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Mean perimeter of the convex hull of a random walk in a semi-infinite medium
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We study various properties of the convex hull of a planar Brownian motion, defined as the minimum convex
polygon enclosing the trajectory, in the presence of an infinite reflecting wall. Recently [Phys. Rev. E 91,
050104(R) (2015)], we announced that the mean perimeter of the convex hull at time t , rescaled by

√
Dt , is

a nonmonotonous function of the initial distance to the wall. In this article, we first give all the details of the
derivation of this mean rescaled perimeter, in particular its value when starting from the wall and near the wall.
We then determine the physical mechanism underlying this surprising nonmonotonicity of the mean rescaled
perimeter by analyzing the impact of the wall on two complementary parts of the convex hull. Finally, we provide
a further quantification of the convex hull by determining the mean length of the portion of the reflecting wall
visited by the Brownian motion as a function of the initial distance to the wall.
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I. INTRODUCTION

Characterizing the territory covered by a Brownian motion
in two dimensions is a natural question, both in the context
of the theoretical study of a bidimensional Brownian motion
and in ecology, where the trajectories of foraging animals
are often satisfactorily modeled by a Brownian motion [1,2].
Indeed, it can be necessary to estimate the home range of
an animal, defined as the two-dimensional (2D) space over
which an animal moves around over a fixed period of time [3].
Ecologists frequently estimate this home range by computing
the convex hull of the trajectory of the animal, i.e., the minimal
convex polygon enclosing the trajectory [4,5], and calculating
its perimeter or area.

The perimeter and the area of the convex hull of isotropic
2D stochastic processes have been extensively studied both
in the physics [6–12] and mathematics literatures [13–19].
Beyond the basic calculation of the mean perimeter and area
in the case of a Brownian motion, the literature gathers various
extensions, for example, the case of N independent Brownian
motions [6,7], random acceleration processes [8], branching
Brownian motion with absorption [9], and anomalous diffusion
processes [10]. When the process is isotropic, the calculation
of the mean perimeter and area of the convex hull can be
conveniently carried out by studying the extremal statistics
of the corresponding one-dimensional radial process, as
presented in [6,7].

So far, all these studies focused on unconfined bidi-
mensional processes. However, the natural environment of
animals is hardly ever unlimited, their displacements being
constrained by natural or human-built obstacles, such as
littorals, mountains, urban areas, roads,.... Moreover, the
question of the impact of a confinement on the characteristics
of the convex hull of a Brownian motion is also essential in
the theoretical study of Brownian motion. Recently, [20] has
addressed this question by considering the minimal model of a
single planar Brownian motion in the presence of a reflecting
infinite wall that confines the Brownian motion in a half-space
(see Fig. 1). This confinement, though simple, is suited to
model a river or a road that cannot be crossed. The presence of

the reflecting wall has a nontrivial effect on the mean perimeter
of the convex hull. Indeed, it was shown that this confinement
produces a surprising nonmonotonicity of the mean perimeter
of the convex hull at time t , rescaled by

√
Dt , with respect to

the initial rescaled distance to the wall x, and a singularity for
a Brownian motion starting very close to the wall (x � 1).

In this paper, (i) we give all the details of the derivation
of the mean rescaled perimeter, (ii) go further than this
calculation, by studying both qualitatively and quantitatively
the mechanism that produces the nonmonotonicity of the mean
rescaled perimeter, and (iii) focus on an additional observable,
the extension of the segment on the wall that has been visited by
the Brownian motion. More precisely, in Sec. II, we determine
the mean rescaled perimeter of the convex hull of a Brownian
motion starting at a distance d from an infinite reflecting wall,
and analyze it for Brownian motions starting from the wall and
near the wall. We also provide details on the nontrivial question
of the numerical evaluation of the analytical expression of the
mean rescaled perimeter, and on the numerical simulations. In
Sec. III, we determine the physical mechanism underlying the
nonmonotonicity of the mean rescaled perimeter by studying
the impact of the wall on two complementary parts of the
convex hull. Finally, in Sec. IV, we focus on the length of a
subset of the convex hull, the extension of the visited points on
the wall, that provides a further quantification of the convex
hull, and analyze its dependence on the initial distance to the
wall.

II. DETERMINATION AND ANALYSIS OF THE MEAN
PERIMETER OF THE CONVEX HULL

A. Determination of the mean perimeter

The first step to calculate the mean perimeter of the convex
hull 〈L(d)(t)〉 at time t for a Brownian motion starting at a
distance d from the reflecting wall consists of relating this
quantity to the mean maximum 〈M(d)(θ,t)〉 of the trajectory
in the direction θ using Cauchy formula [6]

〈L(d)(t)〉 =
∫ 2π

0
dθ 〈M(d)(θ,t)〉. (1)
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FIG. 1. (Color online) Minimal model of a Brownian motion in
the presence of a reflecting infinite wall, that starts at a distance d

from the wall. The trajectory is represented by the thin red path, and
the convex hull of the Brownian motion, defined as the minimum
convex polygon enclosing the trajectory, is the thick green polygon.

The maximum of the trajectory in a direction θ ∈ [0,2π ]
corresponds to the minimal distance between the starting point
and the lines orthogonal to the direction θ that do not touch
the trajectory (see Fig. 2). We denote by F [M(d)(θ,t) = M]
the probability density of the maximum M(d)(θ,t), such
that

〈M(d)(θ,t)〉 =
∫ +∞

0
dMM F (M), (2)

and by S(d)(t |M,θ ) the survival probability at time t of a
Brownian motion starting at a distance d from the wall, in the
presence of an additional infinite absorbing wall orthogonal
to the direction θ located at distance M from the starting
point (see Fig. 3). The probability for a Brownian motion to
have a maximum larger than M in the direction θ at time t

is the probability to have been absorbed before time t by the
absorbing wall mentioned above. This absorption probability
is

1 − S(d)(t |M,θ ) =
∫ +∞

M

dm F (m). (3)

d

FIG. 2. (Color online) Definition of the maximum M(d)(θ,t) of
the trajectory in the direction θ at time t for a Brownian motion
starting at a distance d from the reflecting wall. It can be obtained by
introducing a plane orthogonal to the direction θ far away from the
trajectory, moving it along the direction θ towards the trajectory until
touching it, and measuring the distance between the starting point
and this plane.

d
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FIG. 3. (Color online) Definition of the geometry in a wedge with
one reflecting edge and one absorbing edge.

This leads to

F (M) = − d

dM
[1 − S(d)(t |M,θ )]. (4)

An integration by parts, taking into account that the survival
probability at time t is one when the absorbing wall is far from
the starting point (M → +∞), yields

〈M(d)(θ,t)〉 =
∫ +∞

0
dM[1 − S(d)(t |M,θ )]. (5)

In this geometry, the directions [−π/2,π/2] are equivalent to
the directions [π/2,3π/2]. Hence, in what follows, we will
restrict our calculations to the range θ ∈ [−π/2,π/2]. Using
Eqs. (1) and (5), we finally obtain

〈L(d)(t)〉 = 2
∫ π/2

−π/2
dθ

∫ +∞

0
dM[1 − S(d)(t |M,θ )]. (6)

The calculation of 〈L(d)(t)〉 then involves the determination of
the survival probability in a wedge with one absorbing edge
and one reflecting edge, previously defined (see Fig. 3). This
wedge is equivalent to a wedge with two absorbing edges
of double top angle, as illustrated in Fig. 4. The survival
probability at time t in such a wedge for a starting point at
a distance r0 of the apex and parametrized by an angle ϕ0 (see
Fig. 4) is shown in Appendix A to be

S(t |r0,ϕ0) = r0√
πDt

e− r2
0

8Dt

+∞∑
m=0

sin
[ (2m+1)πϕ0

α

]
2m + 1

×
[
I (2m+1)π

2α
− 1

2

(
r2

0

8Dt

)
+ I (2m+1)π

2α
+ 1

2

(
r2

0

8Dt

)]
.

(7)

0r0

FIG. 4. (Color online) Equivalence between a wedge with an
absorbing edge and a reflecting edge and a wedge of double top
angle with two absorbing edges. The starting point is at the polar
coordinates (r0,ϕ0).
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The next step of the calculation consists of relating the
variables imposed by Cauchy formula (M,θ ) and the polar
coordinates (r0,ϕ0) in the wedge. This matching is given by
the two relations (for details, see Appendix B)

r0 = 1

cos θ

√
d2 + 2dM sin θ + M2,

ϕ0 = arccos

(
d + M sin θ√

M2 + 2dM sin θ + d2

)
. (8)

We introduce the nondimensional variables

x = d√
Dt

,

(9)

u = M√
Dt

.

