in the experimental part of
their 2006 paper [19], explicitly assume a Mohr-Coulomb form
for the yield criterion. They obtain, with P* values of a few
units, a macroscopic cohesion ¢ agreeing with a theoretical
formula which coincides with our estimate ¢ = % up
to a factor of about 1.5. Given the uncertainties on the
measurements of ¢, u*, and coordination number z in that
study, our results are quite compatible with their experimental
(and numerical) data as well.

In the following sections, for a better assessment of the
rheophysical effect of attractive capillary forces, microscopic
and microstructural aspects of force networks are investigated
in greater detail.

VI. FORCE DISTRIBUTION

The distribution of intergranular force values in a granular
material in equilibrium [31,53-56] or in inertial flow [1,5]
has received a lot of attention in the recent literature.
While the probability distribution function of force values
in cohesionless systems tends to decrease exponentially, on
a scale given by the average (Fy), in cohesive granular
assemblies, characterized by the contact tensile strength Fp,
the equilibrium force distribution evolves, as P* decreases to
low values, towards a roughly symmetric distribution about
zero, with values of both signs of order Fy > (Fy) [13,15].
As compared to the 2D results of Refs. [13,15], the present

022201-13



KHAMSEH, ROUX, AND CHEVOIR

0.0001
0

FIG. 20. (Color online) Distributions of normal forces normal-
ized by average normal force (FN) for I = 1072 and different values
of P*.

3D numerical study of wet spherical grain assemblies does not
investigate very small P* states, but involves longer-ranged
distant interactions. The positive wing of the probability
distribution function (pdf) of normal forces near the quasistatic
limit is shown in Fig. 20, showing the gradual departure
from the cohesionless distribution shape and the transition
to a cohesion-dominated force network with values of order
Fy, ratio (Fy)/Fy being approximately proportional to P* as
discussed in Sec. V B.

At low reduced pressure, as for P* = 0.436, it is more
appropriate to normalize the distribution by Fy, as in Fig. 21.
This plot shows the influence of inertia parameter /, which
is, for large positive values, qualitatively similar to the one
observed with dry grains: The distribution widens, large forces
being associated with collisions between grains or groups of
grains. Another effect of increasing the inertial number is,
as expected from the results of Fig. 12, a depletion of the
population of contacts, compensated by a greater number of
distant grains joined by a meniscus. To understand better the
distribution shape for negative values, Fig. 22 distinguishes the
distributions of contact and distant (attractive) forces. Contact
force distributions exhibit a maximum in zero, with negative

0.001

FIG. 21. (Color online) Distributions of normal forces for
P* = 0.436 and different values of 7, normalized with Fj.
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FIG. 22. (Color online) Contributions of contact and distant
interactions to pdf of normal forces for P* = 0.436 and two values
of I, I =0.316 and I = 0.001. The vertical dashed line corresponds
to force at rupture distance, F*(Dy).

values becoming more frequent as [ increases. The larger value
of the pdf near — F{ signals then the opening of more contacts.
The distant interactions are responsible for the nonmonotonic
part of the pdf. On the one hand, the sharp maximum near
— Fy signals a large population of grain pairs at close distance,
in agreement with the fast increase of z(k) at small & visible
in Fig. 14. On the other hand, the increase near the minimum
attractive force at rupture distance Dy merely reflects the slow
variation of function F**P(h) (Fig. 2).

The “effective pressure” concept relies on the assumption
that the effect of attractive capillary forces are similar to that of
alarger applied isotropic stress. One way to test such an idea at
the microscopic scale is to compare the distributions of normal
elastic forces: If normalized by the average elastic force,
related to the effective pressure, those should be independent
on P* and similar to the force distribution in a cohesionless
system. Figure 23 compares the distributions of elastic normal
forces, normalized by their mean value, for small / and
different values of P*. Those distributions are roughly similar,
but show, as expected, notable discrepancies for values of order

~ 0.1
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FIG. 23. (Color online) Distributions of normal elastic forces at
small / for different P* values.
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FIG. 24. (Color online) Distribution of the age of contacts for
different values of P* and I = 0.1. The inset shows the same graph
in a shorter range of 7¢y.

Fy. The decay for large values is faster in cohesive systems,
reflecting a difference in force networks.

