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The time evolution of a random graph with varying number of edges and vertices is considered. The edges
and vertices are assumed to be added at random by one at a time with different rates. A fresh edge connects
either two linked components and forms a new component of larger order g (coalescence of graphs) or increases
(by one) the number of edges in a given linked component (cycling). Assuming the vertices to have a finite
valence (the number of edges connected with a given vertex is limited) the kinetic equation for the distribution of
linked components of the graph over their orders and valences is formulated and solved exactly by applying the
generating function method for the case of coalescence of trees. The evolution process is shown to reveal a phase
transition: the emergence of a giant linked component whose order is comparable to the total order of the graph.
The time dependencies of the moments of the distribution of linked components over their orders and valences
are found explicitly for the pregelation period and the critical behavior of the spectrum is analyzed. It is found
that the linked components are γ distributed over g with the algebraic prefactor g−5/2. The coalescence process
is shown to terminate by the formation of the steady-state γ spectrum with the same algebraic prefactor.
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I. INTRODUCTION

A random forest is a collection of linked random trees
(linked graphs without cycles). The linked tree is a tree in
which each vertex is connected by one or several edges with
any other vertex belonging to it. The interest to the structures
of random forests is connected to their great resemblance to
a wide range of systems in nature and society [1–6]. Most
frequently cited examples are polymers and the polymerization
processes [7–12], social nets, telephone nets and their devel-
opments, the Internet, neural nets in living creature (including
the human brain) [13–16]. While the polymers are the most
natural objects for describing them by random graphs, other
nets are organized by different principles. Still comparing their
structure with that of random graph gives an information on
the deviation from randomness and thus helps us to recover
the causes for these deviations [16].

The random graph with M vertices and P edges is char-
acterized by its spectrum of linked components (the numbers
Ng,ν of linked components with g vertices and ν edges). The
structure of the graph changes as P increases. There is another
way for generating the random graph. Assuming that the extra
edges appear randomly one at a time, we watch for the time
changes of the graph structure. Here “time” is not real time
(in seconds), but a parameter connected with the total average
number of edges in the graph. In this case it is possible to
formulate an evolution equation describing the time evolution
of a random graph. This very approach will be used in this
paper.

In previous works [7–23] the authors considered the free
evolution process, where newly appeared edges connected
initially bare vertices. Free coalescence of arbitrary initial
graphs with the vertices of limited valence was studied in
my work [23].

The close resemblance of the dynamics of evolving
random graphs to many dynamical processes such as poly-
merization [7,8,12–14], evolution of social networks [16],
percolation [17–19], phase transitions [24], and spreading of

infections [25–28] stimulated the studies of the time evolution
of various types of random graphs. most of which relied upon
the combinatorial analysis [1,3–5]. Here I apply the kinetic
approach, where the edges and the vertices are randomly
added to the graph with different rates. In this case the graph
evolution is analogous to the source-enhanced coagulation
process [6,29]. In such a graph the edges connecting initially
empty vertices lead to the emergence of a collection of linked
components of different sizes (number of vertices in the
component). The issue is to find the distribution of the linked
components over their sizes.

The efficiency of the Smoluchowski equation for studying
the evolution of random graphs had been clearly demonstrated
in Refs. [11,13,21,22], where the analogy between the particle
coalescence and the graph transformation by randomly adding
the edges to the evolving graph. Indeed, if we consider a
graph comprising N1,N2 . . . Ng . . . linked components, then
any extra edge either converts a pair of components to one or
produces an additional cycle if it connects two vertices in one
component. So far the above consideration assumed the infinite
valence of the vertices, i.e., the number of outgoing edges was
not limited. It is clear that if the valence of each vertex in the
evolving graph is finite then the resulting structures will occur
more loose.