Finally, a joint use of Eqs. (6) to (9) yields an expression of the
mean maximum in the direction θ and of the mean perimeter
of the convex hull at time t for a Brownian motion starting at
a distance d from a reflecting wall, rescaled by

√
Dt :

M̃(x) ≡
〈M(d)(t)√

Dt

〉
=
∫ +∞

0
du

{
1 −

√
x2 + 2xu sin θ + u2

√
π cos θ

∞∑
m=0

sin
[
(2m + 1)π

α
arccos

(
x+u sin θ√

u2+2xu sin θ+x2

)]
2m + 1

× e
− x2+2xu sin θ+u2

8 cos2 θ

[
Iν

(
x2 + 2xu sin θ + u2

8 cos2 θ

)
+ Iν+1

(
x2 + 2xu sin θ + u2

8 cos2 θ

)]}
(10)

and

L̃(x) ≡
〈
L(d)(t)√

Dt

〉
= 2

∫ π/2

−π/2
dθ

∫ +∞

0
du

{
1 −

√
x2 + 2xu sin θ + u2

√
π cos θ

∞∑
m=0

sin
[
(2m + 1)π

α
arccos

(
x+u sin θ√

u2+2xu sin θ+x2

)]
2m + 1

× e
− x2+2xu sin θ+u2

8 cos2 θ

[
Iν

(
x2 + 2xu sin θ + u2

8 cos2 θ

)
+ Iν+1

(
x2 + 2xu sin θ + u2

8 cos2 θ

)]}
(11)

with the index of Bessel functions

ν = (2m + 1)
π

2α
− 1

2
. (12)

As expected, the mean rescaled maximum and perimeter are
scaling functions, that only depend on the rescaled distance to
the wall x = d/

√
Dt . It means in particular that the limit’s

small distance d and long time t are equivalent. In what
follows, we will always fix the observation time t and study
the impact of the distance d on the mean rescaled perimeter.

Note that the formula for the scaling function L̃(x) in
Eq. (11), albeit complicated, is exact and explicit for all
rescaled distances x ≥ 0. However, evaluating analytically the
double integral and the infinite sum in Eq. (11), or even plotting
the function L̃(x) numerically, is not easy. In Sec. II B, we show
how to obtain an explicit expression of L̃(0). In fact, even
extracting the asymptotic behavior of the function L̃(x), as
x → 0, turns out to be rather nontrivial, as we then demonstrate
in Sec. II C. Finally, in Sec. II D, we provide a useful trick to
evaluate numerically the right hand side of Eq. (11), which we
use to plot L̃(x) numerically as a function of x in Fig. 6.

B. Particular case of a Brownian motion starting from the wall

We now show that in the important particular case where
the Brownian motion starts from the reflecting wall, Eq. (11)
assumes a very simple form. The derivation, though technical,
is given in whole here, as the calculations carried out in the next
section rely in part on the techniques used in this paragraph.
With a starting point on the wall, geometric relations (8) are

significantly simpler:

r0 = M

cos θ
,

(13)
ϕ0 = α

2

so the survival probability displayed in Eq. (7) can be rewritten
in terms of the rescaled variables defined in Eq. (9):

S(x)(u,θ ) = u√
π cos θ

e
− u2

8 cos2 θ

∞∑
m=0

(−1)m

2m+1

×
[
Iν

(
u2

8 cos2 θ

)
+Iν+1

(
u2

8 cos2 θ

)]
. (14)

Noticing that

u√
π cos θ

e
− u2

8 cos2 θ

+∞∑
m=0

(−1)m

2m + 1
2

e
u2

8 cos2 θ√
2π u2

8 cos2 θ

= 1, (15)

we rewrite the 1 of the integrand of Eq. (5) and obtain

M̃(θ,0) = 1√
π cos θ

+∞∑
m=0

(−1)m

2m + 1

×
∫ +∞

0
du u e

− u2

8 cos2 θ

⎡
⎣ 2√

2π

e
u2

8 cos2 θ√
u2

8 cos2 θ

− Iν

(
u2

8 cos2 θ

)
− Iν+1

(
u2

8 cos2 θ

)]
. (16)
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We next introduce the variable v = u2/(8 cos2 θ ), so that

M̃(θ,0) = 4√
π

cos θ

∞∑
m=0

(−1)m

2m + 1

×
∫ +∞

0
dv e−v

[√
2

π

ev

√
v

− Iν(v) − Iν+1(v)

]
.

(17)

We then introduce a parameter β � 1 and define the
following regularized integral (that depends on the integer m

via ν):

A(β,m) ≡
∫ +∞

0
dv e−βv

[√
2

π

ev

√
v

− Iν(v) − Iν+1(v)

]
.

(18)

We recognize a gamma function and the Laplace transform of
the Bessel function L[Iν]:

A(β,m) =
√

2

π

1√
β − 1

�

(
1

2

)
− L[Iν](β) − L[Iν+1](β),

(19)
hence [21],

A(β,m) =
√

2

β − 1
− (β +

√
β2 − 1)−ν√

β2 − 1

− (β +
√

β2 − 1)−ν−1√
β2 − 1

. (20)

We also define B(β) such that M̃(θ,0) = B(1):

B(β) ≡ 4√
π

cos θ

∞∑
m=0

(−1)m

2m + 1
A(β,m). (21)

We then compute the following sum, setting a = β +√
β2 − 1 and using Eq. (12):

∞∑
m=0

(−1)ma− (2m+1)π
2α

+ 1
2

2m + 1

= π

2α

√
a

∫ a

0
dy

∞∑
m=0

(−1)my− (2m+1)π
2α

−1

= π

2α

√
a

∫ a

0
dy

y− π
2α

−1

1 + y− π
α

= √
a arctan(a− π

2α ). (22)

This yields

B(β) = 4 cos θ√
π

[
π

4

√
2

β − 1
− arctan

(
a− π

2α

)
√

β2 − 1

(
1√
a

+ √
a

)]

(23)

using that

∞∑
m=0

(−1)m

2m + 1
= π

4
. (24)

As we need B(1), we expand B(β) for β = 1 + ε with ε =
o(1). We then have

a = β +
√

β2 − 1 = 1 + ε +
√

2ε ∼
ε→0

1 +
√

2ε,

√
a ∼ 1 +

√
ε

2
,

arctan(a− π
2α ) ∼ arctan

(
1 − π

α

√
ε

2

)
∼ π

4

(
1 −

√
2ε

α

)
.

Plugging these developments into Eq. (23) and taking ε = 0,
we finally obtain the mean rescaled maximum in the direction
θ starting from the reflecting wall

M̃(θ,0) = 2
√

π
cos θ

π − 2θ
. (25)

Let us consider several remarkable directions θ . First, for θ =
0, that is to say in the direction parallel to the reflecting wall,
one finds

M̃(0,0) = 2√
π

� 1.128. (26)

Hence, the mean span in the direction parallel to the wall is

S(0) = M̃(0,0) + M̃(π,0) = 2 M̃(0,0) = 4√
π

(27)

which is exactly the result obtained in the nonconfined case
[7]. Indeed, the potential reflections on the wall do not affect
the Brownian motion in the parallel direction.

For θ = −π/2, that is to say in the direction orthogonal
to the wall towards it, we find, as expected, that the mean
extension is zero, as the Brownian motion cannot go farther in
this direction, blocked by the wall.

For θ = π/2, orthogonally to the wall away from it, we find
a higher result than in the nonconfined case. Indeed, the wall
pushes the trajectories farther in this direction

M̃
(

π

2
,0

)
= √

π � 1.772. (28)

Eventually, it is straightforward to obtain the mean rescaled
perimeter of the convex hull by integrating over the angle θ .
We finally obtain the simple result

L̃(0) = 2
∫ π

2

− π
2

dθ 2
√

π
cos θ

π − 2θ
= 2

√
π Si(π ) � 6.565.

(29)
Note that this value is lower than the mean rescaled perimeter
of the convex hull in the absence of confinement (4

√
π �

7.090).

C. Case of a Brownian motion starting near the wall

We now focus on the case where the starting point is
close to the wall, i.e., d � √

Dt , or in terms of the rescaled
distance x, x � 1. To obtain a development at small x of
the mean rescaled perimeter, we seek an expression of the
mean maximum M̃(θ,x) as a power series in x. As we will
see later on, the development of M̃(θ,x) depends on the
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sign of θ . We first derive the development of the maximum
for positive angles θ using a small x development of the
survival probability and straightforwardly computing Laplace
transforms. The determination of the development of the
maximum for negative θ , presented afterwards, relies in part on
the same derivation as for the case θ > 0, but requires a slight
modification. The zero-order term is given by the d = 0 case,
addressed in the previous subsection, so we will only focus
on higher order terms. We present here guidelines to carry out
these developments. The full details appear in appendixes.

1. Development of M̃(θ,x) for θ > 0

We first focus on the development of M̃(θ,x) for θ in the
range [0,π/2]. The derivation given in the following does not
hold for θ in [−π/2,0] as divergences arise. We will deal with
this latter case afterwards.

