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Temporally correlated zero-range process with open boundaries: Steady state and fluctuations
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We study an open-boundary version of the on-off zero-range process introduced in Hirschberg et al. [Phys.
Rev. Lett. 103, 090602 (2009)]. This model includes temporal correlations which can promote the condensation
of particles, a situation observed in real-world dynamics. We derive the exact solution for the steady state of
the one-site system, as well as a mean-field approximation for larger one-dimensional lattices, and also explore
the large deviation properties of the particle current. Analytical and numerical calculations show that, although the
particle distribution is well described by an effective Markovian solution, the probability of rare currents differs
from the memoryless case. In particular, we find evidence for a memory-induced dynamical phase transition.
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I. INTRODUCTION

The first step in the study of a complex system is often to
focus on its typical behavior. Employing the tools of statistical
mechanics, for example, we can study the typical properties of
a macroscopic system. However, there are situations in which
the behavior of interest is not typical, but rather atypical.
For example, the transport of energy, particles, or vehicles
could be enhanced by exceptional coherent configurations,
or occasionally delayed when an instantaneous situation
similar to condensation occurs [1]. As another example, in
communication networks it is very important to predict how
likely it is to have interruptions or packet loss [2].

Moreover, rare events help to shed light on the foundations
of nonequilibrium statistical mechanics, just as they play
an important role in defining the thermodynamic potentials
in equilibrium statistical mechanics [3–5]. While a general
framework for the characterization of systems far from thermal
equilibrium is at a primitive stage, large deviation theory plays
a central role [5,6].

As a comprehensive theory of nonequilibrium phenomena
does not exist, the analytical study of toy models is an effective
way to build it up. The majority of the interacting-particle
models in the literature are Markovian, i.e., memoryless.
Such an approximation simplifies the theoretical treatment,
but can exclude some properties of physical phenomena. The
effects of memory on such models have thus prompted recent
curiosity [7–10]. We enter into this context by studying a
driven-diffusive system which is referred to as the on-off zero-
range process (on-off ZRP) and focusing on its nonequilibrium
aspects. This model is an open-boundary version of the
non-Markovian ZRP defined in [7,8] and allows analytical
progress.

Nonequilibrium stationary states (NESSs) are characterized
by the presence of finite currents, which measure the violation
of detailed balance for opposing transitions between two
configurations [11–13]. Such currents fluctuate in time and the
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functions that determine the probability of deviation from their
typical values have the same mathematics as the thermodynam-
ical functionals defined in equilibrium statistical mechanics.
In this spirit, we are interested in the particle current for our
model, i.e., in the transition events corresponding to particle
hops. The study of its rare fluctuations reveals effects of the
time correlation hidden in the stationary state.

The paper is organized as follows. In Sec. II, we define
the model and in Sec. III A we derive its stationary state in
the single-site system. In Sec. III B, we present a mean-field
treatment of the dynamics on a chain topology and test the
validity of this approximation against standard Monte Carlo
simulations. In Sec. IV, we explore the current fluctuations,
focusing, in a one-site system, on the difference between the
small fluctuation regime, obtained by analytic continuation of
the NESS (Sec. IV B 1), and the extreme fluctuation regimes
(Sec. IV B 3), and deriving the phase boundaries between
them (Sec. IV B 2). The analytical results are tested against
an advanced numerical method which has been developed to
evaluate large deviation functions directly [14]. We summarize
the results in Sec. V.

II. MODEL

The ZRP is a model of interacting particles on a discrete
lattice, which we take here to be a one-dimensional chain.
Each lattice site can contain an arbitrary positive number
of particles. The evolution proceeds in continuous time, i.e.,
transitions occur after a waiting time which is an exponentially
distributed random variable. Specifically, in the standard ZRP,
a particle can hop to one of the neighboring sites with rate
proportional to μn, which depends only on the occupation
number n of the departure site. Obviously, the departure rate
from an empty site is given by μ0 = 0. The functional form
of μn encodes the interaction between particles, which occurs
only on the departure site, hence the epithet “zero range”. The
special case μn = an, where a > 0 is a constant, corresponds
to free particles since in this case each particle leaves the site
independently from the others. Other choices of μn correspond
to attractive or repulsive interparticle interaction if the n

dependence is sublinear or superlinear, respectively.
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Models with zero-range interactions have proven to dis-
play complex collective behavior while allowing analytical
treatment [15]. In particular, the ZRP is well suited for
theoretical analysis because the stationary probability distribu-
tion of a given configuration factorizes and can be calculated
exactly [16]. It is worth mentioning that certain choices of μn

lead to condensation, i.e., the accumulation of a macroscopic
fraction of the total number of particles on a single site. Con-
densation transitions far from equilibrium have been studied
in physics [17], as well as in economics [18,19], biology [20],
network science [21,22], and queueing theory [23]. Toy
models, such as the ZRP, provide a theoretical foundation for
understanding condensation in these systems. Exact results
from the ZRP have also been used in models of vehicular
traffic [1,24], reptation in polymer physics [25], and transport
and coalescence in granular systems [26].

A further step towards a deeper comprehension of real-
world phenomena may be achieved by studying stochastic
systems with time correlations. A modified zero-range pro-
cess with non-Markovian dynamics has been introduced in
Hirschberg et al. [7,8]. The crucial new ingredient is that
each site has an additional clock (phase) variable τ and the
particles cannot leave the site when the clock is set to zero,
which corresponds to the OFF phase. The clock ticks and
turns on with rate c and turns off with each particle arrival.
This mechanism favors the accumulation of particles on a
site. According to the zero-range dynamics, the particles
interact only onsite, but now have a different departure rate
μn,τ . The additional variable τ takes into account events in
particle configuration space that happened in the past and
therefore introduces temporal correlations. This model has
sparked interest as it displays, under certain conditions, a
condensate with slow drift [7,8]. Systems with distinct on
and off phases are also of interest as models for intracellular
ion channels [27,28] and for data traffic streams [29], as well
as providing examples of stochastic processes with nonconvex
rate functions [30].

To the best of our knowledge, the ZRP with on-off dynamics
has been studied only on ring topology, i.e., with periodic
boundary conditions. In this paper, we investigate the open-
boundary version of the model, thus extending the work of
Hirschberg et al. [7,8]. We implement the same dynamics
on an open chain with arbitrary hopping rates and boundary
parameters (see Fig. 1). Particles are added and removed
through the boundaries. On the leftmost lattice site (site 1),
particles are injected with rate α and they are removed with
rate γμn,τ which is nonzero only when the phase of site 1
is different from τ = 0. Similarly, on the rightmost site (site
L) particles are removed with rate βμn,τ , accordingly to the
phase of site L, and are injected with rate δ. This situation
corresponds to a bulk system in contact with two different
reservoirs. In the bulk, particles jump to the left (right) with
rate qμn,τ (pμn,τ ), which is again nonzero only when the phase
of the departure site is not τ = 0. The dynamics is sensitive
to the specific rate values and we consider choices that induce
a rightwards driving along the chain. In particular, it is worth
making the distinction between the totally asymmetric (TA)
and the partially asymmetric (PA) processes.

Hereafter, we will consider explicitly two forms for inter-
action factor μn,τ , i.e., the case where μn,τ is constant with

FIG. 1. (Color online) Non-Markovian ZRP on a one-
dimensional lattice with open boundaries. Each site has a
hidden variable τ , whose values are represented by the positions of a
gear, which controls the departure rate. When τ assumes value zero
no departure is possible and the corresponding state is referred to
as OFF. This lockdown occurs in conjunction with the arrival of a
particle.

respect to n > 0, which corresponds to an onsite attractive
interaction between particles, and the case where μn,τ is
linear in n, which corresponds to no direct interaction between
particles (excluding residual correlations due to the blockade
mechanism).

The stationary distribution of the standard ZRP on an open
chain has been extensively studied in Levine et al. [31]. In this
case, the particles are distributed along the system according to
a product-form structure that implies no correlations between
sites. In contrast, the on-off ZRP can generate more complex
patterns, as shown in Fig. 2 for three sets of parameters.
The clock-tick rate c plays a major role in these patterns,
the lower its value is, the more important the correlations
are. Increasing the value of c, the system eventually becomes
spatially uncorrelated. In the next two sections we study in
detail how the introduction of time correlations affects the
stationary state and the current fluctuations.

III. STATIONARY STATE

A. Exact results for one-site system

As mentioned above, a notable property of the standard
ZRP is that in the stationary state the probability P ∗({nl})
of finding the system in a state {nl} = (n1,n2, . . . nL) with nl

particles on site l is given by a simple factorized form

P ∗({nl}) =
L∏

l=1

P ∗
l (nl), (1)

where P ∗
l (nl) is the probability of finding the site l with nl

particles. The one-site marginals are determined by

P ∗
l (n) = zl

n

Zl

n∏
i=1

μ−1
i , (2)
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FIG. 2. (Color online) Monte Carlo time evolution of the
occupation profile of the on-off ZRP on a one-dimensional lattice.
(a) Rates μn,τ = n if τ > 0, μn,τ = 0 otherwise, and
(α,β,γ,δ,p,q,c) = (0.1,0.2,0,0,1,0,0.05). Only correlations
due to the blockade mechanism are present. The particles organize
in traveling clusters. Their speed is mainly governed by c. (b)
Same parameters as the former case, except (β,p) = (104,104). The
particles jump almost simultaneously to the next site as soon as the
blockade is removed. Each particle cluster tends to occupy a single
site. The drift proceeds with a rate � c. (c) Same parameters as
(a), except μn,τ = 1 if τ > 0 and n > 0, μn,τ = 0 otherwise, and
c = 0.15. As a result of the attractive interparticle interaction, the
clusters with more particles travel slower than the less populated
ones. This mechanism enhances congestion.

where zl is a site-dependent fugacity (which is a function of the
hopping rates) and the grand-canonical partition function Zl =∑∞

n=0 zl
n
∏n

i=1 μ−1
i ensures normalization [31]. It is worth not-

ing that, for certain choices of μn, it is not possible for the sum
in Zl to converge for all zl . The divergence of Zl corresponds
to the accumulation of particles on the site l and we refer to
it as congestion. Indeed, the infinite accumulation on one or
more sites in an open system can be thought of as a kind of con-
densation phenomenon [23,31]. In the following, we will also
use the “condensation” terminology even for the single-site
case.

