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Hyperdiffusion of quantum waves in random photonic lattices
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A quantum-mechanical analysis of hyperfast (faster than ballistic) diffusion of a quantum wave packet in
random optical lattices is presented. The main motivation of the presented analysis is experimental demonstrations
of hyperdiffusive spreading of a wave packet in random photonic lattices [L. Levi et al., Nature Phys. 8, 912
(2012)]. A rigorous quantum-mechanical calculation of the mean probability amplitude is suggested, and it is
shown that the power-law spreading of the mean-squared displacement (MSD) is 〈x2(t)〉 ∼ tα , where 2 < α � 3.
The values of the transport exponent α depend on the correlation properties of the random potential V (x,t), which
describes random inhomogeneities of the medium. In particular, when the random potential is δ correlated in time,
the quantum wave packet spreads according Richardson turbulent diffusion with the MSD ∼t3. Hyperdiffusion
with α = 12/5 is also obtained for arbitrary correlation properties of the random potential.
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I. INTRODUCTION

Recently, it has been demonstrated, experimentally and
numerically [1], that space-time disordered media accelerate
the transport in a way, when an initial wave packet spreads at
a rate faster than ballistic with the mean-squared displacement
(MSD) 〈x2(t)〉 ∼ t12/5. This effect has been explained in
the framework of classical mechanical approach due to
continuous expansion of the transverse momentum spectrum
in an arbitrary space-time random potential [1–3]. In this
paper we suggest a quantum-mechanical explanation of this
experimental observation of the disorder-enhanced transport
in photonic lattices [1], which is a more general approach for a
quantum wave packet spreading in randomly inhomogeneous
media [1,4,5].

An investigation of wave spreading in randomly inhomo-
geneous media is a long-lasting problem, which has been well
reviewed already more than thirty years ago [6,7], where a
variety of applications have been considered, and this theory
has also a strong impact on statistical methods in physics [8]
(see also recent review [9]).

The main objective of the present research is an estimation
of the mean-squared displacement (MSD) of the wave packet
spreading in the transversal direction (which is the x axis)
under its propagation along a wave guide. Here the main accent
is made on the rigorous calculation of the mean probability
amplitude. It is known that a wave propagation with the
wavelength λ in a long range-dependent wave guide can be
described by the parabolic equation in the limit of a small-angle
propagation [6,10]. This equation corresponds formally to the
Schrödinger equation with an effective Planck constant of the
order of λ. Formally, the longitudinal coordinate plays a role of
an effective time t , and the dynamics takes place in a random
potential V (x,t), which is a space-time-dependent noise. A
rigorous quantum-mechanical consideration is suggested for
this Langevin-Schrödinger equation, and the wave function is
obtained as functional of V (x,t). We show that the quantum
process of spreading depends on the time correlation properties
of the random potential. We obtain the hyperfast spreading
of the quantum wave packet with the MSD 〈x2(t)〉 ∼ tα

with the transport exponent 2 < α � 3. When the noise is
a Markov (δ-correlated) process, the quantum wave packet

dynamics corresponds to Richardson diffusion [11] with the
MSD of the order of t3. This classical turbulent diffusion is
obtained here by the rigorous quantum-mechanical treatment.
A phenomenological statistical approach dated back to works
by Kolmogorov and Obukhov [12,13] suggested this turbulent
acceleration by means of a Gaussian δ-correlated noise [14],
added to the dynamical system ẍ + V (t) = 0. In this case, due
to the noise term V (t), Richardson diffusion takes place with
the MSD 〈x2(t)〉 ∼ t3, which is due to the diffusive spread
of the velocity profile 〈ẋ2(t)〉 ∼ t . In quantum mechanics, the
Kolmogorov-Obukhov approach was first applied in Ref. [15]
to study a nondiffusive motion, where a Gaussian δ correlated
in time random process was treated in the framework of the
Furutsu-Novikov formula [16,17] for the mean probability
amplitudes [6,9]. Recently, it was applied to described a tracer
behavior [18] for an explanation of a limiting case of exper-
imental realization of quantum-mechanical superdiffusion of
ultracold atoms [19].