The first step consists in developing the survival probability
at small x. We compute the development of the mean maximum
in the direction θ up to order 2:

M̃(θ,x) = M̃(θ,0) + 
1(θ )x + 
2(θ )x2 + o(x2). (30)

The first-order coefficient 
1(θ ) of the maximum can be
extracted from the development of the survival probability
using Eq. (10) (for details, see Appendix C):


1(θ ) = −
+∞∑
m=0

(−1)m

2m + 1

∫ +∞

0
du

e
− u2

8 cos2 θ√
π cos θ

×
{(

sin θ − u2 sin θ

4 cos2 θ

)[
Iν

(
u2

8 cos2 θ

)

+ Iν+1

(
u2

8 cos2 θ

)]
+ u2 sin θ

4 cos2 θ

[
I ′
ν

(
u2

8 cos2 θ

)

+ I ′
ν+1

(
u2

8 cos2 θ

)]}
. (31)

Using (C9) to express I ′
ν(u2/8 cos2 θ ) and (C8) for

I ′
ν+1(u2/8 cos2 θ ), and after a change in variables y =

u2/8 cos2 θ , we get


1(θ ) = −
√

2

π

+∞∑
m=0

(−1)m

2m + 1
(1 + 2ν) sin θ

×
∫ +∞

0

dy√
y

e−y[Iν(y) − Iν+1(y)]. (32)

Separating the two parts of the integrand would lead to a
divergence, but as written in Eq. (32), the integral over y is
finite as it involves a difference of Bessel functions. We use the
same trick as previously to calculate this integral: we introduce
a parameter β ≥ 1 and compute the limit β → 1. We hence

set

D(β,m) ≡
∫ +∞

0

dy√
y

e−βy[Iν(y) − Iν+1(y)] (33)

such that


1(θ ) = −
√

2

π

+∞∑
m=0

(−1)m

2m + 1
(1 + 2ν) sin θ D(1,m), (34)

and using [22]

D(β,m) =
√

2

π

[
Qν− 1

2
(β) − Qν+ 1

2
(β)
]
, (35)

where Qν−1/2(β) is a Legendre function of the second kind.
Taking the limit β → 1 of the Legendre function yields a very
simple expression for D(1,m) (see Appendix C 1):

D(1,m) =
√

2

π

2

1 + 2ν
. (36)

Plugging this expression into Eq. (32), the first-order term of
M̃(θ,x) for θ > 0 finally is


1(θ ) = − sin θ. (37)

In turn, applying again the change in variables y =
u2/(8 cos2 θ ), the second-order term is


2(θ ) = − 1√
π

+∞∑
m=0

(−1)m

2m + 1

∫ +∞

0

√
2 dy e−y

×
{

cos θ

4
√

2y
[Iν(y) + Iν+1(y)]

[
1 − π2(2m + 1)2

(π − 2θ )2

]

+ 1 + 2 sin2 θ

4
√

2 cos θ
(Iν−1 − Iν − Iν+1 + Iν+2)(y)

+ sin2 θ

4
√

2 cos θ
y (Iν−2 − 3Iν−1 + 2Iν + 2Iν+1

− 3Iν+2 + Iν+3)(y)

}
. (38)

Note that this equation is defined only if all ν > 0, which
is true for θ > 0 but wrong otherwise [since ν(0) = θ/α],
as pointed out previously. In the latter case, the coefficient

2(θ ) under this form is infinite because the term Iν(0)/y is
not integrable in 0.

We again introduce a parameter β ≥ 1 to calculate the
integral and take the limit β → 1 afterwards. The second-order
term is finally (see Appendix C 2)


2(θ ) =
√

π

2

cos θ

π − 2θ
. (39)
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The development of the mean rescaled maximum M̃(θ,x) in
the direction θ > 0 up to order 2 is then

M̃(θ,x) = 2
√

π cos θ

π − 2θ
− sin θ x +

√
π

2

cos θ

π − 2θ
x2 + o(x2).

(40)

2. Development of M̃(θ,x) for θ < 0

We now focus on the development of M̃(θ,x) for θ in the
range [−π/2,0]. To bypass the problem of convergence raised

in the previous paragraph, we isolate the term that yields the
divergence, namely, the term m = 0 of the sum involved in
Eq. (10), and only the part in Iν of this term. The other terms
(the part Iν+1 of the term m = 0, and the terms m > 0 of
the sum) can be developed until order 2 following the same
lines as previously. We therefore separate M̃(θ,x) into three
parts

M̃(θ,x) = T0(θ,x) + T ′
0(θ,x) + T1(θ,x) (41)

with

T0(θ,x) =
∫ +∞

0
du

{
2

π
−

√
x2 + 2xu sin θ + u2

√
π cos θ

cos

[
π

α
arccos

(
u + x sin θ√

u2 + 2xu sin θ + x2

)]

× e
− x2+2xu sin θ+u2

8 cos2 θ Iν(0)

(
x2 + 2xu sin θ + u2

8 cos2 θ

)}
, (42)

T ′
0(θ,x) the same as T0(θ,x) except for the index of the Bessel function, which is ν(0) + 1 instead of ν(0), and

T1(θ,x) =
+∞∑
m=1

(−1)m

2m + 1

∫ +∞

0
du

{
4

π
−

√
x2 + 2xu sin θ + u2

√
π cos θ

cos

[
(2m + 1)

π

α
arccos

(
u + x sin θ√

u2 + 2xu sin θ + x2

)]

× e
− x2+2xu sin θ+u2

8 cos2 θ

[
(Iν + Iν+1)

(
x2 + 2xu sin θ + u2

8 cos2 θ

)]}
. (43)

To compute the term T0, which would yield a divergence if we were using the previous derivation, it is convenient to transfer
the x dependence to the Bessel function. After a lengthy calculation given in Appendix D, we obtain the development of the term
T0 up to order 2:

T0 = 4θ cos θ√
π(π − 2θ )

− 2

π
sin θ x + C(θ ) x2+2ν(0) + C2(θ ) x2 + o(x2) (44)

with

C(θ ) ≡ cos θ

24ν(0)+1
√

π �(1 + ν(0))

(
1

1 + ν(0)
−
∫ 1

cos2 θ

1
dz

√
z

z − 1
cos

[
π

α
arccos

(
−

√
z − 1√

z

)]
zν(0)

−
∫ +∞

1
dz

{√
z

z − 1
cos

[
π

α
arccos

(√
z − 1

z

)]
− 1

}
zν(0)

)
(45)

and

C2(θ ) ≡ − cos θ

4
√

π

(
1 − π2

α2

)∫ +∞

0

du

u

{
e−u Iν(0)(u) − uν(0)

2ν(0)�[1 + ν(0)]

}
. (46)

Contrary to the determination of T0, the calculation of the two remaining terms T ′
0 and T1 of Eq. (41) is straightforward.

Indeed, the approach presented in Sec. II C 1 is valid for these terms as the indices of the involved Bessel functions [ν(0) + 1 for
T ′

0 and ν(m) with m ≥ 1 for T1] are positive, and yields

T ′
0(θ,x) = 4[1 + ν(0)] cos θ√

π
− 2 sin θ

π
x + θ cos θ√

π (π − 2θ )
x2 + o(x2), (47)

T1(θ,x) = − 2
√

π cos θ

π − 2θ
−
(

1 − 4

π

)
sin θx −

√
π cos θ

2(π − 2θ )
x2 + o(x2). (48)

This gives the development of M̃(θ,x) for θ < 0 up to order 2:

M̃(θ,x) = 2
√

π cos θ

π − 2θ
− sin θ x + C(θ ) x2+ 2θ

π−2θ +
[
C2(θ ) − cos θ

2
√

π

]
x2 + o(x2), (49)

where we replaced ν(0) and α with their values θ/α and
π − 2θ . The coefficients C(θ ) and C2(θ ) are given by
Eqs. (45) and (46). As shown in Fig. 5, the range of

validity of this development is large when θ is close to
0 and becomes smaller and smaller when θ approaches
−π/2.
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FIG. 5. (Color online) Plot of the exact expression of the mean
rescaled maximum and of the corresponding development given in
Eq. (49), for θ = −π/5 (left) and θ = −4π/9 (right). The range
of validity of the development becomes smaller when θ approaches
−π/2.

3. Development of the mean perimeter

We recall that

L̃(x) = 2
∫ π/2

−π/2
dθ M̃(θ,x). (50)

The development of M̃(θ,x) for small x is given in Eqs. (40)
and (49) (respectively for θ > 0 and θ < 0). By integration
over θ , the linear term disappears so the two-term development
of the mean perimeter stems from the following expression:

L̃(x) = 2
√

πSi(π ) + 2
∫ 0

−π/2
dθ C(θ ) x2+2 θ

π−2θ + O(x2).