VII. AGGLOMERATION

The aggregation of cohesive grains is observed and reported
in many numerical and experimental studies and is exploited
in industrial processes [16,57]. It was directly observed in the
flow of cohesive granular assemblies, both in numerical model
materials [16] and in experiments with wet powders [58]. A
numerical study of steady state chute flow [59] reports an
increase of the number of long-lasting contacts in the presence
of cohesive forces. Weber et al. in [60] carried out a detailed
study of the effect of capillary forces on agglomerate duration
and size. The agglomeration phenomena in steady shear flow
is studied here, first by measuring contact ages and meniscus
ages, depending on state parameters. Then, the age-dependent
size of clusters is measured, depending on P* and I. These
clustering properties are related to the material rheology.

A. Age of contacts and of distant interactions

The distribution of the age ¢ of contacts for I = 107!
and different values of P* is shown in Fig. 24. P(t°yp) is
the probability distribution of contact ages 7., expressed as
a strain 7°y. The decrease of P(t°y) is slower for smaller
P*, showing that for the stronger cohesive forces the contacts
survive over larger strain intervals [59,60]. For large enough
strains, ¢y > 0.5, these probability density functions decay
with an exponential form, P(z°y) oc e~* /™. Values of decay
times 7, given in Table VI, increase as we decrease P*.
Average contact ages, t;vg’ also provided in the table, show the
same behavior (7, is smaller than 7§ because the distribution
is not exponential for short times; see the inset on the figure).
Figure 25 shows the evolution of the pdf with I for two
different values of P*, revealing, as expected, that contact
ages (in units of 1/y) decrease in faster flows. For I < 1072,
curves appear to coincide, showing nearly quasistatic behavior.
The probability distribution function of the age of interactions
P(z'p) (i.e., the age of liquid bridges) is also shown in Fig. 26
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TABLE VI. Decay time of age distribution function for contacts,
75, and for all interactions, ré, obtained by an exponential fit to the

data of Figs. 24 and 20); average contact age 7,
for different values of P* and I = 0.1. All four times are

age Tyyys

normalized by shearing time 1/y.

and interaction

P )/ 7:(? ¢ ).’ﬂvg )/ T(; Tl).’ﬂvg
0.436 0.306 0.258 1.704 1.609
1 0.180 0.154 1.437 1.325
2 0.153 0.111 1.295 1.187
5 0.128 0.087 1.164 1.072
10 0.120 0.080 1.102 1.021
00 0.118 0.074

for different values of P*. Liquid bridges survive for quite
large strain intervals, reaching several units with a probability
of order 0.1, which increase as P* decreases. Initially, most
liquid bridges survive at least for strains of order 0.1. Beyond
unit strain curves might be fitted by an exponential function
too, defining a decay time ‘L'(i). P*-dependent values of 7,
and of the average meniscus age tfwg are listed in Table VI
Remarkably, the curves do not present any notable difference
for different values of /: The pairs may lose their contacts
in faster flows, but they are still bonded with liquid bridges.
The age of contacts and of distant interactions thus reveal the
formation of aggregates in the presence of capillary forces.
These clusters are transported by the flow for some distance
before they are broken or restructured. They may survive for
strain intervals of a few units.

B. Clusters

Clusters are defined as sets of grains connected by liquid
bonds for a minimum time, 7, and the clustering tendency
might be appreciated on recording the 7¢-dependent mass-
averaged cluster size,

2452
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FIG. 25. (Color online) Distribution of the age of contacts for
different values of I and two different values of P*.
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FIG. 26. (Color online) Distribution of the age of menisci for
different values of P* (same for all values of 7). The inset shows
the same graph in a shorter range of t'y.

in which the summations run over all clusters i containing S;
grains. The values of (S),, for the different values of P* and
I are shown in Fig. 27, as functions of ¢y . For small values
of ¢!y almost all particles are gathered in a single cluster,
which results in (S°),, ~ 4000. For large values of 7'y most
particles are isolated or part of a very small cluster, whence
one gets a value of order 1 for (S),. In the midrange of
1:“1)'/, (Sd)m increases for decreasing P* or [, i.e., for stronger
capillary forces or slower flows.

VIII. FABRIC ANISOTROPY

The capacity of granular assemblies to form anisotropic
force networks is the only origin of shear strength with
frictionless grains [5,56,61] and is known to play a central role
in the shear strength of frictional grains as well. To understand
how contact and distant capillary forces contribute to the shear
stress, it is instructive to study the distribution of contact
orientations (normal vectors n on the unit sphere ¥), E(n),

10000 —— ‘ — ]
N P*=0436,1=0.001 --=--
[ "q‘.’ 0.1
1000 F i v\ T 0562 —— |
E LoL o\ P’ =10,1=0.001 = %=}
=
5100
10 ¢
1 1 1 1 1
0 1 2 3 4 5