This paper aims at the consideration of the evolution of a
random graph with the vertices of finite valence in the presence
of a source of vertices. In the next Sec. II the kinetic equation
describing the evolution of the spectrum of linked components
is formulated. The ansatz of Ref. [29] applies for solving
this equation in Sec. III. In Sec IV the time dependencies of
the lower moments of the spectrum are found. It is shown
that the second moment diverges at a critical time, which is
evidence of the sol-gel transition in evolving random forests.
The postgel behavior of the random forest is analyzed in
Sec. V. Sections VI and VII summarize the main results and
discuss the specific features of the model considered in this
paper. The critical behavior of the forest is shown to differ
from that in other models of the graph evolution: a residual
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steady-state distribution of small graphs forms at the final stage
of the coalescence process.

II. BASIC EQUATIONS

The time evolution of a random graph is considered as a
chain of pair coalescences of linked components of the graph
by randomly appearing edges connecting their vertexes. Each
vertex is assumed to have a finite valence, i.e., not more than s

edges are permitted to join to it. Any extra edge diminishes the
valence of each component by one. This process is represented
by the scheme,

(g1,σ1 + 1) + (g2,σ2 + 1) → (g1 + g2,σ1 + σ2). (1)

Here g is the order of the coalescing component and σ is its
valence. In what follows the rate of this process is denoted
as �.

Another process that contributes to the forest evolution adds
the bare vertices of valence s with the constant rate I .

The probability of coalescence is proportional to the
product of total valences of two linked components. The
maximal valence of a vertex is denoted as s. In the process
of coalescence the valence of each linked component changes.
Let Ng,σ (t) be the number of linked components of order
(size) g and valence σ . Then we can write down the
balance equation that governs the time evolution of the graph
spectrum,

dNg,σ (t)

dt
= Iqg,σ + �

2

⎡
⎣∑

l,η

(σ − η + 1)(η + 1)Ng−l,σ−η+1(t)Nl,η+1(t) − σNg,σ (t)
∑
l,η

ηNl,η(t)

⎤
⎦. (2)

Here I is the productivity of the source of vertices, the function qg,σ describes the dependence of the source on the order of the
respective linked component and its valence, and � is the rate of coalescence of a pair of linked trees due to adding an extra edge.
Rescaling time by the factor

√
I� and introducing the concentrations cg,σ = Ng,σ /

√
I/� allows us to write down the kinetic

equation for cg,σ ,

dcg,σ (t)

dt
= qg,σ + 1

2

∑
l,η

(σ − η + 1)(η + 1)cg−l,σ−η+1(t)cl,η+1(t) − σcg,σ (t)
∑
l,η

ηcl,η(t). (3)

Similar equation was formulated in Ref. [23] for the case of
free coalescence I = 0.

It is seen that the evolution process Eq. (1) produces only
trees and never leads to cycling, the process that kills two
valences in one linked component (g,σ ) → (g,σ − 2).

In what follows we consider the zero initial conditions to
Eq. (3),

c(0)
g,σ = 0, (4)

and the monodisperse monovalent source providing the system
with the vertices of valence s,

qg,σ = δg,1δσ,s . (5)

Here δi,k stands for Kroneker’s δ.
Equation (3) describes the emergence and the growth of

the forest, because the process Eq. (1) does not permit for
cycling. This fact means that the total valence σ of each
linked component (tree) is expressed through its total mass
g as follows:

σ = g(s − 2) + 2. (6)

This equality claims that the total valence of the tree is equal
to the maximal possible valence of all its vertices sg minus
twice the number of edges in the tree 2(g − 1). Hence, we can
operate with

cσ (t) =
∑

g

cg,σ (t), (7)

because

cg,σ (t) = cσ (t)δσ,g(s−2)+2. (8)

Here δ is the Kroneker δ.

