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Shapes of a liquid droplet in a periodic box
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Within the coexistence region between liquid and vapor the equilibrium pressure of a simulated fluid exhibits
characteristic jumps and plateaus when plotted as a function of density at constant temperature. These features
exclusively pertain to a finite-size sample in a periodic box, as they are washed out in the bulk limit. Below
the critical density, at each pressure jump the shape of the liquid drop undergoes a morphological transition,
changing from spherical to cylindrical to slablike as the density is increased. We formulate a simple theory
of these shape transitions, which is adapted from a calculation originally developed by Binder and coworkers
[L. G. MacDowell, P. Virnau, M. Muller, and K. Binder, J. Chem. Phys. 120, 5293 (2004)]. Our focus is on
the pressure equation of state (rather than on the chemical potential, as in the original work) and includes an
extension to elongated boxes. Predictions based on this theory well agree with extensive Monte Carlo data for the
cut-and-shifted Lennard-Jones fluid. We further discuss the thermodynamic stability of liquid drops with shapes
other than the three mentioned above, like those found deep inside the liquid-vapor region in simulations starting
from scratch. Our theory classifies these more elaborate shapes as metastable.
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I. INTRODUCTION

Statistical mechanics gives a general prescription for
extracting equilibrium properties from a system Hamiltonian.
To this aim, the system partition function should be determined
in any of a number of equivalent descriptions (ensembles), a
task requiring the evaluation of a complicate multidimensional
integral. In practice, this can only be accomplished in a few
(mainly trivial) cases, which thus obliges one to go over to
partial calculations and approximate theories, often of limited
scope. With the advent of computer simulation, the analytically
intractable program of statistical mechanics could eventually
be attacked and its solution finally came within reach, at least
for finite, not too large systems.

Occasionally, however, numerical simulation may lead
to misconceptions. An example is the loop found in the
pressure equation of state constructed by simulation within
the coexistence region of liquid and vapor. Similar loops are
found in the van der Waals theory of condensation, which
uses the double-tangent construction to make the chemical
potential everywhere concave as a function of pressure at
constant temperature. As a result, the so-called metastable and
unstable branches of the original equation of state are thrown
out as unphysical. It is so customary to associate condensation
with van der Waals theory that it would be tempting to interpret
the loops canonical-ensemble simulations always produce in
isotherms of intensive variables as van der Waals loops and,
therefore, to read them as a sign of the entrance of vapor
in a metastable regime. However, as originally remarked in
Refs. [1,2], the nonconcave regions observed in the equation
of state of a finite system are fully equilibrium features arising
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from the use of periodic boundary conditions in the simulation.
In particular, the first inversion of concavity encountered
corresponds to the first occurrence of liquid-vapor separation.
We have recently showed that, despite their fake character, one
can take advantage of these pressure loops to extract, by plain
thermodynamic integration, the right liquid-vapor coexistence
parameters [3,4].

In a series of papers [2,5–7], Binder and MacDowell
with coworkers carried out extensive grand-canonical Monte
Carlo (MC) simulations of the Lennard-Jones (LJ) fluid in a
periodic cubic box, biasing the sampling in such a way as
to constrain the system to stay in the two-phase region. They
found a whole sequence of so-called shape transitions between
various “phases” differing in the shape of the liquid droplet
coexisting with vapor. Specifically, upon increasing the system
density ρ the liquid drop changed from spherical (“sph”) to
cylindrical (“cyl”) to slablike (“slab”). Upon increasing ρ

further, the reversed sequence of transitions was observed,
with interchanged roles between liquid and vapor. At each rear-
rangement of the liquid-vapor interface, the chemical potential
undergoes a sharp drop, followed by a density interval where
it stays nearly constant (this region will be referred to in the
following as a “plateau”). MacDowell et al. have successfully
analysed these shape transitions by means of a capillary-drop
theory [5,6]. In a further series of papers [8–10], Binder
and his group exploited their extremely accurate simulation
results to extract information about the interface free energy
of curved liquid-vapor interfaces, and thus have access to
the Tolman length [11], an all-useful parameter in nucleation
theory [12–14] (the only caution here would be that in
Refs. [8–10] the interfaces were taken at full equilibrium rather
than under the metastable conditions typical of nucleation
experiments).