However, in real experimental realizations of the disorder
in photonic lattices [4,5], the random potential does not
possess this Markov property due to the finite size of the
optical wavelength λ. Therefore, the quantum dynamics is
considered in an arbitrary random potential V (x,t), which
is correlated in both time and space. In this case a rigorous
quantum-mechanical analysis cannot be performed, and a
suitable approximation is suggested to treat this random
quantum dynamics.

It is well known that the quantum dynamics can be
described by a complex Gaussian kernel1 in functional
integration [20,21]. When V (x,t) is δ correlated in time, it
does not affect the quantum Gaussian paths in the functional
integration that makes it possible to treat the quantum
mechanics rigorously, like in the Richardson diffusion case.
The situation changes essentially when the random process
is strongly correlated. Then the quantum paths are affected
by the inhomogeneities of the media. The rigorous analysis
is impossible, and terms, which are responsible for this

1This presentation of the quantum dynamics by means of an
auxiliary Markov field in the framework of the Feynman-Kac formula
does not suppose any Markovian property of quantum mechanics.
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intertwine, are treated approximately by averaging this part
of the quantum paths. The suggested averaging procedure is
performed in self-consistency with the quantum spreading, and
as a result of this, we obtain hyperdiffusion of the quantum
packet spreading, when the MSD is of the order of t12/5.
which coincides with a result obtained in Refs. [2,3] in the
ray dynamics limit.

Therefore, as the result of the parabolic equation approxi-
mation of the wave process, the wave spreading in randomly
inhomogeneous media is investigated in the framework of
quantum mechanics with a random potential, which is the
Langevin-Schrödinger equation. An important motivation for
this analysis is experimental investigations of quantum wave
packet spreading in random optical lattices [1,4,5]. Another
interesting motivation of the present analysis is investigation
(experimental and theoretical) of sound waves spreading in
underwater acoustics in the presence of random environments
(see, e.g., recent results in Refs. [22,23]).

A. Parabolic equation approximation

The method of parabolic equation approximation was first
applied by Leontovich in studying radio wave spreading [24]
and later it has been developed in detail by Khohlov [25]
(see also Ref. [10]). Parabolic equation for monochromatic
light propagation in two-dimensional (2D) randomly inhomo-
geneous media reads [1,4,6]

i∂z� =
[
− 1

2k
∂2
x� − k

n0
�n(z,x)

]
�. (1)

Here �n(x,z) is local fluctuations of refractive index n = n0 +
�n, and z is the propagation direction of the wave with the
wave index k = 2πn0/λ, therefore an effective semiclassical
parameter is of the order of 1/k. In what follows it is convenient
to work with dimensionless variables and parameters. Taking
into account that Eq. (1) has a form of a Schrödinger equation,
one defines the dimensionless effective time t = z/λ and the
dimensionless effective Planck constant h̃ = 1

kλ
= 1

2πn0
, then,

the dimensionless quantum momentum is λ
kλ

∂x = h̃∂x , where
x/λ → x. Note that the wavelength in the experimental setup
is λ ∼ 0.514 μm and �n/n0 ∼ 10−4 � 1 [1]. Therefore, the
effective Planck constant is a small semiclassical parameter.

II. QUANTUM LANGEVIN EQUATION

Formally, the wave function �(x,t) describes the dynamics
of a quantum wave packet (particle) in random time-dependent
optical potential V (x,t), and it is governed by the Schrödinger
equation, which reads

∂t�(x,t) = [
ih̃∂2

x

/
2 + iV (x,t)/h̃

]
�(x,t) (2)

with the initial condition

�(x,t = 0) = �0(x). (3)

Considering the optical random potential V (x,t) as an expan-
sion of a quasiperiodic function, one has [1,3]

V (x,t) = 1√
N

N∑
m=−N

Am exp(ikmx − iωmt) + c.c., (4)

where the coefficients of the expansion Am are random
complex values, while km and ωm are independent random
real values. Denoting averaging over the Gaussian ensemble
by 〈. . . 〉V , we obtain that Am are controlled by a Gaussian
distribution with the averaging property

〈Am〉V = 〈AmAn〉V = 0, 〈A∗
mAn〉V = σ 2δm,n. (5)

From this property, one obtains for the 1D space-time
dependent potential V (x,t)

〈|V (x.t)|2〉V = 2σ 2. (6)

Note that this formulation of the random potential is general
and corresponds to the experimental setup [1]. Since V (x,t)
is a random function, the Schrödinger Eq. (2) is a Langevin
equation with a multiplicative noise potential V (x,t).