Our preliminary simulations in Fig. 2 suggest that we cannot
rely on a factorized steady state for the non-Markovian model
introduced in Sec. II. However, for the single-site system,
an exact solution is straightforward. The state is defined by
two variables: the number of particles in the box n and a
“clock” or “phase” variable τ . We focus on TA dynamics and
consider a box which receives particles with rate α and ejects
particles with rate βμn,τ , where μn,τ is a function of the box
state. The departure event is possible only when τ �= 0. Also,
the dynamics includes the advance of the clock with rate c,
and the reset to τ = 0 when a particle arrives. If one defines
P (−1,τ ; t) = P (n, − 1; t) = 0, the following master equation
is valid for τ � 0 and n � 0:

dP (n,τ ; t)

dt
= cP (n,τ − 1; t) + βμn+1,τ P (n + 1,τ ; t)

+ δτ,0

∑
τ ′�0

αP (n − 1,τ ′; t)

− (c + βμn,τ + α)P (n,τ ; t), (3)

where P (n,τ ; t) denotes the probability of finding the system
with n particles and phase τ at time t and δτ,0 is a Kronecker
delta. The first term on the right-hand side of (3) corresponds
to a clock tick, the second term to the departure of a particle,
the third term to the arrival of a particle, and the fourth term
to the respective escape events from the state (n,τ ).

As in Hirschberg et al. [7,8], we choose to simplify the
dependence of the jump rate on τ to μn,τ = μn when τ > 0.
Hereafter, we specialize to this case, except when we explicitly
refer to a general form for μn,τ . In this simplified case, it is
more convenient to write the master equation (3) in terms of
P (n,ON; t) = ∑

τ>0 P (n,τ ; t) and P (n,OFF; t) = P (n,0; t):

dP (n,ON; t)

dt
= cP (n,OFF; t) + βμn+1P (n + 1,ON; t)

− (βμn + α)P (n,ON; t), (4)

dP (0,ON; t)

dt
= cP (0,OFF; t) + βμ1P (1,ON; t)

−αP (0,ON; t), (5)

dP (n,OFF; t)

dt
= αP (n − 1,ON,t) + αP (n − 1,OFF,t)

− (c + α)P (n,OFF; t), (6)

dP (0,OFF; t)

dt
= −(c + α)P (0,OFF; t). (7)

022137-3
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FIG. 3. (Color online) Occupation probability distribution of the
one-site system for constant (μn = μ,n > 0) and linear (μn = n)
microscopic departure rates. The arrival and departure rates are α =
0.1 and β = 0.2, respectively.

By equating the left-hand sides of Eqs. (4)–(7) to zero, we
find that the stationary distribution is given by

P ∗(n) = zn

Zc

n∏
i=1

w−1
c,i , (8)

P ∗(n,OFF) = βμn

α + c + βμn

P ∗(n), (9)

P ∗(n,ON) = (α + c)

α + c + βμn

P ∗(n), (10)

where z = α/β, wc,i = μi(α + c)/(α + c + βμi), Zc =∑∞
n=0 zn

∏n
i=1 w−1

c,i , and P ∗(n) = P ∗(n,ON) + P ∗(n,OFF) by
construction. We recognize the same stationary state (2) as
the standard ZRP, with an effective departure rate wc,n =
μnP (ON|n), where P (ON|n) = (α + c)/(α + c + βμn) is the
conditional probability of finding the site in the ON state,
given that there are n particles. For c → ∞, the effective jump
rate converges to the microscopic rate, i.e., wc,n → μn. The
stationary probability distribution of the occupation number
is checked against Monte Carlo simulations in Fig. 3 for
both constant and linear departure rates. Its tail is longer than
the corresponding Markovian model (c → ∞). The derivation
of (8)–(10) is reported in Appendix A.

The normalization condition
∑

n P ∗(n) = 1 on the prob-
ability distribution (8) requires limn→∞ α/(βwc,n) < 1. For
μn = μ, the effective departure rate is referred to as wc, and
this stationarity condition is simply α/(βwc) < 1. It implies
that values of c smaller than the threshold c1 := α2/(βμ − α)
exclude any stationary state and produce a congested phase.
The onset of congestion in a larger system with constant
departure rate is explored in Sec. III B using a mean-field
approach. For unbounded microscopic departure rates, since
limn→∞ μn = ∞, the effective interaction is still bounded,
since limn→∞ wc,n = (α + c)/β. However, as long as c > 0,
the normalization condition is always ensured. Obviously, the
linear departure rate case falls into this category.

We now outline the quantum Hamiltonian representa-
tion [32] of the master equation (4)–(7), which will turn out

to be convenient for the study of fluctuations in Sec. IV.
The epithet “quantum” has become standard in the literature
on interacting-particle systems, along with the warnings that
underline that the generator of a stochastic process is in general
non-Hermitian, contrary to the operators in quantum mechan-
ics. In this approach, one works in the joint occupation and
phase vector space, defining a probability basis vector |n,τ 〉 =
|n〉 ⊗ |τ 〉 representing a configuration with n particles and
phase τ . A probability vector |P (t)〉 = ∑

n,τ P (n,τ ; t)|n,τ 〉
obeys the normalization condition 〈1|P (t)〉 = 1 where 〈1| =
(1,1, . . .). The master equation then reads as

d

dt
|P (t)〉 = −H |P (t)〉, (11)

where the operator H is a single-site Hamiltonian. Our
convention is to use the basis kets (1,0)T and (0,1)T for the
states |OFF〉 and |ON〉, respectively. A configuration with n

particles is represented by a basis ket with the nth component
equal to 1 and the remaining components equal to zero.
Consequently, the Hamiltonian is written as

H = −c
(
a+

T1
−gT1

)−α
(
a+

N1
fT1 − 1

) − β
(
a−

N1
dT1 − dN1dT1

)
,

(12)

with

a+
T1

= 1 ⊗
(

0 0

1 0

)
, fT1 = 1 ⊗

(
1 1

0 0

)
,

(13)

gT1 = 1 ⊗
(

1 0

0 0

)
, dT1 = 1 ⊗

(
0 0

0 1

)
,

a+
N1

=

⎛
⎜⎜⎜⎜⎝

0 0 0 . . .

1 0 0

0 1 0
...

. . .

⎞
⎟⎟⎟⎟⎠ ⊗ 1, (14)

a−
N1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 μ1 0 0 . . .

0 0 μ2 0

0 0 0 μ3

0 0 0 0
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

⊗ 1, (15)

dN1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .

0 μ1 0 0

0 0 μ2 0

0 0 0 μ3

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

⊗ 1. (16)

We use the convention that a ladder operator with subscript
N1 or T1 acts nontrivially only on the occupation or phase
subspace, respectively. The additional subscripts 1 underline
that this Hamiltonian generates the dynamics for the single-site
case. The operator H has a block tridiagonal structure which
occurs in general in stochastic generators of processes with
two variables, n and τ in this case. The blocks correspond to
changes in the first variable, while the entries inside the blocks
correspond to changes of the second one. All the variables can
change by at most 1. Such processes belong to the class of
quasi–birth-death processes and are simple cases of queues
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with Markovian arrival and general departure law [33,34]. We
mention also that the results in this section can be adapted to
the more general PA case with the replacement α → α + δ

and β → β + γ . Specifically, the quantum Hamiltonian for
PA dynamics on a single site is

H = −c
(
a+

T1
− gT1

) − α
(
a+

N1
fT1 − 1

) − β
(
a−

N1
dT1 − dN1dT1

)
−γ

(
a−

N1
dT1 − dN1dT1

) − δ
(
a+

N1
fT1 − 1

)
. (17)

B. Mean-field solution for the L-site system

In the case considered so far, particles arrive on the site from
the boundaries according to a Poisson process. The many-site
system is rather more complicated than this. In fact, each site
receives particles according to a more general point process,
which alternates time intervals with no events (corresponding
to the OFF phases of the neighbor sites) and periods with
arrivals. Moreover, the exact statistics of the phase switching
is not a priori known.

In this section, we derive an approximate solution for the
stationary state of the on-off ZRP on an open chain. The
approximation consists in decoupling the equations which
describe the dynamics for each site, replacing the point process
that governs the arrival on each site by a Poisson process with
an effective characteristic rate. The decoupling of the equations
allows us to use the results obtained for the one-site system
(Sec. III A).