(51)
The integral over θ is dominated by the neighborhood of −π/2
for small x since the power of x is an increasing function of θ .
However, the first and third terms inside the braces appearing
in Eq. (45), which have a finite limit in θ = −π/2, disappear
as the prefactor cos θ goes to zero when θ goes to −π/2. In
this limit, C(θ ) is then dominated by its second term

C(θ ) ∼
θ→− π

2

− cos θ

24ν(0)+1
√

π �[1 + ν(0)]

×
∫ 1

cos2 θ

1
dz

√
z

z − 1
zν(0)

× cos

[
π

α
arccos

(
−

√
z − 1√

z

)]
(52)

with α = π − 2θ . Setting ε = θ + π/2 and introducing the
new variable v = zε2, we can write

C(ε) ∼
ε→0

− ε−1−2ν(0)

24ν(0)+1
√

π �[1 + ν(0)]

∫ 1

ε2
dv

√
v

v − ε2
vν(0)

× cos

[
π

2π − 2ε
arccos

(
−

√
z − 1√

z

)]
. (53)

In the limit ε → 0,

cos

[
π

2π − 2ε
arccos

(
−

√
z − 1√

z

)]
∼ ε

2

(
1√
v

− 1

)
,

(54)

and Eq. (53) becomes

C(ε) ∼
ε→0

√
ε

2
√

π �(3/4)

∫ 1

ε2
dv

(
1√
v

− 1

)
v−1/4 (55)

so that finally

C(ε) ∼ − 4
√

ε

3
√

π �(3/4)
. (56)

As for the power of x involved in Eq. (51), in the neighborhood
of θ = −π/2, it behaves as

x2+2 θ
π−2θ = exp

[(
2 + 2θ

π − 2θ

)
ln x

]
∼ x3/2 exp

(
ε

2π
ln x

)
(57)

with ε = θ + π/2. We can then rewrite∫ 0

−π/2
dθ C(θ ) x2+2 θ

π−2θ

∼ − 4x3/2

3
√

π �(3/4)

∫ π/2

0
dε

√
ε exp

(
ε

2π
ln x

)
. (58)

For small x, | ln x| is large. Using Laplace’s method, we
obtain ∫ +∞

0
dε

√
ε exp

(
− ε

2π
ln

1

x

)
∼

√
2π2(

ln 1
x

)3/2 (59)

so the development of the mean rescaled perimeter at small
distance x is

L̃(x) − 2
√

πSi(π ) ∼
x�1

− 8
√

2π3

3�(3/4)

x3/2(
ln 1

x

)3/2 , (60)

which turns out to be nonanalytical. Moreover, the mean
rescaled perimeter has a value in x = 0 that is lower than its
limit when x is large (corresponding to the case without any

FIG. 6. (Color online) Plot of the mean rescaled perimeter of the
convex hull of a Brownian motion in the presence of a reflecting wall
as a function of the rescaled initial distance x, compared to numerical
simulations. The main feature of this observable is its minimum with
respect to the rescaled initial distance to the wall. Some details on the
numerical evaluation and simulations are given in Secs. II D and II E.
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confinement), as mentioned previously, and is a decreasing
function at small x. This implies that the mean rescaled
perimeter displays a minimum with respect to the initial
distance to the wall, as confirmed by the numerical evaluation
of its exact expression and by the numerical simulations (see
Fig. 6). We point out that this small x development has an
extremely small range of validity. Indeed, as we previously
noticed, the closer θ to −π/2, the smaller the range of
validity of the development of M̃(x) (see Fig. 5). Since the
development of L̃(x) is dominated by the contributions of the
mean maximum for directions θ close to −π/2, the range
of validity of the mean perimeter is substantially affected.
Nevertheless, the sign of the first correction is sufficient

to conclude on the nonmonotonicity of the mean rescaled
perimeter.

D. Numerical evaluation of the mean perimeter

In practice, the numerical evaluation of the expression of
the mean perimeter given in Eq. (11) turns out to be tricky. The
mean maximum in a given direction θ itself, given in Eq. (5),
cannot be computed straightforwardly since it already involves
an infinite integral of an infinite sum of special functions. To
bypass this difficulty, we use a lighter alternative expression
of the survival probability of a Brownian particle in an infinite
absorbing wedge, derived in [23]. For acute wedges of top
angle α < π , the survival probability is given by

S(y,ϕ0) = erf[
√

2y sin(ϕ0)] +
k∑

j=1

(−1)j {erf[
√

2y sin(jα + ϕ0)] − erf[
√

2y sin(jα − ϕ0)]}

+ (−1)k+1
[
erf
(√

2y sin
{

min
[
(k + 1)α + ϕ0,

π

2

]})
− erf

(√
2y sin

{
min

[
(k + 1)α − ϕ0,

π

2

]})]

+
(

2

π

)3/2√
y

e−y

2

∫ +∞

0
dv e−y cosh v sinh

v

2

(
arctan

{
sin
[

π
α

(
ϕ0 + π

2

)]
sinh

(
πv
2α

) }
+ arctan

{
sin
[

π
α

(
ϕ0 − π

2

)]
sinh

(
πv
2α

) })
(61)

and for obtuse wedges of top angle α > π , by

S(y,ϕ0) = erf

{√
2y sin

[
min

(
ϕ0,

π

2

)]}
+
(

2

π

)3/2√
y

e−y

2

∫ +∞

0
dv e−y cosh v sinh

v

2

×
(

arctan

{
sin
[

π
α

(
ϕ0 + π

2

)]
sinh

(
πv
2α

) }
+ arctan

{
sin
[

π
α

(
ϕ0 − π

2

)]
sinh

(
πv
2α

) })
, (62)

with k = �π/(2α) − 1/2� and y = r2
0 /(8Dt). We recall that the parameters α, r0, and ϕ0 can be written in terms of the natural

rescaled variables and parameter of the initial convex hull problem u, x, and θ :

α = π − 2θ,
r0√
Dt

= 1

cos θ

√
x2 + 2xu sin θ + u2, ϕ0 = arccos

(
x + u sin θ√

u2 + 2xu sin θ + x2

)
.

The expressions of the survival probability (61) and (62) have
the double advantage to involve a finite sum of elementary
functions, as opposed to the infinite sum of Bessel functions
given by Eq. (7). Using these expressions is determining as we
now manage to evaluate the double integral over the rescaled
distance u and the direction θ of the survival probability
involved in Eq. (6). Note that in practice we need to truncate
the integrals over u and over v, the latter appearing in the last
term of the survival probability, to carry out the numerical
evaluation.

E. Numerical simulations

We compare our theoretical expression of the mean perime-
ter of the convex hull with numerical simulations. We generate
Gaussian random walks of duration T = 100 with a constant
time step 
τ = 10−3 when the walker is farther than a distance
d � 0.2 from the reflecting wall. When the walker approaches
the wall, the time step is adapted, taken quadratic in the
distance d to the wall 
τ = (0.1 d + λ)2 with λ = 0.01. The
cutoff λ must not be too small to prevent the computation time

from diverging. When the walker crosses the reflecting wall,
it is reflected on the wall following the Snell-Descartes law
of reflection. Once the trajectory is constructed, the convex
hull is then built using the Graham scan algorithm (see
[24] or [25]), its perimeter calculated and averaged over 105

realizations. Agreement is found with our analytical prediction
(see Fig. 6). Note that one has to make a compromise between
the computation time and the precision of the generated
trajectory (the steps must be as short as possible to approach
at best a Brownian trajectory, especially near the wall).

III. PHYSICAL MECHANISM UNDERLYING THE
NONMONOTONICITY OF THE MEAN PERIMETER

OF THE CONVEX HULL

As seen above, the effect of the confinement on the mean
perimeter of the convex hull of the trajectory is nontrivial,
as it produces a nonmonotonicity with respect to the initial
distance to the reflecting wall. In this section, we give some
keys to understand the underlying physical mechanism.
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FIG. 7. (Color online) Schematic representation of the convex
hull, divided into two parts, an inward part in red and an outward
part in light green. The wall has two effects: an effect of reduction of
the accessible space that acts on the inward part of the convex hull,
and an effect of effective repulsion that impacts on the outward part
of the convex hull. (a) d � √

Dt : the trajectories feel no effect of
the wall, the two parts of the convex hull have the same length. (b)
d ∼ √

Dt : the effect of reduction of the accessible cuts the inward
part of the convex hull. (c) d � √

Dt : the length of the inward part
is still lower, but the effect of effective repulsion makes the outward
part more rounded, increasing its length.

The minimum of the mean perimeter can be interpreted as
the result of the competition between two antagonistic effects
of the wall on the trajectories: reduction of the accessible space
and effective repulsion of the trajectories. To understand how
these two effects are at play, let us split the convex hull into two
parts, delimited by a line parallel to the wall passing through
the starting point. It defines an inward part (between the wall
and the line, in red in Fig. 7) and an outward part (in light
green in Fig. 7). The three following cases emerge.