Following Ref. [6], this equation can be solve exactly. The
solution of Eq. (2) can be presented in the form of a functional
integration over an auxiliary Gaussian field λ(t). The details
of the calculation can be found in Ref. [9]. However, here
we present an alternating way of the solution, which is more
suitable for the quantum-mechanical consideration.

A. Solution of Langevin equation

A formal integration of the Schrödinger Eq. (2) yields a T -
ordered (time-ordered) form of the evolution operator, which
acts on the initial wave function

�(x,t) = T̂ exp

[
ih̃

2

∫ t

0
∂2
x dτ + i

h̃

∫ t

0
V (x,τ )dτ

]
. (7)

Under the sign of the time-ordering operator T̂ , all values
are commuted, and the kinetic and potential exponentials can
stay separate. Therefore, for the kinetic term, one applies the
Hubbard-Sratonovich transformation [26,27]

exp

[
ih̃

2

∫ t

0
∂2
x dτ

]
=

∫ ∏
τ

dλ(τ )√
2πh̃i

exp

[
i

2h̃

∫ t

0
dτλ2(τ )

]

× exp

[ ∫ t

0
dτλ(τ )∂x

]
. (8)

Taking into account that the last exponential acts as a shift
operator, one obtains the solution

�(x,t)

=
∫ ∏

τ

dλ(τ )√
2πh̃i

exp

[
i

2h̃

∫ t

0
dτλ2(τ )

]
�0

(
x +

∫ t

0
dτλ

)

× exp

[
i

h̃

∫ t

0
dτV

(
x +

∫ t

τ

dτ ′λ,τ

)]
. (9)

Therefore, the quantum-mechanical estimation of the MSD
〈x2(t)〉 leads to two standard procedures of averaging. First,
one obtains a mean probability amplitude2〈|�(x,t)|2〉V by

2Note that an important information about the random process is
carried by the correlation function of V (x,t), which can be obtained
by the ensemble averaging.
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averaging of the obtained result in Eq. (9) over all realizations
of the random field V (x,t), and then performs a standard
quantum-mechanical calculation of the MSD. Therefore the
MSD reads

〈x2(t)〉 =
∫

x2〈|�(x,t |2〉V dx. (10)

III. MEAN PROBABILITY AMPLITUDE

For the random quantum process, the physical characteris-
tics are described by the mean probability amplitude (MPA), or
distribution function ρ(x,t), obtained from the random wave
function (9) by averaging over the Gaussian distribution

ρ(x,t) = 〈|�(x,t)|2〉V . (11)

Obviously, this value is normalized
∫

dxρ(x,t) = 1. Following
Refs. [28–30], let us obtain this normalization condition. The
initial condition can be presented by means of the Fourier
integration

�0(x) = 1

2π

∫ ∞

−∞
�̄0(k)e−ipxdp. (12)

Substituting this expression in Eq. (9), one obtains for the MPA

ρ(x,t) =
∫ ∏

τ

dλ1(τ )dλ2(τ )

2πh̃
exp

[
i

2h̃

∫ t

0

(
λ2

1 − λ2
2

)
dτ

]

×
∫

dp1dp2

4π2
�̄0(p1)�̄∗

0 (p2) exp[−ix(p1 − p2)]

× exp

{
−i

∫ t

0
[p1λ1(τ ) − p2λ2(τ )]dτ

}

×
〈

exp

[
i

h̃

∫ t

0
(V (x̃1,τ ) − V ∗(x̃2,τ ))dτ

]〉
V

, (13)

where x̃j = x + ∫ t

τ
λj (τ ′)dτ ′ and j = 1,2.