Let us first consider the general model described in Sec. II,
where the departure rates μn,τ retain a nontrivial dependence
on both n and τ . We assume a product measure

∏L
l=1 P ∗

l (nl,τl)
for the joint probability P ∗({nl,τl}) that the system is in a
steady state with the generic site l in configuration (nl,τl).
Imposing this solution in the stationarity condition of the L-site
master equation, we get

cP ∗
l (nl,τl − 1)

+p
∑

τ

zl−1P
∗
l (nl − 1,τ )δτl ,0

+ q
∑

τ

zl+1P
∗
l (nl − 1,τ )δτl ,0

+ (p + q)μnl+1,τl
P ∗

l (nl + 1,τl)

− [pzl−1 + qzl+1 + (p + q)μnl,τl
+ c]P ∗

l (nl,τl) = 0 (18)

for the generic bulk site l, 1 < l < L. We use the sym-
bol zl , already adopted in Sec. III A for the fugacity, to
denote the ensemble average of the departure rate since
zl = ∑

nl ,τl
μnl,τl

P ∗
l (nl,τl). The use of an average interaction

term justifies the appellation “mean field”. Similarly, for the
leftmost and rightmost sites we get, respectively,

cP ∗
1 (n1,τ1 − 1)

+α
∑

τ

P ∗
1 (n1 − 1,τ )δτ1,0

+ q
∑

τ

z2P
∗
1 (n1 − 1,τ )δτ1,0

+ (p + γ )μn1+1,τ1P
∗
1 (n1 + 1,τ1)

− [α + qz2 + (p + γ )μn1,τ1 + c]P ∗
1 (n1,τ1) = 0 (19)

and

cP ∗
L(nL,τL − 1)

+p
∑

τ

zL−1PL(nL − 1,τ )δτL,0

+ δ
∑

τ

PL(nL − 1,τ )δτL,0

+ (β + q)μnL+1,τL
P ∗

L(nL + 1,τL)

− [pzL−1 + δ + (β + q)μnL,τL
+ c]P ∗

L(nL,τL) = 0. (20)

In Eq. (18), we recognize the stationarity condition for the
single site with arrival and departure rates equal to (pzl−1 +
qzl+1) and (p + q)μnl,τl

, respectively. Similarly, Eq. (19) is the
stationarity condition for a single site with arrival and departure
rates equal, respectively, to (α + qz2) and (p + γ )μn1,τ1 , while
Eq. (20) has arrival and departure rates equal, respectively,
to (pzL−1 + δ) and (β + q)μnL,τL

. These conditions, in the
simplified case μn,τ = μn when τ > 0, allow us to write an
approximate stationary distribution for each site l analogous
to (8) but with modified hopping rates

P ∗
l (n) = zl

n

Zc,l

n∏
i=1

w−1
c,i;l (21)

with Zc;l = ∑
n zl

n
∏n

i=1 w−1
c,i;l and

z1 = α + qz2

p + γ
, wc,i;1 = μi(c + α + qz2)

c + α + qz2 + (p + γ )μi

,

zL = δ + pzL−1

β + q
, wc,i;L = μi(c + δ + pzL−1)

c + δ + pzL−1 + (β + q)μi

,

zl =pzl−1+qzl+1

p + q
, wc,i;l = μi(c + pzl−1 + qzl+1)

c + pzl−1 + qzl+1 + (p + q)μi

,

(22)

where 1 < l < L. The scenario of Eqs. (22) corresponds
to a one-dimensional lattice where each site l receives a
uniform particle stream of rate qzl+1 (pzl−1) from the right
(left) neighbor and sends particles according to its internal
dynamics. The consistency condition of the zl in Eq. (22),
which is equivalent to the conservation of the current along
the chain, is satisfied for

α − γ z1 = pzl − qzl+1 = βzL − δ = 〈j 〉, (23)

l = 1,2, . . . ,L. The solution of this recursive relation yields
the fugacity zl and the mean current 〈j 〉 [31]:

zl =
αβ

(
p

q

)L−1 − γ δ − (
p

q

)l−1
[αβ − γ δ − (α + δ)(p − q)]

β
(

p

q

)L−1
(γ + p − q) − γ (β − p + q)

,

(24)

〈j 〉 = (p − q)
αβ

(
p

q

)L−1 − γ δ

γ (p − q − β) + β(p − q + γ )
(

p

q

)L−1 , (25)

which complete the mean-field solution for the model.
The approximation results in the separation of the dy-

namics of each site, consequently, the mean-field quantum
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Hamiltonian can be written as

Hmf = Hleft + Hright +
L−1∑
l=2

Hl, (26)

where Hleft, Hright, and Hl are obtained from the generic one-
site Hamiltonian (17) using the mean-field arrival rates.

While the fugacities (24) are identical to those of a standard
ZRP on an open chain [31], the effective departure rates
wc,n;l are affected by the time correlations and, significantly,
become site dependent. This is evident at the level of
stationary density and variance profile, respectively 〈nl〉 =
zl∂(ln Zc,l)/∂zl and σl

2 ≡ 〈nl
2〉 − 〈nl〉2 = zl

2∂2(ln Zc,l)/∂zl
2

in the mean-field approximation. The predicted density profile
can be nonmonotonic, which contrasts with the stationary
profile of the standard ZRP [31]. This feature is indeed
present in the Monte Carlo simulated density profiles for
certain parameter combinations. In fact, for the parameters
considered, the agreement between mean-field theory and
simulation is excellent, except when c is very small (see Fig. 4).
In Fig. 5 the mean-field predictions for the per-site occupation
distributions are checked against simulations. The agreement
is again good except for the cases with smaller values of c, for
which the cross correlation Cij = (〈ninj 〉 − 〈ni〉〈nj 〉)/(σiσj )
between the occupations on site i and j appears to be stronger.
This is clear in Fig. 6, where we report a negative cross
correlation between neighboring-site occupations for small
values of c.

In the cases explored above, the values of c have been cho-
sen in order to guarantee the existence of a well defined NESS
with constant average occupation number. In the one-site
system seen in Sec. III A, this choice was straightforward, as
we can derive exactly the congestion threshold. In an extended
system with unbounded departure rates, we expect that any
strictly positive value of c guarantees the NESS because,
although a large number of particles can pile up during the
OFF phase, they can be released arbitrarily quickly during the
ON phase. On the contrary, the extended system with bounded
departure rates appears to be more interesting. For values of c

smaller than a certain value, the particles accumulate on one
or more of the lattice sites. We now compare the prediction
of the mean-field theory for this congestion threshold with the
results of Monte Carlo simulations performed on a chain of
length L = 20. In order to evaluate numerically the onset of
congestion, we make use of the parameter (inspired by [35])

κ = ntot(t + 
t) − ntot(t)


t

1

(α + δ)
, (27)

where t � 
t and ntot(t) = ∑L
l=1〈nl(t)〉 is the average total

number of particles in the system. The parameter κ measures
the difference between the rate at which particles arrive and the
rate at which particles leave the system, scaled with respect to
the total arrival rate. The congestion occurs when κ is strictly
positive.1 For the one-site model (4)–(7) with μn = μ, it is
straightforward to show that the expected value of ακ is the
positive part of the average growth rate α − βμc/(c + α). This

1Precisely at the threshold, we expect congestion (condensation)
but with sublinear growth in time.

0

2

4

6

8

10

12

〈n
l〉

(a)
μn = 1

σ
l2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

l

0

2

4

6

8

10

12

14

16

18

〈n
l〉

(b)
μn = n

σ
l2

TA c = 5 mean-field

PA c = 5 mean-field

TA c = 0.1 mean-field

PA c = 0.1 mean-field

TA c = 5 simulation

PA c = 5 simulation

TA c = 0.1 simulation

PA c = 0.1 simulation

5 10 15 20

0

50

100

5 10 15 20

0

50

100

FIG. 4. (Color online) Density profile 〈nl〉, and variance profile
σl

2 (insets), on a chain of length L = 20 with (a) constant and (b)
linear departure rates. The results obtained within the mean-field
approximation (line vertices) are compared with the results computed
by means of Monte Carlo simulations (markers). TA and PA refer
to rates (α,β,γ,δ,p,q) = (0.2,0.3,0,0,1,0) and (α,β,γ,δ,p,q) =
(0.1,0.2,0.1,0.1,0.55,0.45), respectively.

allows us to approximate a local κl for the generic site l of a
chain, by replacing α and β with the mean-field arrival and
departure rates, respectively. The numerical Monte Carlo study
of κl reveals the first site where the congestion sets in, tuning
c from large to smaller values. In a chain with TA jumps, this
occurs on site 1, for p � β, or on the site L, otherwise. In the
PA case, the congestion can set in on the bulk site L − 1, as
suggested by the nonmonotonic density profile of Fig. 4. Not
surprisingly, the mean-field theory predicts this possibility.

We define the mean-field congestion threshold cmf as the
smallest value of c such that none of the sites l of the system
with Hamiltonian (26) has κl > 0. In the TA case, as long
as p > β, cmf is equivalent to the threshold c1 derived in
Sec. III A for the one-site system with boundary rates α
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FIG. 5. (Color online) The mean-field probability distribution (line vertices) of the site occupation numbers in a chain of length L = 5
are checked against simulations (markers). Symbols +, × ,◦, �, � and solid, dotted, dashed, dotted-dashed, dotted-dotted-dashed lines of the
corresponding color (grayscale) refer to sites l = 1,2,3,4,5, respectively. Parameter combinations as in Fig. 4.

and β. The numerical evaluation of κ for the whole system,
plotted against the mean-field estimate in Fig. 7, suggests
that cmf is an upper bound for the true congestion transition
in this case. This relation arises as the TA jumps set the
system in a highly organized configuration, with wavelike
fronts which are precursors of the slinky motion observed
in Hirschberg et al. [7,8] and enhance the particle transport.
When p < β, cmf = α2/(pμ − α) marks exactly the onset
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FIG. 6. (Color online) Simulation results for the cross correlation
C11,l of on-off ZRP on a chain of length L = 20 with μn = n. (a) PA
case. Adjacent sites have negatively correlated occupation numbers.
Hopping-rate combinations as in Fig. 4. Inset, (b). TA case. Spatial
cross correlations appear weaker than the PA case, but with longer
range. As c grows the correlation is gradually lost and a factorized
solution is realistic.

of the congested phase. Conversely, PA interactions seem to
promote congestion, as there are many jumps which block the
site and contribute negatively to the particle current. In this
case, the congestion transition occurs for a value of c larger
than both c1 and cmf (see Fig. 7).