We hereby consider the phenomenon of condensation in
canonical-ensemble simulations in the light of a yet different
theory which, at variance with van der Waals theory, right
from the outset takes into account the periodic repetition of
the system in space. The present theory originates from the
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few-line calculation presented in Sec. II A of Ref. [5], but
now putting the emphasis on the pressure—rather than the
chemical potential—equation of state, since it is the pressure
that is directly accessible in a canonical-ensemble simulation.
The theory is further refined by an extension to elongated-
cubic simulation boxes. As a matter of principle, geometric
shapes other than spherical, cylindrical, and tetragonal may
also occur for the liquid drop in equilibrium with vapor, and
this possibility will be looked at closely within our theoretical
framework.

The remainder of the paper is structured as follows. In
Sec. II, we expose the details of our theory. In Sec. III, we com-
pare simulation results for the cut-and-shifted Lennard-Jones
potential with theoretical predictions, discussing the relative
stability of spherical, cylindrical, and slablike drops as a
function of the box aspect ratio. The stability of other interface
shapes, like those observed in simulation runs performed
independently near the cylinder-slab transition density [4], is
also studied. Finally, we give our conclusions in Sec. IV.

II. THEORY

In order to determine the pressure behavior of a fluid
near above the vapor coexistence density, the idea originally
put forward in Ref. [5] is to compare the Helmholtz free
energy F of the homogeneous vapor with that of various
competing heterogeneous phases, differing in the shape of
the liquid drop in thermal equilibrium with vapor. Since
the thermodynamically stable phase for fixed temperature T ,
volume V , and particle number N is the one with minimum F ,
the drop adopts the shape which makes the total free energy as
small as possible, consistent with the amount of liquid present
at the given density ρ = N/V .

If the focus is on the pressure equation of state, rather
than on the chemical potential, it is convenient to express the
free energy in terms of the specific volume v = 1/ρ. This
choice offers a number of practical advantages as it will be
made clear below. Let us first estimate the free energy of the
homogeneous vapor as a function of v at fixed T . Denoting
f (T ,v) = F/N the free energy per particle, a general relation
valid up to second-order terms in the deviations �T = T − T0

and �v = v − v0 from a given state point S0 = (T0,v0) is

f = f0 − S

N
�T − P�v − cV

2T
�T 2 − αP

KT

�v�T

+ 1

2vKT

�v2, (2.1)

with f0 = f (T0,v0). In the latter equation S is the entropy, cV is
the constant-volume specific heat, αP is the isobaric expansion
coefficient, and KT is the isothermal compressibility, all
computed at S0. Choosing S0 to be the condensation point
at temperature T , for �T = 0 and �v = v − vv (vv ≡ 1/ρv

being the vapor specific volume at coexistence) it follows from
Eq. (2.1) that

�Fhom ≡ F − Fv = Pv(vv − v)N + 1

2vvKv
(v − vv)2N,

(2.2)

denoting Pv and Kv the condensation pressure and isothermal
compressibility of the bulk vapor at ρv (in the following, we
use “v” and “l” subscripts to denote bulk properties of the
coexisting vapor and liquid).