First, if the starting point is far from the wall (d � √
Dt

with t the observation time), at time t the trajectories have
not touched the wall. As in the nonconfined geometry, the two
parts of the convex hull, which is schematically represented
as a circle of radius

√
Dt by symmetry, have the same length

2
√

πDt [see Fig. 7(a)].
Then, if the starting point is such that d ∼ √

Dt , at time
t the trajectories start to feel the presence of the wall, which
blocks them. This is a first effect of the wall, a reduction of
the accessible space. Consequently, the inward part of the
convex hull is cut [see Fig. 7(b)], and its length is lower than
without confinement. The closer to the wall the starting point,
the shorter this part of the convex hull.

Finally, if the starting point is close to the wall (d � √
Dt),

the effect of reduction of the accessible space still exists, but
another more subtle effect of the wall appears. Indeed, as the
wall blocks the trajectories in one direction, it also pushes them

FIG. 8. (Color online) Rescaled length of the inward (in red) and
outward (in light green) parts of the convex hull with respect to the
rescaled initial distance to the wall, obtained from Eqs. (63) and (64).
The black horizontal line represents the length of these two parts in
the absence of confinement (2

√
π ).

away in the opposite direction. Therefore, the outward part of
the convex hull gets more rounded [see Fig. 7(c)], so its length
is higher than in the nonconfined geometry. This is the second
effect of the wall, an effective repulsion of the trajectories,
which is, as the first effect, more substantial when the initial
distance is small. The combination of these two antagonistic
effects yields the minimum of the mean perimeter of the convex
hull.

Quantitatively, we check that the lengths of these two parts
of the convex hull are, respectively, an increasing function of
the initial distance for the inward part and a decreasing function
of the initial distance for the outward part (see Fig. 8). These
two quantities are defined as follows:

L̃in(x) = 2
∫ 0

−π/2
dθ M̃(θ,x), (63)

L̃out(x) = 2
∫ π/2

0
dθ M̃(θ,x), (64)

whereM̃(θ,x) = 〈M(d)(θ,t)〉/√Dt is obtained from Eqs. (5),
(61), and (62). This graph also shows that the wall has a
larger range of influence on the inward part of the convex
hull (approximately d < 3

√
Dt or x < 3) than on the outward

part (d < 2
√

Dt or x < 2), as expected from the previous
qualitative discussion.

It is interesting to notice that the qualitative arguments given
above on the two portions of the convex hull can also apply
to the mean maximum of the trajectory. Indeed, as presented
in Fig. 9, the mean maximum in the direction θ is higher
than the nonconfined value in the outward directions θ > 0,
and lower than this value in the inward directions θ < 0,
for any θ . For the short initial distances, the increase of
the mean maximum in the outward directions is substantial.
The effective repulsion, which is a less obvious effect of
the wall on the trajectories, is then important in the same
way as the reduction of accessible space. Nevertheless, as
mentioned before, the effective repulsion remains limited
to shorter distances than the reduction of accessible space.
Indeed, note that for x = 1, the reduction of accessible space
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FIG. 9. (Color online) Plot of the mean rescaled maximum in the
direction θ parametrized by the angle θ , obtained from Eqs. (5), (61),
and (62). The dots represent the mean rescaled maximum for three
values of the initial rescaled distance, and the plain circle gives the
mean rescaled maximum for a nonconfined walk (which is 2/

√
π �

1.13).

still impacts on the directions θ < 0 whereas the effective
repulsion is quasi-invisible on the directions θ > 0 (see Fig. 9).

IV. MEAN EXTENSION OF THE VISITED PORTION
OF THE REFLECTING WALL

A further quantification of the convex hull is obtained by
focusing on the length of the part of the convex hull that is
along the reflecting wall. It is defined as the maximal distance
between two points where the Brownian motion has touched
the wall (see Fig. 10). In this section, we determine the mean
rescaled extension on the wall Ẽ(x) ≡ 〈E(d,t)〉/√Dt at time
t as a function of the initial rescaled distance to the wall x.

A. Particular case of a Brownian motion starting from the wall

We first consider the particular case where the Brownian
walker starts from the wall and determine the mean rescaled

d

FIG. 10. (Color online) Definition of the extension of the convex
hull on the wall E(d,t) at time t for a Brownian motion starting at a
distance d from the wall, represented by the plain blue segment along
the wall.

m

absorbing

(a) (b)

m

0

absorbing

wedge

FIG. 11. (Color online) (a) The probability that the downward
semiextension Ehalf is smaller than m is the survival probability in
the presence of the semi-infinite absorbing thick blue line. (b) This
probability is exactly the survival probability in an infinite absorbing
wedge of top angle 2π for a starting point located at a distance m

from the apex of the wedge with an angle ϕ0 = π .

extension Ẽ(0). The probability that the semiextension on the
wall Ehalf , defined as the extension of the visited portion on
the wall on one side of the starting point, is smaller than m

is exactly the probability not to have touched an absorbing
semi-infinite line along the wall starting at a distance m from
the initial point (see Fig. 11)

F (Ehalf < m) = S(m,π ). (65)

This probability S(m,π ) is the survival probability in an
absorbing wedge of top angle 2π with a starting point at a
distance m from the apex and an angle ϕ0 = π (see Fig. 11).
Introducing as previously the rescaled distance u = m/

√
Dt ,

this survival probability is given by [23]

S(u,π ) = erf

[
u

2

]
+ u

π3/2
exp

(
− u2

8

)

×
∫ +∞

0
dv exp

(
− u2

8
cosh v

)
sinh

v

2

× arctan

(
1√

2 sinh v
4

)
. (66)

Following the same lines as from Eq. (2) to Eq. (5), the
mean rescaled extension on the wall, which is twice the mean
rescaled semiextension, can be written as

Ẽ(0) = 2 Ẽhalf(0) = 2
∫ +∞

0
du [1 − S(u,π )]. (67)

This integral turns out to be doable analytically and leads to

Ẽ(0) = 2√
π

� 1.128. (68)

Note that this value is twice as small as the mean span of
the trajectory in the direction parallel to the wall S(0) [see
Eq. (27)].

B. General case

We now determine the mean rescaled extension on the wall
at time t for the general case of a Brownian motion starting
at a distance d from the wall. If the trajectory does not touch
the wall up to time t , this extension is zero. Otherwise, if
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FIG. 12. (Color online) Plot of the analytical expression (74) of
the mean extension at time t of a planar Brownian motion on the
reflecting wall rescaled by

√
Dt as a function of the rescaled initial

distance x = d/
√

Dt .

the Brownian walker first touches the wall at a time t ′ < t ,
the mean extension of such a trajectory then reduces to the
calculation of 〈E(0,t − t ′)〉. Therefore, the mean extension of
all trajectories is

〈E(d,t)〉 =
∫ t

0
dt ′F (d,tabs = t ′)〈E(0,t − t ′)〉 (69)

with F (d,tabs = t ′) the first-passage probability density to
the wall at time t ′ starting at a distance d from the wall
[26,27]:

F (d,tabs = t ′) = d√
4πDt ′3/2

exp

(
− d2

4Dt ′

)
. (70)

Equation (69) involves a convolution, so it is convenient to
take the Laplace transform of the mean extension

〈Ê(d,s)〉 = F̂ (d,s)〈Ê(0,s)〉. (71)

From Eqs. (68) and (70), we have

〈Ê(0,s)〉 =
√

D

s3
(72)

and

F̂ (d,s) = exp

(
− d

√
s

D

)
. (73)

After inverse Laplace transform, we obtain the rescaled mean
extension on the wall at time t as a function of the initial
rescaled distance x = d/

√
Dt :

Ẽ(x) = 2√
π

exp

(
− x2

4

)
− x erfc

(
x

2

)
(74)

which is plotted on Fig. 12. As expected, this is a decreasing
function of the initial distance to the wall.

V. CONCLUSION

In this article, we established a scaling expression of the
mean perimeter of the convex hull of a Brownian motion at

time t , rescaled by
√

Dt , starting at a rescaled distance x

from an infinite reflecting wall. By carrying out a thorough
analysis of this mean rescaled perimeter, we demonstrated that
it is a nonmonotonic function of the rescaled initial distance
x. It means that there exists an optimal initial distance to
the wall that minimizes the mean perimeter of the convex
hull at a fixed time t . Moreover, we determined the physical
mechanism underlying the existence of this minimum. We
showed that this latter stems from the competition between
two antagonistic effects of the wall, reduction of accessible
space and effective repulsion, that have separate impacts on
the two complementary inward and outward parts of the convex
hull. Furthermore, we considered a second subdivision of the
convex hull into two complementary parts by providing an
exact expression of the mean extension of the Brownian motion
on the reflecting wall, which represents the length of the part
of the convex hull that is along the wall.