A. Integration over the Gaussian distribution

Now one can treat the random potential term by integra-
tion over the 2N + 1-dimensional Gaussian packet, and this
procedure coincides with integration over many-dimensional
coherent states [31]

d[P({A∗
m,Am})] = exp

(
−

∑
m

|Am|2/σ 2

)∏
m

d2Am

πσ 2
, (14)

where d2Am = d[Re(Am)]d[Im(Am)]. Therefore, after taking
into account Eq. (4), the ensemble averaging procedure
corresponds to the following 2N + 1-dimensional integration

〈. . . 〉V =
∏
m

∫
d2Am

πσ 2
exp

[
−

∑
|Am|2/σ 2

]

× exp

[∑
m

(Amα∗
m − A∗

mαm)

]
, (15)

where αm is the following complex function

αm = i

h̃
√

N

∫ t

0
dτ [e−ikmx̃1(τ )+iωmτ − e−ikmx̃2(τ )+iωmτ ]. (16)

Using the property of integration of coherent states [31],
namely,

∫
d2β

π
e−|β|2eα∗βf (β∗) = f (α∗), (17)

one obtains from the integration in Eq. (15)

〈. . . 〉V = exp

[
−σ 2

∑
m

|αm|2
]

≡ F[λ1(τ ),λ2(τ )]. (18)

The next step of the quantum analysis is functional integration
over the auxiliary Gaussian fields λ1 and λ2. However, the
exact quantum-mechanical treatment is possible only for the δ

correlated in time random potential V (x,t)

〈V ∗(x,t)V (x ′,t ′)〉V = C(x,t ; x ′,t ′) = C(x,x ′)δ(t − t ′), (19)

where C(x,x) = 2σ 2 [cf. Eq. (6)]. First, we consider this case,
noting that the restriction of δ correlation corresponds also to
the Obukhov mechanism of Richardson diffusion [14].

IV. RICHARDSON DIFFUSION

Richardson diffusion [11] was the first phenomenological
observation of developed turbulence [32], and this phe-
nomenon has been discussed in a variety of experimental
and numerical studies, see reviews [12,32] and as admit-
ted in Refs. [32,33]; it still lacks sufficient experimental
confidence.

Let us define the property of V (x,t) by means of the spectral
density S(k,ω) of the correlation function C(x,t ; x ′,t ′) with the
δ-correlated constraint (19). Following Refs. [2,3], we present
the correlation function in the following translational invariant
in space and time form

C(x,x ′)δ(t − t ′)

= σ 2

N

∑
m

[eikm(x−x ′)−iωm(t−t ′) + c.c.]

= σ 2
∫

dk

∫
dωS̃(k,ω)[ei[k(x−x ′)−ω(t−t ′)] + c.c.]

= σ 2
∫

dkS(k) cos[k(x − x ′)]δ(t − t ′), (20)

where S(k) = 4πS̃(k,ω).
Using this δ-correlated property, one can describe the

dynamics of |αm(t)|2 in Eq. (18) by means of the spectral
density S(k). Substituting Eq. (16) in Eq. (18) and taking into

022139-3



ALEXANDER IOMIN PHYSICAL REVIEW E 92, 022139 (2015)

account Eq. (20), one obtains

F[λ1(τ ),λ2(τ )] = exp

[
−σ 2

∑
m

|αm|2
]

= exp

{
− σ 2

h̃2N

∫ t

0
dτ1

∫ t

0
dτ2

N∑
m=−N

[eikmx̃1(τ1)−iωmτ1 − eikmx̃2(τ1)−iωmτ1 ][e−ikmx̃1(τ2)+iωmτ2 − e−ikmx̃2(τ2)+iωmτ2 ]

}

= exp
{

−σ 2

h̃2

∫ t

0
dτ

∫ ∞

−∞
dkS(k)

{
1 − cos

[
k

∫ t

τ

(λ1(τ ′) − λ2(τ ′))dτ ′
]}}

. (21)

To take the functional integrals over the auxiliary fields λ1(τ )
and λ2(τ ), one performs the following linear change of the
fields [28]

λ1(τ ) = 2μ(τ ) + h̃ν(τ )/2
(22)

λ2(τ ) = 2μ(τ ) − h̃ν(τ )/2,

where the Jakobian of the transformation is h̃ for each value of
τ . Then the functional part of the integrand in Eq. (13) reads∏