III. GENERATING FUNCTION

Let us introduce the bivariate generating function for
cg,σ (t),

F(z,ξ ; t) =
∑
g,σ

zgξσ cg,σ (t). (9)

Equation (8) determines the structure of the function F ,

F(z,ξ ; t) = ξ 2	(zξ s−2,t). (10)

The order spectrum cg(t) is given by the Cauchy formula,

cg(t) =
∑

σ

cg,σ (t) = 1

2πi

∮ F(z,ξ ; t)dz

zg+1

∣∣∣∣
ξ=1

. (11)

The integration goes counterclockwise over a small circle
surrounding the origin of coordinates in the complex plane
z. Applying Eqs. (10) and (11) and replacing the variable
y = zξ s−2 yields

cg(t) = 1

2πi

∮
	(y,t)dy

yg+1
. (12)

On multiplying both sides of Eq. (3) by zgξσ and summing
over all g and σ gives the equation for F ,

∂F
∂t

= zξ s + 1

2

(
∂F
∂ξ

)2

− ξ
∂F
∂ξ

S(t). (13)

Here

S(t) =
∑

σ

σcσ (t) = ξ
∂F
∂ξ

∣∣∣∣
ξ=1

(14)
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is the total average valence of the forest. Equations (13)
and (14) gives

Ṡ = s − S2. (15)

In what follows we omit the argument z in F . The solution
to Eq. (13) can be found in the form [29]

F(ξ,t) = Q(ξ,t) − tA(u) −
∫ ξ

u

√
2[A(ζ ) − A(u)]dζ, (16)

where u = u(ξ,t) is defined from the equality,

t =
∫ ξ

u

dζ√
2[A(ζ ) − A(u)]

, (17)

and the functions A(ξ ) and Q(ξ,t) are not yet specified. The
function u = u(ξ,t) appeared first in Eq. (16) is introduced in
such a way that the partial derivative over u of the right-hand
side of Eq. (16) would be zero. Keeping this fact in mind we
find A(ξ ) and Q(ξ,t) by differentiating both sides of Eq. (16)
with respect to ξ and t and substituting the results into Eq. (17).
We have

∂tF(ξ,t) = −A(u) + ∂tQ (18)

and

∂ξF(ξ,t) = ∂ξQ −
√

2[A(ξ ) − A(u)]. (19)

Substituting Eq. (16) into Eq. (13) yields

∂tQ = ξ s + 1
2 (∂ξQ)2 − ∂ξQ

√
2[A(ξ ) − A(u)]

+A(ξ ) − ξS(t){−
√

2[A(ξ ) − A(u)] + ∂ξQ}. (20)

In order to get rid of
√

2[A(ξ ) − A(u)] we should put

∂ξQ − Sξ = 0 or Q = 1
2ξ 2S. (21)

The remainder of Eq. (20) gives

Q̇ = ξ s + A(ξ ) + 1
2Q2

ξ − SξQξ . (22)

We put

A(ξ ) = sξ 2

2
− ξ s (23)

and find from the above two equations

ξ 2Ṡ

2
= sξ 2

2
− 1

2
S2ξ 2. (24)

Equations (14) and (15) provide this equation to hold.

IV. MOMENTS AND CRITICAL TIME

The moments of the bivariate spectrum cg,σ (t) are intro-
duced as follows:

Mr,ρ(t) =
∑
g,σ

cg,σ (g)r (σ )ρ, (25)

where (ν)k = ν(ν − 1) . . . (ν − k + 1) is the Pochhammer
symbol. At the pregelation stage t < tc [see Eq. (32)] they
are expressed in terms of F ,

Mr,ρ(t) = ∂r

(∂z)r
∂ρ

(∂ξ )ρ
F

∣∣∣∣
z=ξ=1

. (26)

The special notation is introduced for the first three moments:
M0,0(t) = N (t) is the average number of trees in the forest,
M1,0(t) = M(t) is the average total order of the forest, and
M0,1(t) = S(t) is its average total valence.