For a vapor system in equilibrium with a spherical drop of
liquid hosting Nl atoms, in the capillarity approximation the
cost of droplet formation is

�Fsph ≡ Fv+l − Fv

= (N − Nl)fv + Nlfl + (36π )1/3γ (Nlvl)
2/3 − Nfv

= Nl(fl − fv) + (36π )1/3γ (Nlvl)
2/3, (2.3)

where γ is the surface tension at temperature T (i.e., the
free energy of the planar liquid-vapor interface). In deriving
Eq. (2.3), curvature corrections to surface tension [14] as well
as anisotropy effects [15,16] have been neglected. Assuming
for the vapor and liquid fractions the same chemical potential
and pressure as in the bulk limit, the difference fl − fv

becomes Pv(vv − vl). Moreover Nv = Nlvl + (N − Nl)vv, as
no volume is attached to the interface (this is to be contrasted
with the lever-rule estimate of Vl made in Ref. [5], which
implicitly assumed zero adsorption for the interface). In
conclusion, we get

�Fsph = Pv(vv − v)N + (36π )1/3γ v
2/3
l

(
vv − v

vv − vl

)2/3

N2/3.

(2.4)

From Eqs. (2.2) and (2.4), we readily derive the pressures of
the two phases:

Phom = Pv + ρ − ρv

Kvρ
and

Psph = Pv + 2

3
(36π )1/3 γρv

ρl − ρv

(
ρ(ρl − ρv)

ρ − ρv

)1/3

N−1/3.

(2.5)

At variance with Ref. [5] Phom is a nonlinear function of ρ,
which makes it better suited to reproduce the true pressure
behavior close to ρv (see Fig. 1 below). By the way, the (ρ −
ρv)2 term in Phom may not be the exact one since Eq. (2.2) is
only a second-order truncated expansion.

When the liquid drop is a cylinder extending along the
shorter edge of a cuboidal box, hence of length Lx = Ly =
Lz/a = (V/a)1/3 (where a > 1 is the box aspect ratio), the
free-energy excess over the vapor at ρv becomes

�Fcyl = Nl(fl − fv) + 2πγ rcylLx, (2.6)

where the radius rcyl follows from

πr2
cylLx = Nlvl with Nl = vv − v

vv − vl
N. (2.7)

Upon inserting Eq. (2.7) into Eq. (2.6), we obtain

�Fcyl = Pv(vv − v)N

+ 2π1/2γ a−1/6ρ−2/3

(
ρ − ρv

ρl − ρv

)1/2

N2/3, (2.8)
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FIG. 1. (Color online) Comparison between theory and MC
data [4] from sequential simulations of the cut-and-shifted LJ model
in a periodic cubic box (N = 4000 and T = 0.90). In order to
equilibrate the system 106 MC cycles were produced at each state
point, followed by other 4 × 106 cycles over which equilibrium
averages were computed. Top: �F/N − Pv(vv − v) for the various
competing phases (green, “hom”; cyan, “sph”; blue, “cyl”; black,
“slab”). The lower envelope of all the free-energy curves (thick red
line) marks the equilibrium curve. The vertical lines mark the location
of the shape transitions [see Eqs. (2.12)]. Middle: system pressure
relative to Pv. The dots are the MC data from Ref. [4] (open dots,
forward trajectory; full dots, backward trajectory) while the thick red
line is the equilibrium pressure according to our theory. Bottom: the
equilibrium drop size [thick red line, see Eqs. (2.13)] vs half box size
(black line).

thus yielding

Pcyl = Pv − π1/2γ v
1/2
l

3a1/6v5/6

vv − 4v

vv − vl

(
vv − vl

vv − v

)1/2

N−1/3. (2.9)

Finally, when the liquid fills a slab lying perpendicularly to
the longer box edge (Lz), the free-energy excess becomes

�Fslab = Nl(fl − fv) + 2γL2
x = Pv(vv − v)N

+ 2γ

a2/3
v2/3N2/3, (2.10)

from which we get a pressure of

Pslab = Pv − 4γ

3a2/3
ρ1/3N−1/3. (2.11)

In the present analysis, a crossing of free energies as a
function of ρ entails a change in the relative stability of two
drop shapes. Far from being a first-order transition, which can
only occur in the thermodynamic limit and is not accompanied
by any pressure jump, this shape transition is an equilibrium
finite-size effect promoted by periodic boundary conditions.
In fact, all shape transitions become rounded crossovers when

thermal fluctuations are taken into account (see Refs. [5,6]).
Upon equating the free energies two at a time, and providing
that the sequence of phases is the same as found in Ref. [6], we
obtain the following formulas for the “transition” densities:

ρhom−sph = ρv

(
1 − (36π )1/4 (2Kvρvγ )3/4

(ρl − ρv)1/2
N−1/4

)−1

,

ρsph−cyl = ρv + 4π

81a
(ρl − ρv),

ρcyl−slab = ρv + 1

πa
(ρl − ρv). (2.12)

In particular, we note that the density range beyond ρv where
the homogeneous vapor is thoroughly stable vanishes in the
thermodynamic limit as N−1/4. This ρ interval should not be
confused with the vapor metastability region, which instead
is a kinetic concept more appropriate to bulk systems. The
metastability region of vapor, which extends past the T −
P coexistence locus inside the liquid region, comprises all
nominally liquid states where a quenched vapor system can be
maintained gaseous for a long time (that is, much longer than
the typical observation times) before nucleation of the liquid
occurs.

With a little further effort, one may also derive the size of
the liquid droplet in its various conformations, obtaining

rsph =
(

3

4π

ρ − ρv

ρl − ρv

)1/3(
N

ρ

)1/3

,

rcyl =
(

a1/3

π

ρ − ρv

ρl − ρv

)1/2(
N

ρ

)1/3

, (2.13)

dslab = a2/3 ρ − ρv

ρl − ρv

(
N

ρ

)1/3

,

where the latter quantity represents the thickness of the liquid
slab.

As a final comment, we underline that the above theory
would also apply with no modifications to the solid-liquid tran-
sition [17]. However, a testing of the theory against simulation
data would actually be impossible in this case, because of the
tendency of both phases to go deeply metastable (see, e.g.,
Ref. [4]), a fact that generally prevents one from observing
any shape transition. A notable exception is the numerical
evidence reported in Fig. 2 of Ref. [18], where, thanks to a
smart simulation method, the low system dimensionality, and
very long runs, it was possible to construct a pressure equation
of state showing a plateau in the density range corresponding
to the slab formation.

III. ASSESSMENT OF THE THEORY:
LENNARD-JONES MODEL

As originally shown in Ref. [6], the sequence of shape
transitions in a large periodic cubic box is expected to be hom
→ sph → cyl → slab, then followed by the reversed transition
sequence with the role of vapor and liquid interchanged. This
finding is confirmed by the results of our simulations for the
cut-and-shifted LJ model and gratifyingly reproduced by our
theory for a = 1 (see Sec. III A below). The possibility of
other stable shapes is discussed in Sec. III B.
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FIG. 2. MC pressure data for the cut-and-shifted LJ model in a
periodic cubic box with N = 4000 and T = 0.90 (only the forward
trajectory is shown). The horizontal line lies at the level of Pv. The
vertical lines mark the liquid-vapor coexistence densities, ρv and ρl.

A. Results from sequential simulations

In a recent paper [4], we performed extensive Metropolis
MC simulations of the cut-and-shifted LJ model in the NV T

ensemble. This model is characterized by the following
interaction potential:

u(r) =
{

4ε[(σ/r)12 − (σ/r)6] − c, for r < rcut

0, for r > rcut
(3.1)

with rcut = 2.5σ , where the constant c is chosen in such a way
as to make u(r) everywhere continuous (from here onward, all
quantities will be expressed in the units set by kB,ε, and σ ,
where kB is Boltzmann’s constant). The critical temperature
of this system is slightly less than 1.10 [19]. In particular, in
Ref. [4] we considered the behavior of the system along the
isotherm T = 0.90, to see whether in the liquid-vapor region
equilibrium can be reached by traditional simulation methods
with local moves. To this end we performed simulation runs
in a sequence, starting at each density from the last system
configuration produced in the previous run at a slightly smaller
density. We thus showed that, anywhere within the coexistence
region, heterogeneous equilibrium can be established in an
affordable time. This is proved by the fact that we were able
to obtain the known liquid-vapor coexistence densities by
integrating the pressure equation of state across the two-phase
region. At least this was the case for a system of N = 1372
particles or smaller, while a larger system of 4000 particles was
found to be plagued by metastability (i.e., the data collected
along the forward and backward trajectories were not the same,
see Fig. 1 below).