In the next section, the out-of-equilibrium aspects of this
model are further investigated by focusing on the fluctuations
of the particle currents.

0 cTA
mf 1 cPA

mf 2 3

c

0.00

0.05

0.10

0.15
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κ

PA simulation

TA (p > β) simulation

PA mean-field
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FIG. 7. (Color online) Congestion transition for the on-off ZRP
with μ = 1 on a open chain of length L = 20. The parameter κ

obtained by Monte Carlo simulations is plotted against c for a TA case
and a PA case. Hopping-rate combinations as in Fig. 4. The mean-
field congestion thresholds are cTA

mf = 0.4 and cPA
mf � 1.4, respectively.

These values are pinpointed by the mean-field approximated local κl

(light lines) of the site l where the congestion sets in first.
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IV. CURRENT FLUCTUATIONS

This section is devoted to the study of the full statistics
of the empirical currents jl = Jl/t , where Jl is the difference
between the number of particle hops from site l to site l + 1
and the number of hops from site l + 1 to site l. This definition
is extended to the input current j0 and to the output current jL.
In order to lighten the notation, we simply make use of j and
J and explicitly specify the bond only when necessary. For
t → ∞, j converges to its ensemble average 〈j 〉. However,
for finite time it is still possible to observe fluctuations of j

from this typical value. These fluctuations are quantified by
means of the scaled cumulant generating function e(s) or the
rate function ê(j ). In the following, we define these concepts.

A. Large deviation formalism

Generically, in the long-time limit, the probability p(j,t) of
observing a current j at time t obeys a large deviation principle
of the form

p(j,t) ∼ e−t ê(j ). (28)

To obtain the rate function ê(j ), we first investigate the moment
generating function of the total integrated current J :

〈e−sJ 〉 = 〈1|e−sĴ |PJ (t)〉, (29)

where Ĵ is a diagonal operator whose diagonal elements
are the set of possible values that the integrated cur-
rent can assume and the probability distribution |PJ (t)〉 =∑

n,τ,J P (n,τ,J ; t)|n,τ,J 〉 is now defined in the occupation,
clock, and current configuration space. The distribution |PJ (t)〉
can be obtained from a generic initial state |P0(0)〉 with
(t,J ) = (0,0) through |P (t)〉 = e−HJ t |P0(0)〉, where e−HJ t is
the time evolution operator in the joint configuration and
current space. We diagonalize the operator e−HJ t by means
of a Laplace transform e−sĴ e−HJ t esĴ . In the configuration
subspace, this reduces to e−H̃ t , where the operator H̃ is
obtained multiplying by e−s (or es) the entries of the original
Hamiltonian H which produce a unit increase (or decrease)
in J [36]. Hereafter, we refer to the tilded operator H̃ as
the s-modified Hamiltonian. Since 〈1|e−sĴ |P0(0)〉 = 1, then
〈e−sJ 〉 = 〈1|e−H̃ t |P (0)〉, where |P (0)〉 now denotes a proba-
bility vector in the subspace of the occupation number and the
clock variable. Let us denote by |P̃A0〉 the right eigenvector
of H̃ associated with the discrete smallest eigenvalue A0. The
long-time limit of the generating function is accessible through

〈e−sJ 〉 ∼ 〈1|P̃A0〉〈P̃A0 |P (0)〉e−A0t , t → ∞ (30)

as long as the prefactors 〈1|P̃A0〉 and 〈P̃A0 |P (0)〉 are finite and
a point spectrum exists [see, e.g., [36]].

Although the moment generating function and the con-
jugated variable s have an analog in equilibrium statistical
mechanics, i.e., the Helmholtz free energy and the pressure,
respectively, they are not as readily accessible (we cannot tune
s as we can do with the pressure or temperature). However, the
generating function (29) helps to find out the rate function. In
fact, as long the limit relation (30) is valid, we can identify A0

with the scaled cumulant generating function (SCGF)

e(s) = − lim
t→∞

1

t
ln〈e−sJ 〉. (31)

The SCGF in turn gives the convex hull of the rate function
though a Legendre-Fenchel transform [5]

ê(j ) = sups{e(s) − sj}. (32)

When one of the two prefactors in Eq. (30) diverges, or when
the spectrum is entirely continuous, we need to employ other
methods (see Sec. IV B 3).

B. Analytical results for the single-site system

For the single-site system, we study the fluctuations of the
output current, simply denoted by j . The input current can be
obtained in the PA case by reflection, while in the TA case it
is given by a simple Poisson process. Despite its simplicity,
the single-site ZRP exhibits a rich fluctuating behavior, even
in the absence of time correlations [37–39]. The introduction of
the on-off mechanism creates a still more interesting scenario.
In fact, the study of the fluctuations reveals some aspects of the
correlations which, in the stationary state, are hidden within
an effective interaction factor.

1. Small current fluctuations

The s-modified Hamiltonian corresponding to the output
current is obtained from (17) multiplying the ladder operators
βa−

N1
and δa+

N1
by e−s and e+s , respectively:

H̃ = −c
(
a+

T1
− gT1

) − α
(
a+

N1
fT1 − 1

)
−β

(
e−sa−

N1
dT1 − dN1dT1

) − γ
(
a−

N1
dT1 − dN1dT1

)
− δ

(
esa+

N1
fT1 − 1

)
. (33)

We concentrate now on the eigenproblem

(H̃ − A1)|P̃A〉 = 0, (34)

where |P̃A〉 is the generic right eigenvector and A is its eigen-
value. It is convenient to write the eigenvector |P̃A0〉, associated
to A0, in a form similar to the stationary solution (8)–(10), i.e.,
with components

P̃A0 (n,ON) = pON,n,s P̃A0 (n), (35)

P̃A0 (n,OFF) = (1 − pON,n,s)P̃A0 (n), (36)

P̃A0 (n + 1) = ρn+1,s P̃A0 (n). (37)

Equation (34) is hard to solve in general. To gain insight into
the appropriate structure of ρn,s and pON,n,s , we study first the
simple case with constant departure rates.

Constant departure rates. Let the departure rate be μn = μ

when n > 0. Motivated by the stationary state result, we as-
sume here that the factors pON,n,s and ρn,s have no dependence
on the occupation number and we drop the subscript n with
the exception of n = 0, i.e., pON,0,s is distinct from pON,s . By
direct substitution into Eq. (34) we get

−(c + α + δ − A0)(1 − pON,0,s) = 0, (38)

c(1 − pON,0,s) − (α + δ − A0)pON,0,s

+ (βe−s + γ )μpON,sρs = 0, (39)

(α + δes) − (c + α + δ − A0)(1 − pON,s)ρs = 0, (40)
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c(1 − pON,s) − [α + δ + (β + γ )μ − A0]pON,s

+(βe−s + γ )μpON,sρs = 0. (41)

Equation (38) trivially requires pON,s,0 = 1, while we expect
that pON,s < 1. After a long but straightforward algebraic
manipulation, the system is solved for

pON,s = c + (βe−s + γ )(α + δes)/(β + γ )

c + (β + γ )μ + (βe−s + γ )(α + δes)/(β + γ )
,

(42)

ρs = (α + δes)

(β + γ )
(μpON,s)

−1, (43)

A0 = αβ

β + γ
(1 − e−s) + γ δ

β + γ
(1 − es). (44)

Note that setting s = 0, the factor pON,s becomes the con-
ditional probability P ∗(ON|n) in the steady state. Also, the
parameter ρs and the eigenvalue A0 have a counterpart in
the stationary probability, in fact for s → 0, ρs → zw−1

c ,
and A0 → 0. Consequently, we argue that A0 is the lowest
eigenvalue of H̃ and, according to Sec. IV A, the SCGF at
least in the neighborhood of s = 0.

For later convenience, we define a modified fugacity

zs = α + δes

β + γ
(45)

and a modified effective interaction

wc,s = μpON,s (46)

such that ρs = zsw
−1
c,s and wc,s → μ for c → ∞. It is worth

noting that, while the bias affects only the fugacity in the
ordinary ZRP [36], it affects both the interaction term and the
fugacity in the on-off model.

General departure rates. This paragraph covers also the
special case with linear departure rates μn = n. Motivated by
the results above, we assume that the components of the ground
state eigenvector |P̃A0〉 satisfy Eqs. (35)–(37) with

ρn,s = zsw
−1
c,n,s , (47)

wc,n,s = μnpON,n,s , (48)

for n � 0. With this assumption, the second row equation
of the eigenproblem (34) is solved for A = A0 ≡ α + β −
(βe−s + γ )zs and the remaining equations yield a solution for
zs consistent with (45) and an n-dependent effective interaction

wc,n,s = μn[c + (βe−s + γ )(α + δes)/(β + γ )]

(βe−s + γ )(α + δes)/(β + γ ) + c + (β + γ )μn

.

(49)

The eigenvalue we obtained is the same as the lowest
eigenvalue A0 (44) of the s-modified Hamiltonian for the
standard ZRP [36]. In fact, the affinity between the two
models appears closer if we work in the reduced state space
obtained by collapsing the states corresponding to τ = ON and
OFF, for each occupation number, and considering the sum
of their nonconserved probabilities P̃A0 (n) = P̃A0 (n,ON) +

P̃A0 (n,OFF). We notice that the vector |P̃ �
A0

〉 with components
P̃A0 (n) is the right eigenvector with eigenvalue A0 of

H̃ � = α(a+ − 1) + δ(esa+ − 1) + γ (a�−
s − d�

s )

+β(e−sa�−
s − d�

s ), (50)

where

a�−
s =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 wc,1,s 0 0 . . .