The problem studied here can be transposed to other di-
mensions, e.g., the mean span of a one-dimensional Brownian
motion in the presence of a reflecting point or the mean
surface of the convex hull of a three-dimensional Brownian
motion, which is in this case a polytope, in the presence of a
reflecting plane. The two antagonistic effects of the wall that
we unveiled in this paper are not limited to the dimension two
and are still at play in these situations. However, it has been
shown [20] that in the one-dimensional version of our problem,
the minimum of the mean span with respect to the rescaled
distance x is actually located at x = 0, the effective repulsion
being too weak to overtake the reduction of accessible space
at small distance x. In the 2D case studied in this article, the
effective repulsion is more substantial, yielding a minimum in
the mean perimeter for a nonzero value of the distance. One
could then expect this effect to be even more substantial in
3D, and therefore produce a minimum of the mean surface
of the convex hull more marked than in 2D. Nevertheless,
the proof of this conjecture requires important modifications
in the calculation and in the numerical simulation, as both
Cauchy formula and Graham scan algorithm would have to
be adapted to the dimension three, and thus remains a open
question.
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APPENDIX A: SURVIVAL PROBABILITY IN A PLANAR
INFINITE ABSORBING WEDGE

We determine the survival probability of a Brownian walker
in a planar infinite absorbing wedge. We first determine the
propagator P (r,ϕ,t |r0,ϕ0,0) in polar coordinates (see Fig. 13),
where the origin is set at the apex of the wedge. The Brownian
motion starts at (r0,ϕ0) at time 0, so when there is no ambiguity,
we refer to the propagator as P (r,ϕ,t). The propagator
is the solution of the following backward Fokker-Planck
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equation

∂P

∂t
= D
P = D

[
∂2P

∂r2
+ 1

r

∂P

∂r
+ 1

r2

∂2P

∂ϕ2

]
(A1)

with the following initial and boundary conditions:

P (r,ϕ,0) = δ(r − r0) = 1

r0
δ(r − r0)δ(ϕ − ϕ0), (A2)

P (r,0,t) = 0, (A3)

P (r,α,t) = 0. (A4)

The Laplace transform P̂ of the propagator is defined by

P̂ (r,ϕ,s) =
∫ +∞

0
dt P (r,ϕ,t) e−st . (A5)

If we apply Laplace transform to Eq. (A2), we get

∫ +∞

0
dt

∂P

∂t
e−st = D
P̂ . (A6)

Integrating the left-hand side by parts, we obtain

sP̂ − 1

r0
δ(r − r0)δ(ϕ − ϕ0) = D
P̂ (A7)

with the boundary conditions

P̂ (r,0,s) = P̂ (r,α,s) = 0. (A8)

Equation (A8) admits solutions of the form R(r,s)�(ϕ,s).
Plugging this expression into (A6) and separating r-dependent
and ϕ-dependent terms, we get

r2

(
s

D
− R′′

R

)
− r

R′

R
= �′′

�
. (A9)

The angular boundary conditions (A8) indicate that �(ϕ,s) is
a linear combination of sin(nπϕ/α). As Dirac delta function
can be written

δ(ϕ − ϕ0) = 2

α

+∞∑
n=1

sin

(
n
πϕ

α

)
sin

(
n
πϕ0

α

)
, (A10)

(r
0
,

0
)

(r, )

absorbing

ab
so

rb
in

g

FIG. 13. Brownian motion in an infinite absorbing planar wedge
of top angle α, described in polar coordinates and starting from the
point (r0,ϕ0).

we can decompose P̂ on the same basis

P̂ (r,ϕ,s) =
+∞∑
n=1

Rn(r,s) sin

(
n
πϕ

α

)
sin

(
n
πϕ0

α

)
. (A11)

Let us plug this expression into (A6). Each component Rn(r,s)
satisfies

sRn − 2

r0α
δ(r − r0) = D

(
R′′

n + 1

r
R′

n − k2
n

r2
Rn

)
(A12)

with kn = nπ/α. Introducing the variable y = r
√

s/D, we
obtain the following modified Bessel equation:

R′′
n(y) + 1

y
R′

n(y) −
(

1 + k2
n

y2

)
Rn(y) = − 2

y0Dα
δ(y − y0).

(A13)
Rn(y,s) remains finite, so we write

{
Rn(y,s) = AnIkn

(y) for y < y0,

Rn(y,s) = BnKkn
(y) for y > y0

(A14)

with Ik(y) and Kk(y) modified Bessel functions of first and
second order. We determine the two constants An and Bn by
writing on the one hand the continuity of Rn(y,s) at y0, and on
the other hand by integrating (A13) between y−

0 and y+
0 . This

yields

AnIkn
(y0) = BnKkn

(y0),

BnK
′
kn

(y0) − AnI
′
kn

(y0) = − 2
αDy0

.
(A15)

Writing the Wronskian

W (Kk,Ik) = Kk(y)I ′
k(y) − K ′

k(y)Ik(y) = 1

y
, (A16)

we obtain

An = 2

αD
Kkn

(y0), Bn = 2

αD
Ikn

(y0). (A17)

This yields

P̂ (r,ϕ,s) = 2

αD

+∞∑
n=1

I nπ
α

[√
s

D
min(r0,r)

]

×Knπ
α

[√
s

D
max(r0,r)

]
sin

(
nπϕ

α

)

× sin

(
nπϕ0

α

)
(A18)
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and by taking the inverse Laplace transform, we eventually
obtain the propagator in the wedge

P (r,ϕ,t |r0,ϕ0) = 1

αDt

+∞∑
n=1

sin

(
nπϕ

α

)
sin

(
nπϕ0

α

)

× I nπ
α

(
r0r

2Dt

)
exp

(
− r2 + r2

0

4Dt

)
.

(A19)

The survival probability is then calculated from the propa-
gator through

S(t |r0,ϕ0) ≡
∫ +∞

0
dr r

∫ α

0
dϕ P (t,r,ϕ|r0,ϕ0)

= 1

αDt

+∞∑
m=0

2α

(2m + 1)π
sin

[
(2m + 1)πϕ0

α

]

×
∫ +∞

0
dr r I (2m+1)π

α

(
r0r

2Dt

)
e− r2

0 +r2

4Dt . (A20)

We then integrate by parts

S(t |r0,ϕ0) = 2r0

αDt

+∞∑
m=0

sin

[
(2m + 1)πϕ0

α

]

×
∫ +∞

0
dr I ′

(2m+1)π
α

(
r0r

2Dt

)
e− r2

0 +r2

4Dt . (A21)

Using the property [28]

I ′
k(x) = Ik−1(x) + Ik+1(x)

2
(A22)

and the integral [22]∫ +∞

0
dr Ik−1

(
r0r

2Dt

)
e− r2

4Dt =
√

πDt e
r2
0

8Dt I k−1
2

(
r2

0

8Dt

)
,

(A23)

we finally obtain an expression of the survival probability in
an absorbing wedge of top angle α at time t , having started at
time 0 from (r0,ϕ0):

S(t |r0,ϕ0) = r0√
πDt

e− r2
0

8Dt

+∞∑
m=0

sin
[ (2m+1)πϕ0

α

]
2m + 1

×
[
I (2m+1)π

2α
− 1

2

(
r2

0

8Dt

)
+ I (2m+1)π

2α
+ 1

2

(
r2

0

8Dt

)]
.

(A24)

APPENDIX B: GEOMETRIC RELATIONS BETWEEN
(r0,ϕ0) AND (M,θ )

The natural variables in the wedge are the polar coordinates
r0 and ϕ0, but Eq. (6) requires to work with the variables M

and θ . We then have to establish the correspondence between
the two sets of coordinates (r0,ϕ0) and (M,θ ). As explained
in the main text, we only need to consider the directions
θ ∈ [−π/2,π/2] for symmetry reasons. First, writing the sum
of angles in the triangles BAC and AHC (see Fig. 14) and

d
M

r
0

0

H

A

B

C

(a)

I

A

B

I

H

C

r
0

0

d

M

(b)

FIG. 14. (Color online) Definition of the points, distances, and
angles used in the derivation of the geometric relations between
(r0,ϕ0) and (M,θ ), in the case θ > 0 (a) and θ < 0 (b). A is the
starting point.

combining them, we get the top angle of the wedge as a
function of θ :

α = π − 2θ. (B1)

Then, we need to write r0 and ϕ0 in terms of M and θ . From
the triangle AHC, we get

M = r0 sin ϕ0, (B2)

and from the triangle ACI,

d = r0 sin
(α

2
− ϕ0

)
= r0 cos(θ + ϕ0). (B3)

It gives

M

sin ϕ0
= d

cos(θ + ϕ0)
(B4)

from which we extract

tan ϕ0 = M cos θ

d + M sin θ
. (B5)

Then, using (B2),

r0 = M

sin ϕ0
= M√

1 − cos2 ϕ0

= M
√

1 + tan2 ϕ0

tan ϕ0
(B6)

and then

r0 = 1

cos θ

√
d2 + 2dM sin θ + M2. (B7)