Having accurate simulation results available in the liquid-
vapor region gives the opportunity to make a critical ap-
praisal of the theory presented in Sec. II. For T = 0.90,

the liquid-vapor coexistence pressure and densities are Pv =
0.03146,ρv = 0.0451, and ρl = 0.6649, respectively [4]. In
order to compute Kv, we carried out a long NPT simulation
of the vapor at P = Pv, eventually finding an isothermal
compressibility of 45.04 (we computed Kv from the formula
KT = β(〈V 2〉 − 〈V 〉2)/〈V 〉, where β = (kBT )−1 and 〈· · · 〉 is
the isothermal-isobaric average). The only theory parameter
left to set is γ , and we decided to choose it in such a
way that ρhom−sph roughly coincides with the location of the
first pressure drop in the MC data for N = 4000 [4] (we
thus obtained βγ = 0.19). We report in Fig. 1 the results
from theory, and compare them against MC data. In the top
panel, we show �F/N − Pv(vv − v) for the homogeneous
vapor [cf. Eq. (2.2)] and the various heterogeneous phases
[cf. Eqs. (2.4), (2.8), and (2.10)]. The sequence of stable
conformations as a function of density is as expected, that
is, hom → sph → cyl → slab. In the middle panel of Fig. 1
we compare the theoretical pressure (red line) with MC data
from both forward- and backward-traveled paths [4]: we see an
overall good agreement, especially in the slope of the pressure
plateaus, but also the location of shape transitions would be
well reproduced by the theory considering that the data from
the backward trajectory are probably the closest to equilibrium
(indeed, it is much easier for the system to preserve its structure
during overcompression rather than when reducing the density
below the transition threshold). Finally, the bottom panel in
Fig. 1 reports the characteristic size of the liquid drop in each
phase.

For high enough densities, other conformations of drop
become available to the system, as seen in the complete MC
pressure equation of state (Fig. 2) where each inflection point
marks a different shape transition. The theory for these further
transitions can be formulated following the same steps as
before, by everywhere exchanging vapor with liquid, and the
results are shown in Fig. 3 for the same parameters used to draw
Fig. 1. From a glance at Fig. 3 we see that the accuracy of the
theory is now poorer, though it would be safe to say that it still
qualitatively reproduces the MC data. A worse agreement with
Monte Carlo should anyway be expected just for the reason that
equilibration is more difficult at high density and the spatial
definition of the interface between liquid and vapor is also
poorer. In summary, we reached a good agreement between
simulation and theory by adjusting one single parameter.

In Ref. [4] we also reported simulation data obtained from
sequential runs of N = 1500 Lennard-Jones particles in a
periodic cuboidal box with edges in the ratio of 1:1:3, for
T = 0.90. These results revealed that the spherical phase
is apparently never stable whereas the cylindrical phase is
strongly reduced in extent. We tested this conclusion by the
theory of Sec. II and we indeed found that, under compression,
the homogeneous vapor first gives way to a cylindrical drop
of liquid, which then changes to a slab upon increasing the
density further (see Fig. 4). Again, we see a clear correlation
between the location of the inflection points in the pressure
data and the transition thresholds derived from theory. As a
last note we observe that, according to the same theory, the
stability of the cylindrical drop progressively reduces upon
increasing a, until the cylindrical phase disappears altogether
(for a ≈ 10) and the homogeneous vapor is thereafter directly
transformed into the slab phase. The use of an elongated box is
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FIG. 3. (Color online) Comparison between theory and MC data
from sequential simulations of the cut-and-shifted LJ model in a
periodic cubic box (N = 4000 and T = 0.90). Same as Fig. 1 but the
high-density region is shown here.