0 0 wc,2,s 0

0 0 0 wc,3,s

0 0 0 0
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (51)

a+ =

⎛
⎜⎜⎜⎜⎝

0 0 0 . . .

1 0 0

0 1 0
...

. . .

⎞
⎟⎟⎟⎟⎠, (52)

and the operator d�
s has entries δijwc,i,s . The operator H̃ � is

equivalent to the s-modified Hamiltonian of a standard ZRP
with departure rates wc,n,s . However, it is not a genuine s-
modified Hamiltonian for the on-off ZRP as it shares only the
lowest eigenvalue A0 with H̃ (the higher eigenvalues being
different, in general) hence it only contains information about
the limiting behavior and does not generate the dynamics.

As a partial conclusion, we underline that both the systems
with bounded and unbounded rates display the fluctuating
behavior seen in the standard ZRP as long as the ground state
satisfies Eqs. (47) and (48). This is certainly true for current
fluctuations close to the mean 〈j 〉. However, the effective
interaction wc,n,s has a dependence on n and s different
from the standard ZRP and this alters the range of validity
of this regime. In the following, we show that larger current
fluctuations in the on-off ZRP can be strongly affected by time
correlations.

2. Range of validity

The scenario seen so far is an analytical continuation of
the stationary state. Despite this, certain values of the bias s

correspond to nonanalyticity in the SCGF. Such a behavior
is often referred to as a dynamical phase transition because
of the analogy of the SCGF with the Helmholtz free energy.
According to Sec. IV A, a transition occurs as soon as the
scalar product 〈1|P̃A0〉 or 〈P̃A0 |P (0)〉 diverges. The choice
of the initial distribution |P (0)〉 influences the value of the
second norm. In order to ensure a finite 〈P̃A0 |P (0)〉, we will
always consider an empty site as initial condition, unless
explicitly stated otherwise. We must also ensure that the norm
〈P̃A0 |P̃A0〉 is finite, i.e., that the eigenvector is normalizable
and the discrete eigenvalue A0 exists. We now derive exactly
the conditions under which the norms 〈1|P̃A0〉 and 〈P̃A0 |P̃A0〉
converge and it is possible to identify the SCGF with the lowest
eigenvalue A0 given in Eq. (44).

Linear departure rates. We focus first on the case with
μn = n. For this particular choice of the interaction, particles
in the memoryless ZRP can never pile up and the current
shows a smooth SCGF. On the contrary, in the on-off model,

022137-9
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the particle blockade alters the statistics of small currents.
From a mathematical point of view, a transition occurs when
〈1|P̃A0〉 diverges. The condition 〈1|P̃A0〉 < ∞ is satisfied for
limn→∞ ρn,s < 1 where ρn,s is defined in Eq. (47). For later
convenience, we simplify this condition as

A0 < c + δ(1 − es), (53)

which is satisfied for s > s1, where

es1 = 2αβ

αβ−βδ−βc−cγ +
√

4αβ2δ+(αβ−βδ−βc−cγ )2
.

(54)

In the PA case, s1 is always finite. In the TA case, i.e., (γ,δ) =
(0,0), the critical value s1 = ln[α/(α − c)] is well defined only
for c < α.

We can prove that, when μn = n, the norm 〈P̃A0 |P̃A0〉 is
always finite. In Appendix B, the eigenvector 〈P̃A0 | is derived.
Its components have a form similar to Eqs. (35)–(37), with
the factors pON,s and ρs replaced by pleft

ON,s ≡ 1/2 and ρ left
s ≡

(βe−s + γ )/(β + γ ), respectively. The series 〈P̃A0 |P̃A0〉 is
simplified by summing first the pairs corresponding to the same
occupation number and the condition for convergence can
be written as limn→∞ ρ left

s ρs,n < 1, which is always satisfied.
Consequently, for linear departure rates, the only mechanism
responsible for dynamical phase transitions is the on-off
clockwork, which becomes dominant when 〈1|P̃A0〉 diverges.

Constant departure rates. Let us consider the case μn =
1, n > 0. The scalar product 〈1|P̃A0〉 is finite when the
n-independent parameter ρs is less than 1 and a dynamical
phase transition occurs at ρs = 1. In the PA case, the solution

of this equation for s involves a cumbersome cubic and
therefore is not reported here. However, in the TA case, s1 =
ln[α(α − μβ)/(cμβ − αμβ − cα)]. In order to check whether
〈P̃A0 |P̃A0〉 is finite, we again need the eigenvector 〈P̃A0 |. As the
dependence on μn cancels in the left eigenproblem, 〈P̃A0 | is the
same as the linear departure rate case (see Appendix B). The
condition for convergence is ρ left

s ρs < 1 and the value of s such
that ρ left

s ρs = 1 is referred to as s2. Also here, we only report
explicitly the critical bias s2 = − ln[(−c +

√
c2 + 4cβ)/(2α)]

for the TA case. The values s = s1 and s2 mark the onsets of
new phases.

We notice that the scenario seen so far is entirely encoded
into the operator H̃ � (50). In fact, this operator not only
has lowest eigenvalue A0, as seen in Sec. IV B 1, but the
normalization of its ground state eigenvector yields sums
〈1|P̃ �

A0
〉 and 〈P̃ �

A0
|P̃ �

A0
〉 that diverge at the same critical points

s1 and s2, respectively. In the following, we focus on the
large-fluctuation regimes s > s1 and s < s2.

3. Large current fluctuations

We employ different approaches to study the large fluctua-
tion regimes in the linear and constant departure rate cases.

Linear departure rates. For this special case, we consider
first a finite-capacity version of the on-off ZRP. In fact, the
SCGF on a discrete finite configuration space is always given
by the smallest eigenvalue of the s-modified Hamiltonian,
as the prefactors in (30) are always finite. For the TA case,
we truncate the Hamiltonian (12) by imposing a reflective
boundary in the state with occupation number N . The
resulting matrix in block form is

HN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c + α 0 0 0 0 0 . . .

−c α 0 −βμ1 0 0
−α −α c + α 0 0 0
0 0 −c α + βμ1 0 −βμ2 . . .
...

...
. . .

...
0 −βμN

c 0
. . . −c βμN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (55)

which defines a master equation where the nth block row
specifies the dynamics of the configuration with occupation
number n and within each block the first (second) row
corresponds to an OFF (ON) phase.

In the present linear departure rate case μn = n and the ma-
trix HN generates the dynamics of a generalized exclusion pro-
cess [40] with on-off mechanism, or a queue with Markovian
arrival times, general service and finite capacity N [33,34].
According to the procedure of Sec. IV A, the finite-capacity
s-modified Hamiltonian H̃N is obtained by multiplying the
upper-diagonal rates μn (n = 1,2,3, . . . ,N) of HN by e−s . The
numerical evaluation of the spectrum of H̃N (see Fig. 8) shows
that the two lowest eigenvalues get closer with increasing
values of N . This gives a clue about the limiting behavior for

N → ∞, where the eigenvalues coalesce at s = s1 and two
different dynamical phases emerge. The SCGF converges to a
constant branch for s > s1. In the limit s → ∞, the truncated
s-modified Hamiltonian is lower diagonal and its eigenvalues
are given by the escape rates. As long as the condition c < α

holds, the smallest eigenvalue is c. It corresponds to the escape
rate from the configuration with N particles and OFF state. We
expect that the corresponding eigenvector does not satisfy the
ansatz (47) and (48). Dynamical phase transitions due to the
crossover of eigenvectors are observed in spatially extended
nonequilibrium models such as the Glauber model with open
boundaries [41]. We argue that, in the infinite capacity limit,
the SCGF is given, for s > s1, by the escape rate of the system
with an instantaneous congested state and OFF state.
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FIG. 8. (Color online) Real part of the spectrum of the finite-
capacity s-modified Hamiltonian for parameters (α,β,γ,δ,c) =
(0.2,0.3,0,0,0.5) and μn = n. For s < s1 the smaller eigenvalue
converges to A0 = α(1 − e−s), while for s > s1 it converges to c.

Our prediction is checked against numerical simulations,
as shown in Fig. 9(a). The simulations employ an advanced
Monte Carlo algorithm, referred to as the “cloning” method,
which allows us to measure directly the SCGF [14,42]. This
method permits the integration of the dynamics generated
by an s-modified Hamiltonian H̃ , by means of the parallel
simulation of N copies of the system. A system in state i

may be cloned or pruned with exponential rate H̃ii − ∑
j H̃ij ,

in order to account for the fact that H̃ does not conserve
the total probability. The average cloning factor gives the
SCGF. This prescription is believed to be exact for N → ∞,
t → ∞, and is not reliable when the cloning factor is larger
than N (shaded areas in Figs. 9 and 12), as studied in [43].
Our implementation correctly reproduces the most relevant
features of the SCGF, i.e., the nonanalyticity in s1 and the
constant branch for s > s1, but loses accuracy for large positive
currents (s < 0) presumably due to the finite N effect.

