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We investigate the tricritical scaling behavior of the two-dimensional spin-1 Blume-Capel model by using
the Wang-Landau method of measuring the joint density of states for lattice sizes up to 48 × 48 sites. We
find that the specific heat deep in the first-order area of the phase diagram exhibits a double-peak structure of
the Schottky-like anomaly appearing with the transition peak. The first-order transition curve is systematically
determined by employing the method of field mixing in conjunction with finite-size scaling, showing a significant
deviation from the previous data points. At the tricritical point, we characterize the tricritical exponents through
finite-size-scaling analysis including the phenomenological finite-size scaling with thermodynamic variables. Our
estimation of the tricritical eigenvalue exponents, yt = 1.804 (5), yg = 0.80 (1), and yh = 1.925 (3), provides the
first Wang-Landau verification of the conjectured exact values, demonstrating the effectiveness of the density-
of-states-based approach in finite-size scaling study of multicritical phenomena.
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I. INTRODUCTION

The Wang-Landau (WL) sampling method [1,2] directly
estimates the density of states through random walk in
energy space. Because of its capability of dealing with a
complex energy landscape together with the flexibility for
applications, it has been widely used in different areas of
physics and chemistry, including protein folding [3,4], fluid
simulations [5], random spin systems [6], and also quantum
systems [7,8]. Particularly for study of phase transitions,
the WL method suggests an efficient way to overcome the
issue of slow dynamics in the conventional Monte Carlo
simulations. Reducing tunneling time and critical slowing
down in the first- and second-order transitions has been a
long-standing subject in the advances of the Monte Carlo
methods, which include, for instance, the cluster algorithms
[9,10], multicanonical ensembles [11,12], parallel tempering
[13,14], and the histogram reweighting technique [15]. In the
WL method, with the density of states being accurately esti-
mated, one can immediately access thermodynamic quantities
at any temperatures across a phase diagram, indicating its
potential for study of critical phenomena (for instance, see
Refs. [16–22]). In this paper, we focus on the tricritical
phenomena and examine the effectiveness of the Wang-Landau
method in the finite-size-scaling analysis of the tricritical
behavior in two dimensions.

A tricritical point at which the nature of a phase transition
changes from first order to second order has been observed
in a variety of systems [23]; for instance, multicomponent
fluids, metamagnets, 3He-4He mixtures [24], and also recently
ultracold quantum gases [25]. Interestingly, the upper critical
dimension for the Ising tricritical behavior is lowered to three,
and thus in two dimensions, the tricritical scaling exponents
become different from the classical ones [26,27]. The tricritical
universality in two dimensions was first conjectured from the
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dilute Potts model [28–30] and established by the conformal
invariance argument [31]. On the other hand, large efforts with
advanced numerical methods on different models have been
also devoted to precisely calculate the tricritical eigenvalue
exponents; namely, the thermal exponent yt , the next-to-
leading thermal exponent yg , and the magnetic exponent yh.
The Monte Carlo renormalization group (MCRG) calculation
was performed for the Ising antiferromagnet (AFM) and the
Blume-Capel (BC) model [32]; the transfer-matrix method was
applied to the BC model [33]; the metropolis algorithm with
the histogram reweighting (HR) technique was used for the
spin fluid and the BC model [34]. While the WL method was
first applied to the BC model in Ref. [19], the tricritical scaling
exponents still remain unexplored in the same method. The
tricritical eigenvalue exponents estimated from these previous
calculations are listed in Table I.

Here, by using the Wang-Landau method, we approach
the tricriticality of the two-dimensional spin-1 Blume-Capel
model from the side of the first-order phase transitions. The
joint density of states is measured for systems with sizes up
to 48 × 48 sites, allowing an accurate picture of the first-order
transitions and tricritical scaling behavior. First, at a large
crystal field, we find out a double-peak structure of the specific
heat where the Schottky-like anomaly appears together with
the first-order-transition peak. It turns out that our large-scale
calculations are crucial to reveal this anomalous structure.
Second, we systematically determine the first-order-transition
curve, which provides significant deviations from the implicit
line of the few previous data points. Finally, we characterize
the tricritical exponents through finite-size-scaling analysis
within the Wang-Landau framework. The excellent data-curve
collapses in the finite-size scaling accurately determine the
three tricritical eigenvalue exponents, providing the first Wang-
Landau verification of the conjectured exact values of the
tricritical exponents in two dimensions.