FIG. 4. (Color online) Comparison between theory for a = 3 and
MC data from sequential simulations of the cut-and-shifted LJ model
in a periodic cuboidal box (N = 1500,T = 0.90, and βγ = 0.175).
In stark contrast with the a = 1 case, the spherical drop would never
be stable for a = 3. The cylindrical drop is only observed in a narrow
range of densities close to 0.1 whereas the slablike drop is stable over
a much wider density interval.

instrumental to obtaining a wider density interval for the study
of the planar liquid-vapor interface, which could be useful,
for example, in the determination of the surface tension as a
function of temperature.

B. Other drop shapes

Our next point concerns the evidence, originally found
in LJ-model simulations for T = 0.75 [4], of an additional
pressure “plateau” (in fact, a slightly inclined flat region) lying
between the “cylinder” and the “slab” plateaus. The trick to
obtain this result was to start the simulation from scratch at
every density. We commented in Ref. [4] that, in the interval
of densities corresponding to the extra plateau, the liquid drop
has the shape of a slab with a hole.

We carried out NV T MC simulations of the cut-and-shifted
LJ fluid for T = 0.72 in a periodic cubic box, for a number of
densities close to ρcyl−slab ≈ 0.25 (with the values of ρv and ρl

taken from Ref. [20]), always assuming a face-centered-cubic
structure for the initial configuration of the run. Clearly, this
may not be the best choice to study heterogeneous equilibria
by simulation, since relaxation times would be much longer
than those encountered when performing simulation runs
sequentially. However, the point is that by this method we
may find out long-lived metastable states that would not be
reached by sequential simulations. For each density we first
equilibrated the system for 5 × 106 cycles, then gathering
equilibrium statistics for just as many cycles. The pressure
data obtained for N = 4000 particles were plotted in the
middle panel of Fig. 5. In the same figure we also reported
the outcome of the theory. We see that the data points are
rather clearly located over four distinct pressure plateaus, each
being representative of a different drop conformation of long
life. While three of these plateaus have already been identified
as representative of spherical, cylindrical, and slablike drops,
in the fourth plateau centered at ρ = 0.25 a visual inspection
of the system configuration reveals that the shape is novel:
the liquid drop resembles either a double cylinder [DC, see
Fig. 6(a)] or a punched slab [PS, see Fig. 6(b)]. Owing to
the periodicity of the simulation box, the DC and PS shapes
would actually be similar: it suffices to move the DC center to
a box vertex (and possibly rotate the structure just to improve
visibility) to realize that a DC is in fact not dissimilar from a
PS [Fig. 7(a)]. Similarly, by moving the hole center to a box
vertex the PS of Fig. 6(b) ends up looking like a DC [Fig. 7(b)].
However, while the boundary of the hole associated with a
perfect DC is a square, the hole of the PS seen in Fig. 6(b)
is roughly circular; hence, it would be wrong to conclude
that the two geometries are exactly the same up to a folding
operation.

Let us first attempt to model the liquid drop as a perfect slab
with a cylindrical hole (we call this geometric shape “type-1
PS”). Let d and r < Lx/2 be the slab thickness and hole radius,
respectively. The interface area equals

A = 2
(
L2

x − πr2
) + 2πrd (3.2)

with

V = (
L2

x − πr2
)
d = Nlvl ≡ Vl. (3.3)
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FIG. 5. (Color online) MC pressure data for the cut-and-shifted
LJ model in a periodic cubic box (N = 4000 and T = 0.72) vs
theory (for this case, Pv = 0.0062,ρv = 0.0086,ρl = 0.7722,βγ =
0.78 [20], whereas the value of Kv, 173.62, resulted from a long
NPT simulation of the liquid at Pv). The data points (full dots in
the middle panel) were obtained independently from one another,
by starting the simulation from scratch at each density. We see that
each point lies on a theoretical line, except for the points around
ρ = 0.25 which appear to lie on a different plateau (dashed line). In
the corresponding range of densities the liquid drop resembles either
a DC or a PS.