In the PA process, the lowest eigenvalue does not appear
to converge to a finite value in the limit s → ∞. From the
condition (53) for the eigenvalue crossover, we suggest

e(s) =
{

αβ

β+γ
(1 − e−s) + γ δ

β+γ
(1 − es), s � s1

c + δ(1 − es), s > s1.
(56)

The right branch can be physically understood by separating
the contributions of the particles leaving the site rightwards,
which contribute a term c as in the TA case, and the particles
injected from the right boundary, which independently follow
a Poisson process with rate δ and contribute a term δ(1 − es).
Since in this regime the particles pile up, the corresponding
SCGF branch does not depend on the left boundary. Numerical
simulations, shown in Fig. 9(b), confirm our argument. There
is no analog, in the memoryless ZRP, of the c-dependent
dynamical phase for s > s1, which arises as a consequence
of the temporal correlations.

For SCGFs with nondifferentiable points, as in Eq. (56),
the Legendre-Fenchel transform (32) of e(s) gives in general
the convex hull of the rate function ê(j ), which can hide
a nonconvex shape. However, for this system, we argue on
physical grounds (see following) that Eq. (32) gives indeed
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FIG. 9. (Color online) SCGF of the on-off ZRP with μn = n

for (a) TA hopping rates (α,β,γ,δ,c) = (0.2,0.3,0,0,0.1) and (b)
PA hopping rates (α,β,γ,δ,c) = (0.1,0.2,0.1,0.1,0.1). Points are
data from the cloning algorithm N = 104, t = 104. The SCGF is
systematically overestimated for small values of s. We expect a
better approximation but a slow convergence for larger ensembles
and longer simulation times.

the true rate function, i.e.,

ê(j )

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c + δ + j − j ln(−j

δ
), j � j1,a

−s1j + c + δ(1 − e−s1 ), j1,a < j < j1,b

αβ

β+γ
+ γ δ

β+γ
−

√
j 2 + 4 αβ

β+γ

γ δ

β+γ

+j ln
j+

√
j 2+4 αβ

β+γ

γ δ

β+γ

2 αβ

β+γ

,
j � j1,b.

(57)
The two critical currents j1,a = −δes1 and j1,b =

αβ

β+γ
e−s1 − γ δ

β+γ
es1 are, respectively, the right and left deriva-

tives of e(s) at s = s1. In the TA process j1,a = 0. The phase
j � j1,a is obtained from the Legendre-Fenchel transform of
e(s) in the interval s > s1, while the phase j � j1,b is derived
from e(s), with s < s1. The transition value s1 is mapped to the
linear branch in j1,a < j < j1,b. This behavior is equivalent to
an ordinary equilibrium first-order phase transition, where a
linear branch of a thermodynamic potential corresponds to
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FIG. 10. (Color online) Rate function ê(j ) for the on-off TA
process with (α,β,γ,δ,c) = (0.2,0.3,0,0,0.01) and μn = n (solid
line). The points are simulation data for the finite-time rate function
− ln[Prob(J/t = j )]/t computed at t = 200,300,400,500,600,700
(top to bottom).

the coexistence of two phases. In this nonequilibrium system,
the mixed phase consists in a regime where, for some finite
fraction of time, the current assumes value j1,a , while for
the rest of the time it has value j1,b. As a result, the rate
function in this region is linear with j , as predicted by the
Legendre-Fenchel transform. This argument is supported by
standard Monte Carlo simulations (ensemble size of 1010), and
it is particularly evident in the TA case (Fig. 10).

The different phases can be physically understood by
observing the effect of the particle blockade. In the case
with TA hopping rates, when the site is OFF, the particles
accumulate and the outgoing current is necessarily zero. The
zero current is mapped to the flat section of the SCGF. This
is the dominant mechanism responsible for zero current. At
the end of an OFF period, we have a configuration with many
particles on the site. When the lock is released, particles can
leave the site with a rate proportional to the occupation number.
Consequently, the particles are quickly released after an OFF
period and the current jumps to a positive value. In particular,
the probability of having currents larger than j1,b is dominated
by the phases in which the site is ON. In the presence of arrivals
from the right boundary (δ �= 0), the blocked configuration
becomes important for negative currents j < j1,a , and the
rate function has an additional term corresponding to an
independent Poisson process with rate δ.

As an aside, the dynamical phase transition seen at s1

is not restricted to the particular on-off ZRP explored here.
For example, an alternative on-off ZRP with unbounded
departure rates and on-off dynamics independent from the
arrivals displays the same fluctuating scenario. Also, spatially
extended spin systems such as the contact process [14] and
some kinetically constrained models [44] can possess active
and inactive phases coexisting at s = 0.

Constant departure rates. In this case when μn = 1, n >

0, the operator H̃ has a continuous band which governs
the fluctuations in certain regimes. A way to obtain the
SCGF is to evaluate the long-time limit of the matrix
element 〈1|e−H̃ t |P (0)〉 by computing the full spectrum and

the complete set of eigenvectors of H̃ . This task appears to
be rather complicated for the s-modified Hamiltonian (33),
requiring spectral theory and integral representation of block
nonstochastic operators [45]. As an approximation, we can use
the reduced operator (50) and study the simpler expectation
〈1|e−H̃ �t |P (0)〉. Recall that H̃ � has the same lowest eigenvalue
A0 as H̃ , at least in the regime s2 � s � s1 where the
ansatz (47) and (48) is valid. Outside this regime it is expected
to yield only approximate information about the current
fluctuations.

The integral representation allows us to take into account
the dependence of the fluctuations on the initial condition. We
follow the same procedure as [37,38], with the difference that
the departure rate here depends on s. In fact, the solution found
only has a weak dependence on the functional form of wc,s but,
nevertheless, we report the explicit calculations for complete-
ness. As initial condition, we choose a geometric distribution
with parameter x, i.e., |P (0)〉 = (1 − x)

∑∞
n=0 xn|n〉 where |n〉

denotes the configuration of the site with n particles and is an
element of the natural basis for H̃ �. The steady state is obtained
for x = zw−1

c , where wc = μ(α + δ + c)/[α + δ + c + (β +
γ )μ] and z = (α + δ)/(β + γ ) are the PA counterparts of
the effective departure rate and fugacity found in Sec. III A,
while the limit x → 0 corresponds to the empty-site state. The
exact calculation of the full spectrum and of its eigenvectors,
reported in Appendix C, gives the following representation:

〈1|e−H̃ �t |P (0)〉 = − 1 − x

2πixφ

∮
C1

e−ε(ζ )t(
ζ − 1

xφ

)(
ζ − 1

φ

)dζ

− 1 − x

2πix

∮
C2

(yζ − 1)e−ε(ζ )t(
ζ − 1

ζφ

)
(ζ − φ)(ζ − y)

dζ,

(58)

where ε(ζ ) is obtained from the expression for the continuous
band of the spectrum ε(k) after the substitution ζ = eik and

φ =
√

(βe−s + γ )wc,s

(α + δes)
, (59)

y = 1

(β + γ )wc,s

√
(α + δes)(βe−s + γ )wc,s, (60)

ε(k) = α + δ + (β + γ )wc,s

− 2
√

(α + δes)(βe−s + γ )wc,s cos(k). (61)

The integration contours C1 and C2 are anticlockwise circles
centered around the origin with radius φ−1 < |ζ | < (φx)−1

and infinitesimal size, respectively.
The long-time limit of this integral is computed by means

of the method of steepest descents with saddle point at ζ = 1.
When the saddle point contour engulfs one of the poles of the
integrand, we must also take into account the residue [46].

For fixed parameters s and x, the leading term in the
long-time limit of 〈1|e−H̃ �t |P (0)〉 is given by the slowest
decaying exponential and the SCGF is determined by one of
the rates ε(φ),ε(y),ε(1),ε[(xφ)−1]. Tuning s or x, the positions
of the poles with respect to the saddle point contour are
altered and the leading term in the integral expansion changes.
This produces the phase diagram of Fig. 11 for the SCGF.
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FIG. 11. (Color online) Phase diagram, based on Eq. (58), for the
current fluctuations in the PA process with μn = 1 and (α,β,γ,δ,c) =
(0.1,0.2,0.1,0.1.0.5). The lines s1 and s4 correspond to first-order
dynamical phase transitions while s2 and s3 mark second-order
transitions.

The critical line corresponding to the solution of φ = y is
s = s1. The line s = s2 corresponds to y = 1. These two phase
transitions were also found in Sec. IV B 2 as critical points in
the full state space. The curves s = s3 and s = s4 are solutions
of 1 = (φx)−1 and y = (φx)−1, respectively. The tricritical
point s3 = s4 is at xc. It is worth noting that higher positive
current fluctuations retain a dependence on the initial condition
x and that, unlike the memoryless ZRP, the critical point s1

can fall in the positive current range. The explicit expressions
in terms of s for the TA case are reported in Appendix D.

We distinguish four phases:
(i) Phase A: s > s1. In this case the leading term arises

from the pole at ζ = φ. The product 〈1|P̃A0〉 diverges and the
SCGF is different from the lowest eigenvalue A0, being given
instead by

e(s) = δ(1 − es) + βwc,s(1 − e−s). (62)

This phase corresponds to very small positive currents (in
particular when δ = 0) or large backward currents. Large
negative currents are mainly governed by the rate δ of particle
arrival from the right, which contributes to the SCGF with the
first term of (62). The second term corresponds to particles
that jump rightwards from the site with an effective rate βwc,s .
The current fluctuations in this phase are optimally realized by
a site with arbitrarily large occupation number (instantaneous
condensation) that acts as a reservoir, so that the outgoing
current has no dependence on the left boundary hops [38]. We
argue that the presence of a left and a right term in Eq. (62) is
generic for this phase, although there is no a priori reason for
the effective rate wc,s to have the same form as in the small
fluctuation regime. In the PA case, for large values of s, the
SCGF is dominated by the first term and is not sensitive to the
functional form of wc,s .