τ

dμ(τ )dν(τ )

2π
exp

[
i

∫ t

0
μ(τ )ν(τ )dτ

]

× exp

[
−2i(p1 − p2)

∫ t

0
μ(τ )dτ

− ih̃

4
(p1 + p2)

∫ t

0
ν(τ )dτ

]
F[ν(τ )], (23)

where we use the fact that F[λ1(τ ),λ2(τ )] = F[λ1(τ ) −
λ2(τ )], which follows from Eq. (21). Taking integration
over x in Eq. (13) one obtains the δ function δ(p1 − p2).
Then, functional integration over μ(τ ) yields the δ functions∏

τ δ(ν(τ )), since the rest of the integrand does not depend on
μ(τ ). Finally, after integration over ν(τ ) one obtains that the
MPA is normalized to 1∫ ∞

−∞
ρ(x,t)dx = 1. (24)

A. Mean-squared displacement

Handling the exact expression of the MPA, we arrive at
the main objective of the work and can evaluate the rate of
the wave packet spreading by calculation of the MSD 〈x2(t)〉
in the (transversal) x direction. Taking into account Eqs. (13)
and (21), one obtains for the MSD

〈x2(t)〉 =
∫ ∞

−∞
ρ(x,t)x2dx

=
∫

dp1dp2

4π2
�̄0(p1)�̄∗

0 (p2)δ(2)(p1 − p2)
∫ ∏

τ

dμ(τ )dν(τ )

2π
exp

[
i

∫ t

0
μ(τ )ν(τ )dτ

]

× exp

[
−2i(p1 − p2)

∫ t

0
μ(τ )dτ − ih̃

4
(p1 + p2)

∫ t

0
ν(τ )dτ

]
F[ν(τ )], (25)

where we use the following definition of the second derivative
of the δ function δ(2)(p1 − p2) ≡ ∂p1∂p2δ(p1 − p2). Now, we
can repeat the previous calculations of Eqs. (13), (21), and (23).
Functional integration over μ(τ ) yields

∏
τ δ[ν(τ ) − 2(p1 −

p2)]. Therefore, functional integration over ν(τ ) is rigorous,
as well. Performing integration with δ(2)(p1 − p2), one obtains
finally for the MSD

〈x2(t)〉 = P 2
0 t2 + D0

3
t3. (26)

Here the first term ∼t2 describes a well-known wave packet
spreading in homogeneous media with the mean-squared
momentum

P 2
0 = h̃2

2π

∫ ∞

−∞
p2|�̂0(p)|2dp.

The second term, which is obtained by the rigorous quantum-
mechanical calculations, is of a pure classical nature and
corresponds to Richardson diffusion [11]. However, its contri-
bution in the quantum process of the wave packet spreading is
dominant ∼D0t

3, where the generalized diffusion coefficient
is

D0 = σ 2
∫ ∞

−∞
k2S(k)dk. (27)

V. HYPERDIFFUSION

It should be stressed that the experimental realization of
photonic lattices with the δ-correlated random potential is
technically impossible [1,4,5]. Therefore, the estimation of
the MSD for the realistic arbitrary correlated random potential
V (x,t) leads to essential complication of the analysis. Let us
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return to Eqs. (20) and (21) in a general form of the spectral density S(k,ω). The correlation function reads

C(x − x ′; t − t ′) = σ 2

N

∑
m

[eikm(x−x ′)−iωm(t−t ′) + c.c.] = σ 2
∫

dk

∫
dωS̃(k,ω)[ei[k(x−x ′)−ω(t−t ′)] + c.c.]. (28)

In this case, the functional action I[λ1(τ ),λ2(τ )] = −σ 2 ∑
m |αm|2 in

F[λ1(τ ),λ2(τ )] = exp{I[λ1(τ ),λ2(τ )]}
in Eq. (21) is a more complicated expression, which is not treatable rigorously. After some algebraic manipulations, this reads