Upon eliminating r in favor of d, we obtain

A(d) = 2Vl

d
+ 2

√
π

(
L2

xd
2 − Vld

)
. (3.4)

The previous equation is correct only provided 0 < r < Lx/2,
or

Vl

L2
x

< d <
4

4 − π

Vl

L2
x

. (3.5)

Upon taking x = L2
xd/Vl − 1 = πr2d/Vl and

y = A/(2L2
x) − 1, the problem is reduced to finding the

absolute minimum of

y = − x

1 + x
+ Vl

L3
x

√
π (x + x2) (3.6)

in the interval 0 < x < π/(4 − π ). The hole only forms if,
besides the local minimum at x = 0, a deeper (negative) y

minimum also occurs (at a certain xmin corresponding to d =
dmin ∝ N1/3). This requires ρ to be less than a threshold density
(	0.175, see Fig. 8 below; beyond this density, the free energy
becomes identical to �Fslab). With the A so determined, the
free energy of the PS is given by

�F = Pv(vv − v)N + γA. (3.7)

However, representing the slab hole as a perfect cylinder
is too rough an approximation, since the physical drop would
certainly manage to avoid any sharp edges. A more realistic
modelization (say, “type-2 PS”) will entail a smooth and
curved hole boundary, and the most natural solution would
be the surface of the innermost half of a torus (IHT, namely,
the part of the torus which lies inside a cylinder having the
same symmetry axis as the torus and radius equal to the torus
major radius, i.e., to the distance r from the center of the hole
to the center of the tube). While the minor radius of the torus
(that is, the radius of the tube section) has to be half of the slab
thickness (d/2), the major radius must obey d/2 < r < Lx/2

FIG. 6. (Color online) Cut-and-shifted LJ model for N = 4000 and T = 0.72: results from MC simulations started from scratch. (a) A
system snapshot taken at the density ρ = 0.24. (b) Another snapshot taken at ρ = 0.26. In these pictures, each particle was given an effective
diameter σ . The symbol colors were chosen according to the number of nearest neighbors each particle has, in turn defined as the number of
particles within a distance of 1.45σ from the given particle (1.45σ being the position of the first nonzero minimum of the radial distribution
function of the liquid at ρl). While the liquid drop in (a) resembles a DC, the drop in (b) looks like a PS.
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FIG. 7. (Color online) Same as in Fig. 6, but after the particle coordinates have been transformed as explained in the main text. The outcome
was that a DC became a PS, and vice versa.

(when r = d/2, the hole closes and the torus becomes a horn
torus).

We used Pappus’s centroid theorem to compute the area
and volume of the IHT of radii R< = d/2 and R> = r . From

FIG. 8. (Color online) Shape transitions for the cut-and-shifted
LJ model in a periodic cubic box (N = 4000 and T = 0.72):
theoretical results (see parameters in Fig. 5 caption). Top: �F/N −
Pv(vv − v) for various competing phases (blue full line, “cyl”; black
full line, “slab”; green long-dashed line, type-1 PS; cyan long-dashed
line, DC; magenta long-dashed line, type-2 PS—notice that the
free-energy curves for “hom” and “sph” are not shown). The thick red
line marks the equilibrium curve (that is, the lower envelope of all the
free-energy curves, including “hom” and “sph”). The vertical lines
mark the location of the shape transitions. Bottom: the equilibrium
drop size (thick red line) vs half box size (black full line). The dotted
and dashed lines, respectively, refer to the optimal d and r values for
the two types of PS and the DC.