Expression (B5) is not suited to obtain ϕ0 because arctan gives
values in [−π/2,π/2] whereas ϕ0 is in the range [0,π ]. Hence,
ϕ0 must be determined via an arccos, which gives values in the
good range. Using Eqs. (B3) and (B2),

d

r0
= cos(θ + ϕ0) = cos θ cos ϕ0 − sin θ

M

r0
, (B8)

and getting rid of r0 with (B6), we obtain the expected relation

ϕ0 = arccos

(
d + M sin θ√

M2 + 2dM sin θ + d2

)
. (B9)
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APPENDIX C: DETAILS ON THE DEVELOPMENT OF M̃(θ,x) FOR θ > 0

The survival probability as a function of x = d/
√

Dt and u = M/
√

Dt is given by

S(x)(t |u,θ ) =
√

x2 + 2xu sin θ + u2

√
π cos θ

e
− x2+2xu sin θ+u2

8 cos2 θ

∞∑
m=0

sin
[
(2m + 1)π

α
arccos

(
x+u sin θ√

u2+2xu sin θ+x2

)]
2m + 1

×
[
Iν

(
x2 + 2xu sin θ + u2

8 cos2 θ

)
+ Iν+1

(
x2 + 2xu sin θ + u2

8 cos2 θ

)]
(C1)

with α = π − 2θ and ν = (2m + 1)π/(2α) − 1/2. We develop the survival probability with respect to x, using the following
developments:

√
u2 + 2xu sin θ + x2 ∼ u + x sin θ + x2

2u
cos2 θ, (C2)

e
− x2+2xu sin θ

8 cos2 θ ∼ 1 − xu sin θ

4 cos2 θ
− x2

8 cos2 θ
+ x2u2 sin2 θ

32 cos4 θ
, (C3)

Iν

(
u2 + 2xu sin θ + x2

8 cos2 θ

)
∼ Iν

(
u2

8 cos2 θ

)
+
(

xu sin θ

4 cos2 θ
+ x2

8 cos2 θ

)
I ′
ν

(
u2

8 cos2 θ

)
+ x2u2 sin2 θ

32 cos4 θ
I ′′
ν

(
u2

8 cos2 θ

)
(C4)

and

arccos

(
x + u sin θ√

u2 + 2xu sin θ + x2

)
∼ arccos

(
sin θ + x

u
cos2 θ

)
∼ π

2
− θ − x

u
cos θ, (C5)

that yields

sin

[
(2m + 1)

π

α
arccos

(
x + u sin θ√

u2 + 2xu sin θ + x2

)]

∼ (−1)m cos

[
(2m + 1)π

x

u

cos θ

π − 2θ

]
∼ (−1)m

[
1 − (2m + 1)2

2

π2

(π − 2θ )2

x2

u2
cos2 θ

]
. (C6)

The derivative of Bessel functions can be expressed in three different ways [28]. We successively use the following expressions:

I ′
ν(x) = Iν−1(x) + Iν+1(x)

2
(C7)

= Iν−1(x) − ν

x
Iν(x) (C8)

= Iν+1(x) + ν

x
Iν(x). (C9)

We compute the development of the mean rescaled maximum in the direction θ , defined as

M̃(θ,x) =
∫ +∞

0
du[1 − S(x)(u,θ )], (C10)

up to order 2:

M̃(θ,x) = M̃(θ,0) + 
1(θ )x + 
2(θ )x2. (C11)

1. First-order term

Using the previous developments, we obtain the first-order term


1(θ ) = −
+∞∑
m=0

(−1)m

2m + 1

∫ +∞

0
du

e
− u2

8 cos2 θ√
π cos θ

{(
sin θ − u2 sin θ

4 cos2 θ

)[
Iν

(
u2

8 cos2 θ

)
+ Iν+1

(
u2

8 cos2 θ

)]

+ u2 sin θ

4 cos2 θ

[
I ′
ν

(
u2

8 cos2 θ

)
+ I ′

ν+1

(
u2

8 cos2 θ

)]}
. (C12)
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Using (C9) to express I ′
ν(u2/8 cos2 θ ) and (C8) for I ′

ν+1(u2/8 cos2 θ ),

I ′
ν

(
u2

8 cos2 θ

)
+ I ′

ν+1

(
u2

8 cos2 θ

)
=
(

8 cos2 θ

u2
ν + 1

)
Iν

(
u2

8 cos2 θ

)
+
[

1 − (ν + 1)8 cos2 θ

u2

]
Iν+1

(
u2

8 cos2 θ

)
, (C13)

which simplifies the expression of 
1(θ ):


1(θ ) = −
+∞∑
m=0

(−1)m

2m + 1

∫ +∞

0
du

e
− u2

8 cos2 θ√
π cos θ

sin θ (1 + 2ν)

[
Iν

(
u2

8 cos2 θ

)
− Iν+1

(
u2

8 cos2 θ

)]
, (C14)

and setting y = u2/8 cos2 θ ,


1(θ ) = −
√

2

π

+∞∑
m=0

(−1)m

2m + 1
(1 + 2ν) sin θ

∫ +∞

0

dy√
y

e−y[Iν(y) − Iν+1(y)]. (C15)

We introduce a parameter β ≥ 1 and compute the limit β → 1. We set

D(β,m) ≡
∫ +∞

0

dy√
y

e−βy[Iν(y) − Iν+1(y)] (C16)

such that


1(θ ) = −
√

2

π

+∞∑
m=0

(−1)m

2m + 1
(1 + 2ν) sin θ D(1,m), (C17)

and using [22]

D(β,m) =
√

2

π

[
Qν− 1

2
(β) − Qν+ 1

2
(β)
]
, (C18)

where Qν− 1
2
(β) is a Legendre function of the second kind, defined by

Qν− 1
2
(β) = 1

2ν+ 1
2

√
π

�
(
ν + 1

2

)
�(ν + 1)

1

βν+ 1
2

2F1

(
ν

2
+ 3

4
,
ν

2
+ 1

4
; ν + 1;

1

β2

)
(C19)

with 2F1 a hypergeometric function. Writing Qν+ 1
2
(β) with the same formula and using the relation

�(x + 1) = x �(x), (C20)

we obtain

D(β,m) = 1

2ν

�(ν + 1
2 )

�(ν + 1)

1

βν+ 1
2

[
2F1

(
ν

2
+ 3

4
,
ν

2
+ 1

4
; ν + 1;

1

β2

)
− 1

2β

ν + 1
2

ν + 1
2F1

(
ν

2
+ 5

4
,
ν

2
+ 3

4
; ν + 2;

1

β2

)]
. (C21)

Hypergeometric functions of the type 2F1(a,b; a + b; z) can be expressed as

2F1

(
ν

2
+ 3

4
,
ν

2
+ 1

4
; ν + 1;

1

β2

)
= �(ν + 1)

�
(

ν
2 + 3

4

)
�
(

ν
2 + 1

4

) +∞∑
n=0

(
ν
2 + 3

4

)
n

(
ν
2 + 1

4

)
n

(n!)2

(
1 − 1

β2

)n

×
[

2ψ(n + 1) − ψ

(
ν

2
+ 3

4
+ n

)
− ψ

(
ν

2
+ 1

4
+ n

)
− ln

(
1 − 1

β2

)]
(C22)

with (a)n = �(a + n)/�(a) the Pochhammer symbol, and ψ(x) = �′(x)/�(x) the digamma function. As we take the limit
β → 1, the term n = 0 is the only nonzero term in the sum. We then have

D(β,m) ∼
β→1

1

2ν

�
(
ν + 1

2

)
�(ν + 1)

1

βν+ 1
2

{
�(ν + 1)

�
(

ν
2 + 3

4

)
�
(

ν
2 + 1

4

)[2ψ(1) − ψ

(
ν

2
+ 3

4

)
− ψ

(
ν

2
+ 1

4

)
− ln

(
1 − 1

β2

)]

− 1

2β

ν + 1
2

ν + 1

�(ν + 2)

�
(

ν
2 + 5

4

)
�
(

ν
2 + 3

4

) [2ψ(1) − ψ

(
ν

2
+ 5

4

)
− ψ

(
ν

2
+ 3

4

)
− ln

(
1 − 1

β2

)]}
. (C23)

Using the relation (C20) and

ψ(x + 1) = ψ(x) + 1

x
, (C24)
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CHUPEAU, BÉNICHOU, AND MAJUMDAR PHYSICAL REVIEW E 92, 022145 (2015)

we obtain

D(β,m) −→
β→1

1

2ν

�
(
ν + 1

2

)
�
(

ν
2 + 3

4

)
�
(

ν
2 + 1

4

) 1
ν
2 + 1

4

. (C25)

Making use of the following property [28]

�(2z) = 1√
2π

22z− 1
2 �(z) �

(
z + 1

2

)
, (C26)

we eventually obtain a very simple expression for D(1,m):

D(1,m) =
√

2

π

2

1 + 2ν
. (C27)

2. Second-order term

In turn, after a change in variables y = u2/(8 cos2 θ ), the second-order term is


2(θ ) = − 1√
π

+∞∑
m=0

(−1)m

2m + 1

∫ +∞

0

√
2 dy e−y

{
cos θ

4
√

2y
[Iν(y) + Iν+1(y)]

[
1 − π2(2m + 1)2

(π − 2θ )2

]

+ 1 + 2 sin2 θ

4
√

2 cos θ
(Iν−1 − Iν − Iν+1 + Iν+2)(y) + sin2 θ

4
√

2 cos θ
y(Iν−2 − 3Iν−1 + 2Iν + 2Iν+1 − 3Iν+2 + Iν+3)(y)

}
.