From Eq. (15), we find

S(t) = √
s tanh t

√
s. (27)

It is possible to write down the equations for other mo-
ments. For the number concentration N (t) = ∑

gσ cg,σ (t) =
F(1,1; t) one has, Ṅ = 1 − 1

2S2 or

N (t) = 1
2 [

√
s tanh t

√
s − (s − 2)t]. (28)

The total mass concentration M = M1,0 = ∑
g,σ gc(g,σ ; t) =

∂zF(1,1; t) linearly grows with time, M = t . Other moments
of interest are

Ṁ0,2 = s(s − 1) + (M0,2)2 − 2SM0,2. (29)

The solution to this equation is

M0,2 = S + γ tan γ t, (30)

where

γ =
√

s2 − 2s. (31)

It is seen that M0,2(t) diverges at the critical time

tc = π

2
√

s2 − 2s
, (32)

which evidences on the sol-gel transition, i.e., the emergence
of a giant tree. Next,

Ṁ1,1 = s + M1,1(M0,2 − S) = s + M1,1γ tan γ t (33)

or

M1,1 = s

γ
tan γ t. (34)

Next,

Ṁ2,0 = (M1,1)2. (35)

Hence,

M2,0 = s2

γ 3

∫ t

0
tan2 γ t ′dt ′ = s2

γ 3
[tan γ t − γ t]. (36)

The above results are valid only at the precritical stage. It is
important, however, to mention that S(t) [Eq. (15)] describing
the dependence of the total valence of the forest holds during
the whole coalescence process 0 � t < ∞. We return to the
discussion of this issue in Sec. VI.

V. GEL COMES UP

A. Order parameter

According to the definition of the average total valence
Eqs. (14) and (19), we have

S̃(t) = S(t) −
√

2[A(1) − A(ũ)], (37)

where ũ(t) = u(1,t). We immediately see that the identity S̃ =
S is broken unless ũ �= 1. Below we show that at t > tc Eq. (17)
has a solution different from ũ = 1 at t > tc. In analogy with
the theory of phase transition the function W (t) = 1 − ũ(t) is
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referred to as the order parameter, because the deviations of all
moments of the order distribution from those at the precritical
period appear when W (t) �= 0. The function W (t) = 0 at the
pregelation period [see Eq. (46)].

For the analysis of the critical behavior we find u at ξ close
to 1. To this end we introduce

B(ζ ) = s − 2

2
− A(ζ ) (38)

and expand B(ζ ) over 1 − ζ ,

B(ζ ) = s(s − 2)

2
(1 − ζ )2 − s(s − 1)(s − 2)

6
(1 − ζ )3 + . . . .

(39)

In terms of variables 1 − ζ = η, 1 − ξ = θ , and 1 − u = w

the integral in Eq. (17) is rewritten as

t =
∫ w

θ

dη√
2[B(w) − B(η)]

. (40)

Now we replace the integration variable y2 = 2B(η) and
obtain

t =
∫ √

2B(w)

√
2B(θ)

ydy

B ′[η(y)]

1√
2B(w) − y2

, (41)

with η(y) being the root of equation y2 = 2B[η(y)]. It is easy
to see that

lim
y→0

y

B ′[η(y)]
= 1

γ
. (42)

Hence, Eq. (41) can be rewritten as

t = 1

γ
arccos[

√
B(θ )/B(w)] +

∫ √
2B(w)

√
2B(θ)

R(y)dy√
2B(w) − y2

,

(43)

or √
B(w) cos[γ (t − Z)] =

√
B(θ ), (44)

where

Z(w,θ ) =
∫ √

2B(w)

√
2B(θ)

R(y)dy√
2B(w) − y2

, (45)

R(y) = y/B ′[η(y)] − 1/γ , and θ = 1 − ξ . At θ = 0 there are
two solutions to Eq. (44),

w = 0 and t − Z(W,0) = tc (tc = π/2γ ), (46)

the first of which corresponds to the pregelation regime, while
the second one describes the time evolution of the order
parameter at the postgelation stage.

Equations (44) and (46) are still exact.