the general formulas,

AIHT = 2π2R<R> − 4πR2
< and

VIHT = π2R2
<R> − 4

3
πR3

<, (3.8)

it follows that the A and V in Eqs. (3.2) and (3.3) should be
replaced with

A = 2
(
L2

x − πr2
) + π2dr − πd2 and

V = (
L2

x − πr2
)
d + 1

4
π2d2r − π

6
d3. (3.9)

Using the equation V = Vl to simplify the A expression, we
eventually obtain

A = 2Vl

d
+ 1

2
π2dr − 2

3
πd2, (3.10)

where r is the solution to

r2 − 1

4
πdr + Vl

πd
+ 1

6
d2 − L2

x

π
= 0. (3.11)

Should the solutions of Eq. (3.11) be both valid, the one must
be chosen that provides the minimum A value. Then, the free
energy follows from the general Eq. (3.7).

Finally, we considered a drop having the shape of two
equal cylinders crossing each other at right angles. We call
this shape a DC (also the cylinder axes must intersect with one
another). While the length of the axes is Lx/2, the cylinder
radius r should be consistent with the V = Vl condition. In
order to compute the area and volume of a DC, it becomes
useful to consider the solid body which the two cylinders
have in common, which goes under the name of bicylinder (or
Steinmetz solid). Its area and volume can easily be obtained
by multiple integration, and the results are 16r2 and (16/3)r3.
Clearly, the area and volume of a DC then read

A = 4πrLx − 16r2 and V = 2πr2Lx − 16

3
r3. (3.12)

From V = Vl a third-order algebraic equation is obtained
for r , which turned out to have only one solution satisfying
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0 < r < Lx/2. Upon plugging this r in A, we again derive
�F from Eq. (3.7).

For T = 0.72, the free-energy curves for the three just
considered shapes were plotted as a function of the density in
the top panel of Fig. 8. In the same picture, the lower envelope
of the free energies for the common shapes was reported for
comparison (red line). We see that none of the PS nor the DC
ever provide the shape of the stable drop. However, a type-2
PS with r = Lx/2 is nearly stable close to ρcyl−slab 	 0.25,
which may explain why this drop shape was observed in our
simulations from scratch (as seen in Fig. 8, suitable type-1 PS
and DC also exist that offer not too bad solutions near ρcyl−slab).
Beyond ρ = 0.24, the optimal type-2 PS has r = d/2, meaning
that the hole eventually closed and the torus became a horn
torus (however, this degenerate type-2 PS is obviously no
longer reliable as a drop shape). Finally, notice that changing
T = 0.72 to 0.90 does not modify the theoretical picture in
any respect. The conclusion is that, according to the present
theory, the three novel shapes considered in this section are
metastable. Hence, the sequence of stable drops for T = 0.72
remains the same identified in Sec. III A for T = 0.90 and
a = 1.

IV. CONCLUSIONS

Below the critical temperature, the structure of a hetero-
geneous fluid simulated under periodic boundary conditions
is sensitive to the imposed density. Each change of confor-
mation observed within the binodal line goes along with a
characteristic fall in the pressure. In this paper, the by-now
classical evidence of spherical, cylindrical, and slablike liquid
drops was reexamined from the viewpoint of a theory having
its roots in a proof-of-concept calculation found in Ref. [5]. In
spite of its simplicity, this theory well reproduced the behavior
of a Lennard-Jones fluid along the liquid-vapor region, for
both a cubic and an elongated box.

Further drop shapes emerged near the crossover region from
cylindrical to slablike when simulations, rather than being
performed in a sequence as is common practice, were started
for each density from a face-centered-cubic configuration. In
this case, the liquid drop occasionally exhibited the shape of
a punched slab with a roughly circular hole. Employing our
theory, we found that this peculiar shape of drop is actually
only metastable, i.e., it is a long-lived conformation which,
however, is doomed to decay.
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Phys. 141, 091103 (2014).
[4] M. C. Abramo, C. Caccamo, D. Costa, P. V. Giaquinta, G.
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