I[λ1(τ ),λ2(τ )] = −σ 2

h̃2

∫ t

0
dτ1

∫ t

0
dτ2

∫ ∞

−∞
dk

∫ ∞

−∞
dω

× S(k,ω)
[
e
ik

∫ τ1
τ2

λ1dτ ′−ω(τ1−τ2)(1 − e
ik

∫ t

τ1
(λ1−λ2)dτ ′) + e

ik
∫ τ1
τ2

λ2dτ ′−ω(τ1−τ2)(1 − e
−ik

∫ t

τ1
(λ1−λ2)dτ ′)]

. (29)

Problematic terms here are the exponentials exp [ik
∫ τ1

τ2
λjdτ ′], where j = 1,2. Let us simplify these terms by introducing an

average momentum function

p̄j =
∫ τ2

τ1

λj (τ ′)dτ ′

τ2 − τ1
. (30)

Obviously, p̄1 = p̄2 = p̄(t), where we stressed that the averaged momentum function is a function of time. Changing the
integration from times (τ1,τ2) to τ = τ1 and s = τ1 − τ2, one recasts Eq. (29) in the form

I[λ1(τ ),λ2(τ )] = −2σ 2

h̃2

∫ t

0
dτ

∫ t

−t

ds

∫ ∞

−∞
dk

∫ ∞

−∞
dωS(k,ω)ei(kp̄−ω)s

[
1 − cos

(
k

∫ t

τ

(λ1 − λ2)dτ ′
)]

. (31)

Integration over s can be approximated by a δ function. Namely, this integration yields∫ t

−t

ei(kp̄−ω)sds →
∫ ∞

−∞
ei(kp̄−ω)sds = 2πδ(ω − kp̄).

Now integration over the frequency ω can be performed that yields the action function

I[λ1(τ ),λ2(τ )] = I[λ1(τ ) − λ2(τ )] = −2σ 2

h̃2

∫ t

0
dτ

∫ ∞

−∞
dkS(k,kp̄)

[
1 − cos

(
k

∫ t

τ

(λ1 − λ2)dτ ′
)]

. (32)

Finally, one obtains

F[λ1(τ ),λ2(τ )] = exp{I[λ1(τ ) − λ2(τ )]},
which is analogous to the expression obtained for Richardson diffusion. Performing again the variable change of Eq. (22), we
obtain an expression for the MSD analogous to Eq. (25). The MSD reads

〈x2(t)〉 =
∫ ∞

−∞
ρ(x,t)x2dx

=
∫

dp1dp2

4π2
�̄0(p1)�̄∗

0 (p2)δ(2)(p1 − p2)
∫ ∏

τ

dμ(τ )dν(τ )

2π
exp

[
i

∫ t

0
μ(τ )ν(τ )dτ

]

× exp

[
−2i(p1 − p2)

∫ t

0
μ(τ )dτ − ih̃

4
(p1 + p2)

∫ t

0
ν(τ )dτ

]
F[ν(τ )]. (33)

The essential difference between Eqs. (33) and (25) is the
spectral density, which now is a two-dimensional function
S(k,kp̄). Integration over the fields μ and ν and differentiation
over p1 and p2 yields

〈x2(t)〉 = πσ 2
∫ t

0
dτ (t − τ )2

∫ ∞

−∞
S(k,kp̄)k2dk (34)

We obtain the asymptotic behavior of Eq. (34) for large values
of p̄, following a similar procedure presented in Refs. [2,3,34].

Therefore, by rescaling the variables, k′ = kp̄, one obtains

〈x2(t)〉 = πσ 2
∫ t

0
dτ

(t − τ )2

p̄3(τ )

∫ ∞

−∞
S

(
k′

p̄
,k′

)
k′2dk′

≈ D0

∫ t

0

(t − τ )2

p̄3(τ )
dτ. (35)

Here it was reasonable to suppose that S( k
p̄
,k) is a slow

function of k/p̄. For p̄ = const the MSD corresponds to
Richardson diffusion ∼t3. Such behavior supposes for the
averaged momentum function to be an increasing function
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of time. Moreover, it has been suggested in Ref. [3] that for
large p̄, one obtains S(k/p̄,k) ≈ S(0,k) that yields nonzero
generalized diffusion coefficient

D0 = πσ 2
∫

k2S(0,k)dk. (36)

It is also supposes a physical meaning of p̄2(t), which behaves
as a velocity-velocity correlation function. Therefore, one
suggests a self-consistent procedure, presented in Appendix A,
to find this function. This yields for p̄(t)

p̄(t) = (5D0/2)1/5 t1/5. (37)

Taking this behavior into account, one obtains

〈x2(t)〉 ∼ D̄t12/5, (38)

which corresponds to hyperdiffusion, observed experimen-
tally [1]. Here D̄ = (2/5)3/5D

2/5
0 .