TCI Y

FIG. 27. (Color online) Mass-averaged cluster size, (S,

versus cluster age t°'y for different values of P* and I.
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FIG. 28. (Color online) Sketch of approaching (¢ near 37 /4) and
receding pairs (¢ near 7 /4) in macroscopic shear flow.

which, to lowest order, are characterized by the fabric tensor:
Fop = (ngng) = / E(n)ngng d’n. (20)
>

The connection between fabric and normal force contribu-
tion to stresses, or gN, is quite direct, as one has

70

oy = fz Em){FN), nyng d*n, (1)

3ra?
an integral over the unit sphere in which (FN), denotes the
average normal force carried by the pairs with orientation n. As
reported in Sec. V C, the contribution of the normal forces, o N
amounts to more than 80% of the shear stress. The contribution
of fabric parameters F,, to shear stress o,, might be visualized
in Fig. 28. On average, if pairs are preferentially oriented with
the normal vector within a compression quadrant in the shear
flow, then Fj, < 0 will tend to increase the absolute value of
o, if forces are positive and decrease if they are negative. On
the other hand, negative forces will increase the absolute value
of o, if preferentially oriented in the extension quadrants in
the shear flow.

The evolutions of fabric parameters F and F| S, pertaining,
respectively, to contact and distant normal forces, versus
I, for different P* values, are displayed in Fig. 29. FF is
negative, signaling the contribution of normal contact forces
to shear strength [as (F™°) is the dominant contribution
o (FNy, related to P by (12)]. The largest value, and the
largest variation of F with I, is obtained in the dry system
(P* = 00). The decrease of this anisotropy parameter for
smaller P* may be understood in reference to the clustering
phenomena and to the larger duration of contacts evidenced
in Sec. VII. Longer-lived contacts rotate in the shear flow
and are less favorably oriented in the compression quadrant.
Shear flow carries agglomerates for some distance before they
break and thus their random tumbling motion increases the
isotropy of the contact orientations. In faster flows (for larger
I), while contacts tend to open in cohesionless materials,
enhancing fabric anisotropy, cohesive contacts can resist
flow agitation and inertial effects better, whence one gets
a smaller I influence; if they open, they transform into
attractive distant interactions, and the anisotropy of distant
interactions also decreases. Those distant capillary forces
are characterized by a comparatively large anisotropy, about
three times as large as [F||. As Fl‘i is positive, those distant
attractive forces contribute to increase the internal friction
coefficient. Unlike |F? |, Fg increases for smaller P* values,
which corresponds to the growing contribution of distant
interactions to shear strength shown in Fig. 15. The different
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FIG. 29. (Color online) Fabric parameter F), for contacting pairs
(a) and distant interactions (b) versus / for different P*.

rule of meniscus formation (at contact) and breakage (at
distance Dg) explains, in part, this large fabric anisotropy
of attractive forces: Approaching particles are not attracted
to each other, whence one sees a small number of distant
interacting pairs in the compressive quadrant, with a negative
contribution to Fp,; as particles get separated, receding pairs
are still attracted to each other, whence one sees a positive
contribution to F, from the extension quadrant. In the model
without meniscus hysteresis, assuming capillary attraction
appears as soon as grains approach within distance Do, F] d
strongly decreases, from 0.14 to about 0.07 at P* = 0.436 and
small 7.

IX. SUMMARY AND DISCUSSION

The rheological properties of unsaturated granular materi-
als, in which a small amount of wetting liquid, forming liquid
bridges and transmitting attractive capillary forces between
particles, generalize, in many respects, previous observations
on cohesive granular materials, with macroscopic properties
exhibiting similar dependencies on / and P*. Thus, compared
to dry materials, the apparent internal friction coefficient u* =
012/02; is enhanced (from 0.33 to more than 1 in the explored
range P* > 0.1); looser structures are stabilized, even in
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the quasistatic limit (® >~ 0.52, for P* = 0.436 is below
all packing densities with cohesionless grains), even though
contact coordination numbers, due to the absence of rattlers,
may be larger. Our results describe those effects in quantitative
form, in the range P* > 0.1 and 1074 < I <€ 0.56,and specify
the dependence on various features of the model. We only
predict quite a small dependence of the rheology on saturation
within the pendular range (up to 5%—-10%), in agreement with
experimental observations [19,52].

More accurate models of the capillary force dependence
on intergranular distance, or of the distribution of liquid
between menisci with varying volumes, would hardly change
the results. Interestingly, though, some variants of the model,
although arguably not realistic, have notably different rheolog-
ical properties. Thus, reducing the meniscus volume to very
small values would have quite a notable effect on internal fric-
tion and density, but, in practice, menisci are unlikely to form
with such small liquid contents. Assuming menisci form as
soon as grains approach to their maximum extension distance
(range of capillary force) would also strongly affect macro-
scopic properties.