(C28)

We again introduce a parameter β ≥ 1 to calculate the integral. We define

E(β,m) ≡
∫ +∞

0
dy e−βy

{
cos θ

4
√

2y
[Iν(y) + Iν+1(y)]

[
1 − π2(2m + 1)2

(π − 2θ )2

]
+ 1 + 2 sin2 θ

4
√

2 cos θ
(Iν−1 − Iν − Iν+1 + Iν+2)(y)

+ y
sin2 θ

4
√

2 cos θ
(Iν−2 − 3Iν−1 + 2Iν + 2Iν+1 − 3Iν+2 + Iν+3)(y)

}
, (C29)

which is equivalent to

E(β,m) = cos θ

4
√

2

[
1 − π2(2m + 1)2

(π − 2θ )2

]
L
[
Iν(y) + Iν+1(y)

y

]
(β) + (1 + 2 sin2 θ )

4
√

2 cos θ
L[Iν−1 − Iν − Iν+1 + Iν+2](β)

+ sin2 θ

4
√

2 cos θ
L[y(Iν−2 − 3Iν−1 + 2Iν + 2Iν+1 − 3Iν+2 + Iν+3)(y)](β), (C30)

such that


2(θ ) = −
√

2

π

+∞∑
m=0

(−1)m

2m + 1
E(1,m). (C31)

These Laplace transforms have known expressions [21]

L
[
Iν(y)

y

]
(β) = 1

ν
(β +

√
β2 − 1)−ν −→

β→1

1

ν
, (C32)

L[Iν(y)](β) = (β +
√

β2 − 1)−ν√
β2 − 1

=
β=1+ε

ε→0

1√
2ε

− ν + o(1), (C33)

L[y Iν(y)](β) = β + ν
√

β2 − 1

(β +
√

β2 − 1)ν(β2 − 1)3/2
=

β=1+ε

ε→0

1

2ε3/2

[
1 + ε

(
1

4
− ν2

)
+

√
2ε3/2(ν2 + ν3)

]
+ o(1). (C34)
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Carrying out simple algebra, we get

L
[
Iν(y) + Iν+1(y)

y

]
(β) −→

β→1

1

ν
+ 1

ν + 1
= (2m + 1)π

π − 2θ

4(
(2m+1)2π2

(π−2θ)2 − 1
) , (C35)

L[Iν−1 − Iν − Iν+1 + Iν+2](β) −→
β→1

0, (C36)

L[y(Iν−2 − 3Iν−1 + 2Iν + 2Iν+1 − 3Iν+2 + Iν+3)(y)](β) −→
β→1

0. (C37)

Plugging these limits in Eq. (C31), the second-order term is finally


2(θ ) =
√

π

2

cos θ

π − 2θ
. (C38)

APPENDIX D: DETAILS ON THE DEVELOPMENT OF M̃(θ,x) FOR θ < 0

As explained in the main text, we separate M̃(θ,x) into three parts

M̃(θ,x) = T0(θ,x) + T ′
0(θ,x) + T1(θ,x) (D1)

and give the details of the calculation of the first term of this sum

T0(θ,x) =
∫ +∞

0
du

{
2

π
−

√
x2 + 2xu sin θ + u2

√
π cos θ

cos

[
π

α
arccos

(
u + x sin θ√

u2 + 2xu sin θ + x2

)]

× e
− x2+2xu sin θ+u2

8 cos2 θ Iν(0)

(
x2 + 2xu sin θ + u2

8 cos2 θ

)}
. (D2)

We apply the following change in variables:

z = u2 + 2xu sin θ + x2

x2 cos2 θ
, du =

{− x cos θ

2
√

z−1
dz if u ≤ −x sin θ,

x cos θ

2
√

z−1
dz if u ≥ −x sin θ,

and obtain

T0(θ,x) =
∫ 1

cos2 θ

1
dz

x cos θ

2
√

z − 1

{
2

π
− x√

π

√
z cos

[
π

α
arccos

(
−

√
z − 1√

z

)]
e− x2z

8 Iν(0)

(
x2z

8

)}

+
∫ +∞

1
dz

x cos θ

2
√

z − 1

{
2

π
− x√

π

√
z cos

[
π

α
arccos

(√
z − 1√

z

)]
e− x2z

8 Iν(0)

(
x2z

8

)}

≡ I1 + I2. (D3)

The first integral I1 can be written as

I1 = −2x

π
sin θ − x2 cos θ

2
√

π

∫ 1
cos2 θ

1
dz

√
z

z − 1
cos

[
π

α
arccos

(
−

√
z − 1√

z

)]
e− x2z

8 Iν(0)

(
x2z

8

)
. (D4)

For the second integral, we cannot split the integral as we did for I1 since the upper limit is infinite. We have to make the order
0 in x of this term appear in I2, given by∫ +∞

0
dz

x cos θ

2
√

z

[
2

π
− x√

π

√
z e− x2z

8 Iν(0)

(
x2z

8

)]
= 4 ν(0)

cos θ√
π

. (D5)

It allows to split the integral

I2 = 4 ν(0)
cos θ√

π
−
∫ 1

0
dz

x cos θ

π
√

z
+ x2 cos θ

2
√

π

∫ 1

0
dz e− x2z

8 Iν(0)

(
x2z

8

)

+
∫ +∞

1
dz

x cos θ

π

(
1√

z − 1
− 1√

z

)
− x2 cos θ

2
√

π

∫ +∞

1
dz

{√
z

z − 1
cos

[
π

α
arccos

(√
z − 1

z

)]
− 1

}
e− x2z

8 Iν(0)

(
x2z

8

)

(D6)
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This finally yields

T0(θ,x) = 4θ cos θ√
π (π − 2θ )

− 2x

π
sin θ + C(x,θ ) (D7)

with

C(x,θ ) ≡ x2 cos θ

2
√

π

(∫ 1

0
dz e− x2z

8 Iν(0)

(
x2z

8

)
−
∫ 1

cos2 θ

1
dz

√
z

z − 1
cos

[
π

α
arccos

(
−

√
z − 1√

z

)]
e− x2z

8 Iν(0)

(
x2z

8

)

−
∫ +∞

1
dz

{√
z

z − 1
cos

[
π

α
arccos

(√
z − 1

z

)]
− 1

}
e− x2z

8 Iν(0)

(
x2z

8

))
. (D8)

We use the development of the integrand for small x

e− x2z
8 Iν(0)

(
x2z

8

)
∼

x→0

x2ν(0)zν(0)

16ν(0)�[1 + ν(0)]
+ O(x2+2ν(0)) (D9)

and obtain

C(x,θ ) ∼
x→0

C(θ )x2+2ν(0) + C2(x,θ ) + o(x2), (D10)

where

C(θ ) ≡ cos θ

24ν(0)+1
√

π �(1 + ν(0))

(
1

1 + ν(0)
−
∫ 1

cos2 θ

1
dz

√
z

z − 1
cos

[
π

α
arccos

(
−

√
z − 1√

z

)]
zν(0)

−
∫ +∞

1
dz

{√
z

z − 1
cos

[
π

α
arccos

(√
z − 1

z

)]
− 1

}
zν(0)

)
(D11)

and

C2(x,θ ) ≡ −cos θx2

2
√

π

∫ +∞

1
dz

{√
z

z − 1
cos

[
π

α
arccos

(√
z − 1

z

)]
− 1

}{
e− x2z

8 Iν

(
x2z

8

)
− x2ν(0)zν(0)

16ν(0)�[1 + ν(0)]

}
. (D12)

If we introduce the variable u = x2z/8 in C2(x,θ ) and use the following development

1√
1 − x2

8u

cos

[
π

α
arccos

(√
1 − x2

8u

)]
∼

x→0
1 +

(
1 − π2

α2

)
x2

16u
, (D13)

we obtain

C2(x,θ ) = C2(θ )x2 + o(x2) (D14)

with

C2(θ ) ≡ −cos θ

4
√

π

(
1 − π2

α2

)∫ +∞

0

du

u

{
e−u Iν(0)(u) − uν(0)

2ν(0)�[1 + ν(0)]

}
. (D15)

Finally, we have obtained the development of the term T0 up to order 2:

T0 = 4θ cos θ√
π (π − 2θ )

− 2

π
sin θ x + C(θ ) x2+2ν(0) + C2(θ ) x2 + o(x2). (D16)
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