VI. CONCLUSION

An enhanced spreading of a quantum wave packet in
randomly inhomogeneous media is considered. This quantum
process is realized in an arbitrary space-time-dependent poten-
tial V (x,t). A rigorous quantum-mechanical calculation of the
mean probability amplitude (MPA) is suggested that makes it
possible to calculate the mean-squared displacement (MSD)
of the spreading wave packet. The obtained result establishes
the power-law spreading of the MSD, which is 〈x2(t)〉 ∼ tα ,
where 2 < α � 3, and the values of the transport exponent α

depend on the correlation properties of the random potential
V (x,t). The main motivation of the presented analysis is
experimental demonstrations on wave packet spreading in
random photonic lattices [1,4,5]. Another possible application
of the presented analysis can be related to a sound wave
monitoring in underwater acoustics [22], at the conditions
when the parabolic equation approximation is valid and the
refractive index has random local fluctuations �n(x,z), which
leads to a dominant random potential as in Eqs. (1) and (2).

The rigorous formal expression for the wave function is
obtained in a form of path integration, such that the wave
function (9) is a functional of the random potential V (x,t).
When V (x,t) is δ correlated in time as in Eq. (20), the
MSD is rigorously calculated in the framework of quantum-
mechanical consideration. The dominant term in the MSD of
the order of t3 is due to turbulent Richardson diffusion [11].
Another important result of Eq (26) is that the quantum
homogeneous spread ∼t2 stays separate from the dominant
classical one ∼t3. One can understand this property from the
structure of the wave function (9)

�(x,t) =
∫

D[λ(τ )] exp

[
i

2h̃

∫ t

0
dτλ2(τ )

]

× e
i

h̃

∫ t

0 dτV (x+∫ t

τ
dτ ′λ,τ )�0

(
x +

∫ t

0
dτλ

)
, (39)

where D[λ(τ )] = ∏
τ

dλ(τ )√
2πh̃i

. This is a kind of Feynman-Kac
formula [20,21], obtained by means of the auxiliary Markov

process3 with the Gaussian distribution in the potential V (x,t).
However, since V (x,t) is random itself, the details of the
potential are not important, and the main information and
contribution to the MPA is due to the correlation function
C(x − x ′,t − t ′), or the spectral density S(k,ω), correspond-
ingly. When the random potential is δ correlated in time, the
auxiliary field λ does not intertwine with the potential V (x,t).
This is reflected in the solution for the MPA ρ(x,t), where the
averaged evolution kernelF depends only on the quantum part
of the auxiliary fields, namely, F = F[λ1(τ ) − λ2(τ )]. As a
result of this, rigorous integration over λ1 and λ2 is performed.
Therefore, each Markov process contributes separately to the
MSD in Eq. (26). The quantum mechanics leads to the ballistic
∼t2 spread of the initial wave packet, while the classical
Obukhov mechanism of turbulent diffusion reveals itself in
pure quantum mechanics with the dominant ∼t3 spread of the
wave packet.

The situation changes dramatically when the random
potential is correlated in both space and time. In this case
the auxiliary λ fields and the random potential are intertwined
due to the nonlocal terms

∫ t2
t1

λ(τ )dτ in the MPA. To make
the problem treatable, this nonlocal term is presented in
form of an averaged quantum momentum function (t1 − t2)p̄,
where p̄ is related to a velocity-velocity correlation function
of random quantum paths. After this approximation, the
integration over the λs is performed rigorously again. Now
the quantum ballistic spread is accompanied by hyperdiffusion
∼tα . Assuming that the spectral function after rescaling S( k

p̄
,k)

is a slow function of k/p̄, like in Eq. (36), it is obtained that
α = 12/5. As already admitted, this result coincides with one
obtained in Refs. [2,3] in the classical limit of the ray dynamics.
However, contrary to Refs. [2,3], in the present analysis we did
not suppose any restriction conditions for the random potential
V (x,t).