Shear localization systematically affects shear flows at low
P* and we could not measure the constitutive behavior at
P* = 0.1 except for some intermediate / values of order 0.01.
Localized states are characterized by velocity profiles with
gradients concentrated within narrow bands, where the solid
fraction is well below its bulk value. The band thickness lies
in the range of 5 to 10 grain diameters a at small /, but might
be as small as about 1.5« in faster flows (I > 0.1).

We also record normal stress differences, which are larger
than for dry grains and tend to grow with decreasing P*. The
second normal stress difference, in particular, reaches 20%
of the imposed normal stress o;; in the quasistatic limit for
small P*.

The effective pressure approach to the yield criterion of
wet grains ignores such sophistications, as well as density or
microstructural changes due to capillary forces. It assumes
critical states to be in correspondence for different values of
P*, as though the introduction of capillary forces, pushing
grains against their neighbors, were equivalent to the appli-
cation of a larger confining pressure. Such a crude approach
is, in fact, surprisingly successful, as a rough approximation,
in predicting the increase of u* for decreasing, but not too
small, P*, say P* > 1 (below P* =1, the increase of u*
is overestimated). The effective pressure might be evaluated
upon adding to the applied pressure the capillary contribution
to the average normal stress. This contribution might itself be
estimated from density and coordination numbers, which leads
to a Mohr-Coulomb form (1) for the variation of shear strength
4022 with normal stress o2, (if @ and z do not vary too much).
Such a form of the critical state plasticity criterion, however,
proves inadequate to describe the whole range of reduced
pressures P*: Data are incompatible with a P*-independent
macroscopic cohesion c. At low P*, the important differences
in micromorphology and force networks are such that one
cannot simply relate the properties of wet granular assemblies
to those of dry ones. The flow configurations become looser,
yet better coordinated, and force distributions are dominated
by the characteristic scale of adhesion forces. Meanwhile, the
fabric anisotropy of the contact network become smaller, so
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that the stress anisotropy has to stem, to a larger extent, from
anisotropically distributed force values.

Another remarkable feature of the measured rheology,
compared to dry granular materials, is the slow variation with
I of both macroscopic rheological parameters such as ©* and
microscopic data such as coordination numbers. Although we
could not observe a direct correlation, a slower increase of
function p*(I) could signal a shear banding tendency.

Many of those rheophysical features are explained by, or,
at least, related to, the strong clustering tendency emerging as
attractive forces gradually become the dominant ones, upon
decreasing P*. As contacts are stabilized by attractive forces,
they do not so easily open as the network is being sheared.
When they do (which happens preferentially in the extension
direction within the average shear flow, whence one sees a
fabric anisotropy of distant interactions contributing to shear
strength), the network of grains bonded by liquid bridges might
still be connected, forming enduring connected clusters. The
survival of such clusters over quite notable strain intervals
(reaching several unities with sizable probability) should limit
the dilating tendency of faster flows. It also maintains a
network in which the capillary forces act in closer similarity to
an effective pressure. In broad, qualitative terms, the capillary
forces, which have a finite range, maintain some kind of
effective compression, thereby limiting the disruptive effects

PHYSICAL REVIEW E 92, 022201 (2015)

of collisions on the contact network that are experienced by
dry granular assemblies.

Admittedly, this is still a descriptive rheophysical scenario.
More quantitative studies should be carried out to better
characterize the deformation mechanisms of the grain clusters.
The shear banding phenomenon certainly deserves detailed
investigations, in which sample size and shape effects should
be systematically assessed and partly localized velocity and
density fields analyzed and related to a stability analysis.

Our results in the quasistatic limit are in agreement with
the limited available experimental results, as regards the
enhancement of shear resistance brought about by capillary
forces [19,52]. However, for better confrontations of nu-
merical simulations and experimental data, more laboratory
data should be used with, if possible, information both on
rheology and on micromorphology and liquid distribution.
In particular, experiments would be especially valuable to
guide the design of complete numerical models, capable of
dealing with saturations exceeding the limited pendular range
and describing the liquid motion. Such numerical models
could be applied to the mixing process of the grains with
the liquid as well as to the rheology of the mixture. The lattice
Boltzmann method for a diphasic interstitial fluid medium,
coupled to a DEM description of grain motion, is a promising
perspective [62,63].
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