(ii) Phase B: [(s2 < s < s1) ∧ (x < xc)] ∨ [(s4 < s <

s1) ∧ (x > xc)]. This phase arises when the pole at ζ = y,
corresponding to the lowest eigenvalue A0 (44), becomes
dominant, hence

e(s) = αβ

β + γ
(1 − e−s) + γ δ

β + γ
(1 − es). (63)
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FIG. 12. (Color online) SCGF of the on-off ZRP with
(α,β,γ,δ,c) = (0.1,0.2,0.1,0.1,0.5) and μn = 1. Points are data from
the cloning simulations N = 104, t = 104. Dotted line is the SCGF
of the Markovian ZRP (c → ∞) with same boundary rates. Solid line
is the analytic approximation (62)–(64). The SCGF of the ZRP with
s-independent departure rate wc would overlap the solid line at this
scale.

The probability of fluctuations in this regime is asymptotically
identical to the standard ZRP. In this range, the site has
finite occupation and the probability that a particle leaves is
conditioned to an arrival event, just as in [36,38,47].

(iii) Phase C: (x < xc) ∧ (s3 < s < s2). This phase arises
from the saddle point at ζ = 1. It corresponds to a large
forward current sustained by a large inward current from
the left boundary. The asymptotic form (30) still holds, but
with an oscillating (nondecaying in n) ground state. This
also represents an instantaneous condensate, but with particle
number growing as the square root of time [38]. Here, the
spectrum of H̃ � is continuous and the SCGF is given by the
minimum of the band (61):

e(s) = α + δ + (β + γ )wc,s − 2
√

(α + δes)(βe−s + γ )wc,s .

(64)

(iv) Phase D: [(s < s3) ∧ (x < xc)] ∨ [(s < s4) ∧ (x >

xc)]. This phase arises when the residue at ζ = (φx)−1

dominates the long-time behavior:

e(s) = α + δ + (β + γ )wc,s − (βe−s + γ )wc,sx

− (α + δes)/x. (65)

It corresponds to a large forward current of particles that is
most likely to be realized from an initial configuration with
very high occupation number and also has an analog in the
standard ZRP [38].

These results are compared to the cloning simulations
in Fig. 12 for x → 0. Similarly to the independent-particle
case, the cloning data for the left branch, corresponding to
large positive currents, is potentially affected by finite-N
effects [43]. It turns out that for the chosen parameters,
our approximation (62)–(64), plotted as a solid line, is very
close to the naive approach (not shown) in which the same
representation (58) is used, but the effective departure rate has
the s-independent form wc (see Sec. III A) for all the regimes.
The analytical SCGF does not match the simulation points in
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FIG. 13. (Color online) Rate function for the on-off ZRP with
(α,β,γ,δ,c) = (0.1,0,2,0.1,0.1,0.5) and μn = 1. Points are data for
− ln[Prob(J/t = j )]/t from standard Monte Carlo simulation at
times t = 100,200,300,400,500,1000,2000 (top to bottom). The
solid line is the analytical approximation for t → ∞.

either of the phases A and C. We attribute this to the failure
of the assumption (47) and (48) for the ground state in phases
A and C. In other words, large fluctuations cannot be exactly
described by an effective departure rate wc,s with a simple
functional dependence on s.

In Fig. 13, the rate function ê(j ), computed by means
of a Legendre-Fenchel transform on the SCGF (62)–(64),
is compared to the finite-time rate function obtained from
standard Monte Carlo simulations with an ensemble size of
1010. Although approximate, ê(j ) appears to capture well the
shape of the long-time limit for the simulation data points.

C. Numerical results for large system

The lack of a stationary product form solution for the on-
off ZRP on an extended lattice makes the analytical study of
fluctuations, across the generic bond, impractical. It would be
possible to use the mean-field stationary solution to derive
an approximate SCGF using the same procedure as in the
single-site model. However, we do not expect the result to
be accurate, especially for small values of c and for current
fluctuations far from the mean. To explore the larger system
we make use of the cloning method (see Fig. 14). While the
statistics of rare currents is bond dependent, it is possible
to appreciate that for each bond the SCGF matches that of a
Markovian ZRP in the neighborhood of s = 0, a feature shared
with the one-site system.

The central regime satisfies a Gallavotti-Cohen
fluctuation symmetry [48] e(s) = e(E − s), with
E = ln[(p/q)L−1αβ/(γ δ)]. Such a relation seems to be
ensured by the fact that the relative probabilities of particle
jumps towards the left or the right are independent of the time
that the particle spends on a site. This property is related to
the direction-time independence of Ref. [49]. However, the
fluctuation symmetry is not guaranteed to hold on an arbitrary
domain in systems with infinite state space [37]. In fact, as
expected, we see here a c-dependent breakdown for large
fluctuations.
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FIG. 14. (Color online) Simulation results for the SCGF in
a five-site on-off ZRP with μn = 1 and (α,β,γ,δ,p,q,c) =
(0.1,0.2,0.1,0.1,0.55,0.45,0.5). The solid line is the c-independent
expression for the lowest eigenvalue of the s-modified Hamiltonian
for the five-site Markovian ZRP [38].

V. DISCUSSION

We have studied an open-boundary zero-range process that
incorporates memory by means of an additional “phase” vari-
able. The particles are blocked on a lattice site (“phase OFF”)
when a new particle arrives and consequently congestion is
facilitated. After an exponentially distributed waiting time
with parameter c, the block is removed (“phase ON”). At first
sight, the effects of time correlations are hidden. The stationary
state solution of the one-site system can be written as in the
Markovian case, with an effective onsite interaction wc,n. This
means that, if the direct interactions are unknown, it is not
possible to distinguish a single site with on-off dynamics from
a standard memoryless ZRP by looking only at the occupation
distribution.

However, the presence of ON and OFF phases alters
the statistics of the outwards particle hops. This becomes
important in the spatially extended system where each site
receives particles, from its neighbors, according to a non-
Markovian process. As a consequence, a product form solution
is in general not expected and we have relied on a mean-field
approach for the analytical treatment. This approximation
consists of replacing the true particle arrival on each site with
a memoryless process, while keeping exact information about
the onsite particle departure as well as the lattice topology.
This procedure can be applied in principle to decouple non-
Markovian ZRPs on an arbitrary lattice, provided that it is
possible to solve the consistency equation for the fugacities.
We found that, in the chain topology studied here, the mean-
field approach is very accurate for large values of c and gives
an analytical estimate cmf for the congestion threshold.

The memory effects at the fluctuating level appear more
interesting even in the single-site case. Fluctuations close
to the mean current are obtained by analytic continuation
of the stationary state and are indistinguishable from the
fluctuations in a memoryless ZRP. However, under certain
conditions large current fluctuations are optimally realized by
the instantaneous piling up of particles on the site and the
statistics of such fluctuations change abruptly. In the absence
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of direct interparticle interaction, we have found a memory-
induced dynamical first-order phase transition, i.e., the scaled
cumulant generating function (SCGF) e(s) is nonanalytic at
a particular value s1. In the totally asymmetric case, this
occurs only if the parameter c is smaller than the arrival rate
α. The system with constant departure rates, i.e., attractive
interparticle interaction, undergoes second-order as well as
first-order dynamical phase transitions. The state of the system
during a small fluctuation event has the same form as the
stationary state, but with a more general modified effective
interaction factor. Indeed, the exact phase boundaries and the
large deviation function of this regime are encoded in the
reduced operator H̃ � [Eq. (50)], which has the same structure
as the s-modified Hamiltonian of the standard ZRP, but with an
s-dependent effective interaction factor. We have used the same
operator H̃ � to find an approximate solution for the fluctuations
outside this phase. Numerical tests confirm the presence of the
predicted c-dependent dynamical phase transitions.

The separation between a small-fluctuation regime, with
a memory-independent SCGF, and high-fluctuation regimes,
where memory plays a more obvious role, is a feature also
found numerically in the spatially extended system. It would
be of interest to explore the role of topology in more detail
as well as to look for similar memory effects in other driven
interacting-particle systems. Furthermore, we point out the
importance of solving the eigenproblem (34) for the full
s-modified Hamiltonian H̃ [Eq. (33)] which provides exact
information about the strongly fluctuating regimes. This would
be of interest in queueing theory; in fact quasi–birth-death
processes, which contain as a special case the single-site on-off
model studied here, are widely used for performance modeling
of non-Markovian systems [33,34].

To conclude, for the model explored in this paper, time
correlations can be absorbed in an effective memoryless
description for the steady state, but can emerge at the
fluctuating level and alter the probability of observing rare
phenomena. Such an observation leaves interesting open
questions about the predictive power of effective theories
for real-world systems, where rare events can be of crucial
importance.
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APPENDIX A: DERIVATION OF THE STATIONARY STATE

Summing Eqs. (4) and (6), and imposing the stationarity
condition, it follows that

βμn+1P
∗(n + 1,ON) − αP ∗(n)

= βμnP
∗(n,ON) − αP ∗(n − 1), (A1)

while the stationarity conditions on Eqs. (5) and (7) imply the
boundary conditions

βμ1P
∗(1,ON) − αP ∗(0,ON) = 0, (A2)

P (0,OFF) = 0, (A3)

which, together with (A1), allow us to write the recursive
relation

βμn+1P
∗(n + 1,ON) = αP ∗(n,ON) + αP ∗(n,OFF). (A4)

Using the stationarity condition on Eq. (6)

(α + c)P ∗(n + 1,OFF) = αP ∗(n,ON) + αP ∗(n,OFF),
(A5)

we eliminate P (n) from Eqs. (A4) and (A5) and get

(α + c)P ∗(n + 1,OFF) = βμn+1P
∗(n + 1,ON), (A6)

hence,

P ∗(n,OFF) = βμn

α + c + βμn

P ∗(n), (A7)

P ∗(n,ON) = (α + c)

α + c + βμn

P ∗(n). (A8)

The ratios (βμn)/(α + c + μnβ) and (α + c)/(α + c + βμn)
are the conditional probabilities P ∗(OFF|n) and P ∗(ON|n),
respectively. Substituting in (A4) or (A5) we get the recursive
relation

μn(α + c)

α + c + βμn

P ∗(n + 1) = α

β
P ∗(n).