In the general case, one obtains that 2 < α < 3. This
result follows from Eq. (35), where

∫ ∞
−∞ S( k

p̄
,k)k2dk is a

slow varying function, which approaches to the transport
constant D0 for the asymptotic large times t → ∞. Therefore,
α = 12/5 is the large time asymptotic result, as well.
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APPENDIX: INFERRING OF THE AVERAGED
MOMENTUM p̄

Let us obtain analytical expression (37) for the averaged
momentum p̄(t) in the framework of a self-contained proce-
dure, where we take into account that p̄2(t) is a correlation
function. First, it is worth noting that Eq. (30) is a definition of
p̄. However it does not determine the latter, since the averaging
of the random auxiliary field λ(t) over the time interval s =
t1 − t2 is not well defined. Second, we admit that the integral∫ τ1

τ2
λ(t)dt is not zero. Moreover, we replace this integral by

3Note that quantum mechanics itself is not the Markovian dynamics.
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a quantum path. One can reasonably suppose that the MSD
of these quantum paths is determined by the velocity-velocity
correlation function p̄2(t) ≈ 〈ẋ2(t)〉λ = 〈ẋ2(t)〉. Therefore, we
relate the averaged momentum function to the real quantum
path x(t), and to estimate its temporal behavior, we consider
its classical random dynamics. Integrating the dynamical
equation

ẍ = −d V (x,t)

d x
,

one obtains from the definition of the random potential in
Eq. (4)

ẋ(t) =
∫ t

0

1√
N

∑
m

(−i)kmAmeikmx(t ′)−iωmt ′dt ′ + c.c.. (A1)

Therefore, the self-correlation function reads

〈ẋ2(t)〉 = 2σ 2

N

∑
m

∫ t

0
dt ′

∫ t

0
dt

′′

× cos[km(x ′ − x ′′) − ω(t ′ − t ′′)]k2
m

= 2σ 2
∫ t

0
dt ′

∫ t

0
dt

′′
∫

dk

∫
dωk2S(k,ω)

× cos[k(x ′ − x ′′) − ω(t ′ − t ′′)]. (A2)

Note that according the property (5), 〈ẋ(t)〉 = 0. After chang-
ing integration times τ = t ′ and s = t ′ − t ′′, we arrived at the
same expression as in Eq. (31).

Following the solution of the wave function in Eq. (9), the
evolution of the coordinates x(t) is due to the shift operator
x(t) = x0 + ∫ t

0 λ(τ )dτ . Therefore, according Eq. (30), the

difference x(t ′) − x(t ′′) yields p̄(τ ) = (x ′ − x ′′)/(t ′ − t ′′) =
ẋ. Taking into account Eq. (35), one obtains approximately
from Eq. (A2)

p̄2(t) ≈ D0

∫ t

0

dτ

p̄3(τ )
. (A3)

Differentiating Eq. (A3) over time, one obtains

p̄3(t)
d p̄2(t)

d t
= D0. (A4)

This equation can be also obtained by using the well known
expression (see e.g., [35])

〈x2(t)〉λ = 2
∫ t

0
(t − τ )〈ẋ(τ )ẋ(0)〉λdτ (A5)

and consider that 〈x2(t)〉 = 〈x2(t)〉λ. Now we put forward the
physical meaning of the momentum function p̄ by substituting
it in Eq. (A5)

〈x2(t)〉λ = 2
∫ t

0
(t − τ )p̄2(τ )dτ. (A6)

Differentiating twice Eqs. (A6) and (35) over t and comparing
the obtained results, one obtains

p̄2 ≈ D0

∫ t

0

dτ

p̄3(τ )
.

Differentiating this over time again, one obtains Eq. (A4).
Solving this equation, one obtains

p̄(t) = (5D0/2)1/5t1/5. (A7)
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