B. Postcritical moments

The postcritical behavior of the moments can be readily
found from Eqs. (18) and (19). Equation (19) yields

S̃(t) = S(t) − σ̃ (t), (47)

where

σ̃ =
√

(s − 2) − 2A(ũ) =
√

2B(ũ) (48)

is the total valence of the gel. On putting ξ = 1 in Eq. (18) we
come to the equation for Ñ (t),

dÑ

dt
= 1

2
Ṡ − A(ũ), (49)

The integration of this equation gives

Ñ (t) = 1

2
S(t) −

∫ t

0
A[ũ(t ′)]dt ′

= 1

2

√
s tanh(

√
st) − s − 2

2
t +

∫ t

0
B[ũ(t ′)]dt ′. (50)

The average order of the forest is then found from Eq. (6)
by multiplying both its sides by cg,σ and summing over all g

and σ ,

(s − 2)M̃(t) = S̃(t) − 2Ñ (t). (51)

Equations (47), (50), and (51) yield

M̃ = t − 1

s − 2

{
σ (t) + 2

∫ t

0
B[ũ(t ′)]dt ′

}
. (52)

Equation (52) allows us to find the average order of the giant
component,

μ(t) = t − M̃ = 1

s − 2

{
σ (t) + 2

∫ t

0
B[ũ(t ′)]dt ′

}
. (53)

C. Near the critical point

The ratio y/B ′[η(y)] can be expanded in powers of y,

y

B ′(ξ (y))
= 1√

s(s − 2)
+ (s − 1)y

3s(s − 2)
+ . . . = 1

γ
+ R(y).

(54)

At small y we find

R(y) ≈ (s − 1)y

3s(s − 2)
(55)

and [see Eq. (45)]

Z ≈ (s − 1)

3γ

√
2[B(w) − B(θ )]. (56)

In the limit 1 � B(w) � B(θ ) and |t − tc| 	 1, we can
replace

√
2B(x) ≈ γ x and Z ≈ (s − 1)w/3. Then,

w[cos(γ t − γZ)] = θ. (57)

Now it is possible to formulate a simple algebraic equation for
w

γ (s − 1)

3
w2 + w cos γ t − θ = 0. (58)

In deriving this equation we neglected B(θ ) in Eq. (56).
Equation (58) is readily solved to give

w = − cos γ t ±
√

cos2 γ t + 4aθ

2a
, (59)

where a = (s − 1)γ /3. The positive solution should be re-
tained. At θ = 0,

w = W = − cos γ t + | cos γ t |
2a

. (60)
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At t < tc (the precritical stage) B(w) = 0 and at t > tc the
first term becomes positive and thus w > 0. Near t = tc we
approximate cos γ t ≈ πτ/2, where the parameter τ = (tc −
t)/tc characterizes the deviations from the critical point,∫ t

0
B(t ′)dt ′ ≈ 3tcπ

2τ 3

8(s − 1)2
θ (τ ) (61)

and

σ ≈ 3πτ

s − 1
θ (τ ). (62)

Here θ (τ ) is the Heaviside step function. As follows from
Eqs. (47), (50), and (52) the moments S̃(t) and M̃ have a cusp
at t = tc. The moment Ñ has a disruption at t = tc only in the
third derivative over time.

The function ξ∂ξF generates σcσ (t). The valence spectrum
is thus expressed through the contour integral,

cσ (t) = 1

2πiσ

∮ F ′(ζ )dζ

ζ σ
. (63)

Equation (12) applies for transforming the integral on the right-
hand side of this equation,

cσ (t) = − 1

2πiσ

∮ √
2[A(ζ ) − A(u)])dζ

ζ σ
. (64)

The asymptotic form of the spectrum cσ (t) at large σ is
closely related to the analytic properties of the generating
function F(ζ,t) at ζ = ζ0(t), where ζ0(t) is the position of
the singularity of the integrand in Eq. (64) nearest to the origin
of coordinates in the complex plane ζ [30]. At θ 	 w 	 1 we
find [see Eq. (38)]√

2[A(ζ ) − A(u)] =
√

2[B(w) − B(θ )] ≈
√

2B(w) ≈ γw(θ ).

(65)

In the above according to Eq. (57) we ignored the term B(θ ).
Hence,

cσ (t) = − γ

2πi(4aσ )

∮ √
cos2 γ t + 4a(1 − ζ )dζ

ζ σ

≈ − γ

2
√

aσ

1

2πi

∮
dζ

ζ σ

√
ζ0 − ζ , (66)

where

ζ0(τ ) = 1 + π2τ 2

16a
(67)

is the position of the singularity of the integrand. It is seen that
ζ0 → 1 as τ → 0 (or t → tc), which means that at t = tc the
spectrum becomes algebraic. Finally, we obtain

cσ = π

4
√

a
σ−5/2 exp(−σπ2τ 2/16a). (68)

In order to find the order spectrum we should put σ = g(s − 2)
(at g � 1).