Finally, iterating and using the definitions of z and Zc we find
the probability mass (8).

APPENDIX B: LEFT EIGENVECTORS
OF THE s-MODIFIED HAMILTONIAN

The derivation of 〈P̃A0 | when μn = μ, n > 0 is as follows.
Assuming that the left-eigenvector components satisfy

Pleft(n,ON) = pleft
ON,sPleft(n), (B1)

Pleft(n,OFF) = (
1 − pleft

ON,s

)
Pleft(n), (B2)

Pleft(n + 1) = ρ left
s Pleft(n), (B3)

we get the explicit equations

−(α − A + c + δ)
(
1 − pleft

ON,s,0

) + cpleft
ON,s,0

+(α + δes)ρ left
s

(
1 − pleft

ON,s

) = 0, (B4)

(α + δes)ρ left
s

(
1 − pleft

ON,s

) − (α − A + δ)pleft
ON,s,0 = 0, (B5)

−(α − A + c + δ)
(
1 − pleft

ON,s

) + c
(
1 − pleft

ON,s

)
+(α + δes)ρ left

s

(
1 − pleft

ON,s

) = 0, (B6)
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(βe−s + γ )μpleft
ON,s,0 − (α − A + (β + γ )μ + δ)ρ left

s pleft
ON,s

+(α + δes)ρ left
s

2(
1 − pleft

ON,s

) = 0, (B7)

−ρ left
s pleft

ON,s[α − A+μ(β + γ ) + δ]+μpleft
ON,s

(
γ +βe−s

)
+ρ left

s

2(
1 − pleft

ON,s

)
(α + δes) = 0, (B8)

where the factor pleft
ON,s,0 is assumed to be different

from pleft
ON,s by analogy with the right eigenproblem. The

Eqs. (B4) and (B5) give (α − A + c + δ)(1 − pleft
ON,s,0) + (α −

A + δ)pleft
ON,s,0 + cpleft

ON,s,0 = 0, which is verified for pleft
ON,s,0 =

1
2 . The Eqs. (B7) and (B8) imply pleft

ON,s = pleft
ON,s,0. After the

substitution, the remaining equations are solved for A = A0

and ρ left
s = (βe−s + γ )/(β + γ ). With those constants, it is

easy to verify that the ansatz (B1)–(B3) is consistent even in
the general departure rate case. In fact, after substitution, all
the terms containing μn cancel out. In the reduced state space
we get a consistent result since the row vector 〈P �

A0
| with

components given by (B3) satisfies 〈P �
A0

|H̃ � = A0〈P �
A0

|.

APPENDIX C: SPECTRUM AND INTEGRAL
REPRESENTATION

In this appendix, we report the calculations which lead to the
integral representation (58). Let us impose an initial condition
of Boltzmann type for the system, so that

〈1|e−H̃ �t |P (0)〉 = (1 − x)
∞∑

n,m=0

xn〈m|e−H̃ �t |n〉, (C1)

where 〈m| (|n〉) is a row (column) vector with a “1” in the mth
(nth) position and “0” elsewhere. To evaluate the right-hand
side of (C1), we first seek for normal modes of the dynamics
generated by the operator H̃ � (50). We transform H̃ � into the
symmetric form �H̃��−1, where � is the diagonal operator
with entries δijφ

i , δij is the Kronecker delta, i,j = 0,1,2, . . .,
and φ is the combination of parameters (59) in the main
text. The associated eigenproblem is solved after a Fourier
transformation. Its eigenvalue ε(k) [Eq. (61)] has eigenvector
|ψ ′(k)〉 with components

√
2/π sin(nk + ϕ). Substituting this

in the first row equation for the eigenproblem, we get the
following expression for ϕ:

ei2ϕ = 1 − eiky

1 − e−iky
, (C2)

where y is given by the s-dependent expression (60).
For y < 1 a discrete eigenvalue appears with eigenvector
|ψ ′(0)〉 =

√
1 − y2

∑∞
n=0 yn|n〉 and eigenvalue A0 [Eq. (44)]

while, for y > 1, the infimum of the spectrum is given
by ε(0).

The vectors |ψ(k)〉 = �−1|ψ ′(k)〉, k ∈ (0,π ], and |ψ(0)〉 =
�−1|ψ ′(0)〉 form a complete set, i.e.,

∫ π

0 |ψ(k)〉〈ψ(k)|dk +
|ψ(0)〉〈ψ(0)| = 1. Inserting this representation of the identity

in Eq. (C1), the right-hand side becomes

(1 − x)
∞∑

n,m=0

xn

∫ π

0
〈m|ψ(k)〉〈ψ(k)|n〉e−ε(k)t dk

+�(1 − y)(1 − x)
∞∑

m,n=0

xnφn−m(1 − y2)yn+me−A0t ,

(C3)

where � denotes the Heaviside step function. Using the fact
the eigenvectors are odd in k, the integral in Eq. (C3) can be
rewritten as∫ 2π

0
(eik(n−m) − eik(n+m)ei2φ)e−ε(k)t dk, (C4)

and, using Eq. (C2), it becomes∮
|ζ |=1

(
ζ n−m−1 − ζ n+m 1 − ζy

ζ − y

)
e−ε(ζ )t dζ, (C5)

where ζ = eik and ε(ζ ) = ε[k(ζ )]. Deforming the integration
contour to C1 for the first term in the integrand and to C2 for
the second term, we obtain the representation (58). The last
term in Eq. (C3) cancels out with a pole contribution at ζ = y

for y < 1.

APPENDIX D: PHASE DIAGRAM FOR THE CURRENT
FLUCTUATIONS IN THE TA PROCESS WITH BOUNDED

DEPARTURE RATE

In this appendix, we report the analytical forms of the
c-dependent transition lines between the dynamical phases
of the TA case with μn = n. The resulting phase diagram is
similar to the PA case (Fig. 11), but with the transition line
identified by s1 mapped to a positive value of the current.

s = s1. The knowledge of |P̃A0〉 is sufficient to verify when
the pre-factor 〈s|P̃A0〉 is finite, i.e.,

α(c + e−sα + βμ)

(c + e−sα)βμ
< 1, (D1)

s < s1 = ln

(
α(βμ − α)

cα − cβμ + αβμ

)
. (D2)

Notice that this condition makes sense when the denominator
in the argument of the logarithm in (D2) is positive, i.e.,
c < αβμ/(βμ − α), while the stationarity condition α < βwc

ensures that the numerator is positive. The phase boundary can
also be obtained from solving φ = y.

s = s2. This critical point marks the left boundary of the
region where the condition ρ left

s ρs < 1 holds, i.e.,

α(c + e−sα + βμ)

(c + e−sα)βμ
e−s < 1, (D3)

s > s2 = − ln

(√
c2 + 4cμ − c

2α

)
. (D4)

022137-16



TEMPORALLY CORRELATED ZERO-RANGE PROCESS WITH . . . PHYSICAL REVIEW E 92, 022137 (2015)

It corresponds to a solution of y = 1.
s = s3. This line corresponds to (φx)−1 = 1. The critical

point s3 satisfies

e−s3 =
√

(cμx2 + α2)2 + 4α2μ2x2 − cμx2 + α2

2αμx2
. (D5)

s = s4. This phase boundary is c independent,
specifically

e−s4 = x−1. (D6)

It corresponds to the condition y = (φx)−1.
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condensates in non-Markovian zero-range dynamics, J. Stat.
Mech. (2012) P08014.

[9] R. J. Concannon and R. A. Blythe, Spatiotemporally Complete
Condensation in a Non-Poissonian Exclusion Process, Phys.
Rev. Lett. 112, 050603 (2014).

[10] D. Khoromskaia, R. J. Harris, and S. Grosskinsky, Dynamics
of non-Markovian exclusion processes, J. Stat. Mech. (2014)
P12013.

[11] R. K. P. Zia and B. Schmittmann, Probability currents as
principal characteristics in the statistical mechanics of non-
equilibrium steady states, J. Stat. Mech. (2007) P07012.

[12] H. Qian and L. M. Bishop, The chemical master equation
approach to nonequilibrium steady-state of open biochemical
systems: Linear single-molecule enzyme kinetics and nonlinear
biochemical reaction networks, Int. J. Mol. Sci. 11, 3472
(2010).

[13] T. Platini, Measure of the violation of the detailed balance
criterion: A possible definition of a “distance” from equilibrium,
Phys. Rev. E 83, 011119 (2011).

[14] V. Lecomte and J. Tailleur, A numerical approach to
large deviations in continuous time, J. Stat. Mech. (2007)
P03004.

[15] M. R. Evans and T. Hanney, Nonequilibrium statistical mechan-
ics of the zero-range process and related models, J. Phys. A:
Math. Gen. 38, R195 (2005).

[16] F. Spitzer, Interaction of Markov processes, Adv. Math. 5, 246
(1970).

[17] J. Eggers, Sand as Maxwell’s Demon, Phys. Rev. Lett. 83, 5322
(1999).
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