D. Final stage

At t → ∞, ũ → 0, and we have

F (z,ξ,t) = ξ
√

s −
√

ξ 2s − 2zξ s. (69)

From here we find the spectrum

cg(∞) = (2g − 2)!

[g(s − 2) + 2]sg−1/22g−1(g − 1)!g!

≈ 1

(s − 2)
√

2πg5

(
2

s

)g−1/2

, (70)

and

S̃(∞) = √
s − √

s − 2, (71)

Ñ (∞) =
√

s

2
−

∫ 1

0

√
sζ 2 − 2ζ sdζ. (72)

Equation (6) together with Eqs. (71) and (72) yields

M̃(∞) = 2

s − 2

∫ 1

0

√
sζ 2 − 2ζ sdζ − 1√

s − 2
. (73)

VI. RESULTS AND DISCUSSION

The main results of this paper can be summarized as
follows:

(1) The kinetic equation [Eq. (3)] describing the time
evolution of the order-valence spectrum of linked components
of a random forest in the presence of a source of monovalent
vertices is formulated in terms of concentrations of linked trees
of given order g and valence σ (the spectrum of trees). The
equation for bivariate generating function for the spectrum
[Eq. (13)] is derived and solved exactly [see Eq. (16)] for
initially zero graph.

(2) It is shown that the moments of the tree spectrum can be
expressed in terms of the derivatives of the generating function.
Moreover, the evolution equations for them are closed, i.e., the
equation for the mth moment contains only lower moments.
This result holds only for the finite interval of time t < tc,
where tc is the critical time that appears automatically in
the exact analytical expression for the second moment [see
Eqs. (30) and (31)].

(3) The precritical time dependencies of the lowest mo-
ments of the spectrum are found for zero initial conditions. It
is demonstrated that the present model successfully reproduces
the emergence of the giant component at the critical time
tc = π/2

√
s(s − 2).

(4) The time dependence of the moments at the postcritical
period is shown to be expressed in terms of the order
parameter W (t). The equation for W (t) is formulated and
analyzed [Eq. (40)]. It is shown that there are two solutions
to this equation describing the precritical and the postcritical
regimes, respectively. At the precritical period W (t) = 0. The
postcritical dependence is given by the inversion of Eq. (17).
The time dependence of the order parameter is displayed in
Fig. 1. Other lower moments of the tree spectrum (the number
concentration N (t), the average order M(t), and average
valence S(t)) are expressed through the order parameter. Their
time dependencies are shown in Fig. 2. Figure 3 displays the
average graph valence at different s. The remarkable feature
of these curves is the cusp at the transition point. This cusp
does not appear in N (t). The reason for this is clear, the
expression for N (t) contains the integral

∫
B(t)dt ∝ τ 3 rather
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FIG. 1. The phase transition. Shown is the dependence of the
order parameter W (τ ), on the reduced time τ = (t − tc)/tc, for
different values of the vertex valence s. Solid, dash, and dash-dot
curves correspond to s = 3, s = 5, and s = 7, respectively.

FIG. 2. Average forest valence S̃(t) (solid curve), average forest
order M̃(t) (dash curve), and the average number of trees Ñ (t) (dash-
dot curve) are shown as the functions of time. First two moments S̃(t)
and M̃(t) have clearly expressed cusps at t = tc, whereas Ñ (t) does
not display any singularity at the critical time. The explanation of this
fact is given in the text.

FIG. 3. Time dependence of the average valence S̃(t) of the forest
at different values of the vertex valence s.

than
√

B(t) ∝ τ [Eqs. (61) and (62)]. Respectively, the cusp
in this case is expressed much weaker (see Fig. 2).

(5) The critical behavior of the spectrum does not differ
from that of the free coalescing forest. The asymptotic
spectrum is shown to comprise two parts: the algebraic
multiplier (standard g−5/2 dependence) and an exponential
factor [see Eq. (68)]. The coefficients in this expression is
connected with the second moment of the spectrum. At the
critical time the spectrum is algebraic cg ∝ g−5/2.

(6) It is important to emphasize that after the critical
moment the spectrum again acquires the exponential factor.
At the final stage of the coalescence process a steady-state
spectrum forms. Nothing like this is observed in the model of
source enhanced coalescence [29]. It is remarkable that this
final spectrum is not algebraic, cg ∝ g−5/2 exp(−αg).

The structural properties of an evolving random graph
change in adding extra edges one at a time. In particular, the
distribution of the linked components in such graphs becomes
broader with time. The distribution evolves to algebraic one
and a giant component emerges after a finite period of time
(at t > tc). This pattern is common for many types of random
graphs.

The random graph with finite valence of the vertexes is
not exclusion. In contrast to widely studied random graphs
the time evolution of such graphs is described in terms of
bivariate concentrations of linked components over their order
g and valence σ . The coalescence rate depends on the total
valences of the coalescing components. Each extra edge kills
randomly a couple of free valences in the graph. Respectively,
the graph jumps from the state with k free valences to the
state with k − 2 valences. The analogy with the reaction of
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FIG. 4. Shown are the moments S̃(∞) and M̃(∞) of the residual
forest vs. s.

annihilation is clearly seen. The kinetic equation for the total
valence thus has the form

˙̄S = s − S̄2. (74)

The same result comes from the differentiation of the generat-
ing function [Eq. (13)]. At the postcritical period the part of the
valent vertexes belongs to the giant component. The valence
and order of the gel have been found in Sec. V for the giant and
small components. The results are displayed in Figs. 2–4. As
expected the critical time is shorter for the graphs with larger
vertex valence s.

In the case of initially empty graph the present model
reminds the Flory model of polymerization. The point is that
at large M when we can ignore cycling the linking of bare
vertexes leads to the formation of trees, in which the valence
and the mass of each component are connected. Indeed, the
number of edges in the tree of mass g is g − 1. Each edge

reduces the valence of the component by 2. Hence, the valence
of the component containing g vertices is gs − 2(g − 1) =
g(s − 2) + 2. Of course, Eq. (6) reproduces this result.

Another scenario where the linked component of very
large order g > G are instantly removed from the graph.
Their valence is entirely suppressed and they are unable to
influence the run of the coalescence process. This scenario is
analogous to the Stockmayer scenario of polymerization [8].
The postcritical solution for the source enhanced systems in
this case is yet unknown, although the attempt to do this was
reported in Ref. [31]

VII. CONCLUSIONS

In this paper the model describing the dynamics of the
coalescing random graph has been proposed. In contrast
to commonly accepted approach relying upon the analogy
between graph coalescence and the coagulating system with
the product kernel [6] the present model considers the
coalescence rate proportional to the product of the total
valences of coalescing components. The dependence of the
coalescence rate on the masses does not enter explicitly into
the kinetic equation. This equation has been then formulated
in terms of the bivariate generating function that has been
found exactly for arbitrary initial conditions. In turn, this result
allowed for finding the time dependencies of the valence of
giant component and its mass.

The formal chemical kinetic approach Eq. (3) allows for
consideration of thermodynamically large systems, where
the total numbers of each linked component is of the total
order of the graph M . This means that the giant component
is indistinguishable in the thermodynamic limit, i.e., its
concentration goes to zero as M → ∞. Still we can distinguish
this giant component from indirect evidences: its total order
and valence contribute to the respective balances after the
critical time.

There exists a more straightforward (but much more
complex) approach to the time evolution of random graphs.
I mean the approach of Ref. [22] that operates with the
probability to find the graph in a given definite state. This
probability obeys a master equation that had been solved by
me for “normal” random graphs in Ref. [22]. It is likely that this
approach can also be applied to the problem considered above.
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