This paper is organized as follows: Section II defines the
Hamiltonian of the BC model and provides the numerical
details of our simulations. In Sec. II, we also briefly describe

1539-3755/2015/92(2)/022134(9) 022134-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.022134


KWAK, JEONG, LEE, AND KIM PHYSICAL REVIEW E 92, 022134 (2015)

TABLE I. Numerical estimates of the tricritical eigenvalue
exponents in two dimensions. The conjectured exact exponents are
given for comparison.

Numerical method Model yt yg yh

MCRG [32] Ising AFM, BC 1.80 (2) 0.84 (5) 1.93 (1)
Transfer Matrix [33] BC 1.75 (3) 0.80 (1) 1.90 (5)
Metropolis+HR [34] Spin fluid, BC 1.80 (1) 0.83 (5) 1.93 (1)
WL (this work) BC 1.804 (5) 0.80 (1) 1.925 (3)

Exact conjectures [28–31] 9/5 4/5 77/40

the mixing-field method with which we proceed for the charac-
terization of the tricritical behavior of the BC model. In Sec. III,
we present the specific-heat anomaly observed with the first-
order transitions, and we provide the determination of the
first-order-transition line with the details of the mixing-field
analysis [34–36] that we employ to examine phase coexistence
and to locate the tricritical point. In Sec. IV, we provide the
finite-size-scaling analysis to estimate the tricritical exponents,
including the one with the probability distribution associated
with the field mixing and the phenomenological finite-size
scaling with thermodynamic quantities. In Sec. V, summary
and outlooks are given.

II. MODEL AND METHODS

A. Grand canonical formulation of Blume-Capel model

The spin-1 Blume-Capel model in square lattices that we
consider can be described by the Hamiltonian

H = −J
∑
〈i,j〉

sisj + �
∑

i

s2
i − h

∑
i

si , (1)

where spin si at site i can take a value of +1, −1, or 0, and J and
� denote the ferromagnetic coupling and crystal field causing
spin anisotropy, respectively. The summation �〈i,j〉 runs over
all pairs of nearest-neighbor spins. The coupling J is set to
be unity to define the unit energy scale. We only consider the
case of zero external magnetic field, h = 0, in the calculations.
The system size is denoted by L representing Ld lattice sites
where the dimension d = 2 for our square lattices. For the
numerical implementation, we write the partition function in
a grand canonical form as

ZL(β,z) =
∑
E,N

�(E,N )zN exp (βE), (2)

where β denotes the inverse temperature 1/kBT , and the
fugacity z is given as z ≡ exp(−μ) with μ ≡ β�. The
Boltzmann constant kB is set to unity for simplicity. The
variables E ≡ ∑

〈i,j〉 sisj and N ≡ ∑
i s

2
i represent the kinetic

energy and number of nonzero spins, respectively. The joint
density of states �(E,N ) is to be given by the WL sampling.

B. Direction of scaling fields

We employ the method of field mixing [34–36] to describe
the asymmetry of phase transitions undergoing in the Blume-
Capel model and the scale invariance at the tricritical point.
The formulation in Eqs. (1) and (2) suggests the temperature
T , crystal field �, and magnetic field h as a natural choice

of fields to describe the phase diagram. While the scaling
direction associated with h is orthogonal to the T − � (or
β − μ) plane because of the Ising symmetry, there is no such
symmetry for the other two fields. Thus, for instance, in order
to study the tricritical behavior, one may consider the linear
combinations of β and μ to describe the relevant scaling fields
as

λ = (μ − μt ) + r(β − βt ), (3)

g = (β − βt ) + s(μ − μt ), (4)

where μt and βt are the values at the tricritical point, and
r and s are the mixing parameters. The scaling field g is
tangent to the coexistent curve while the direction of λ is
not restricted. Accordingly, one can also write down the two
relevant variables conjugate to the scaling fields as

Q = 1

1 − rs
(n − sε), (5)

E = 1

1 − rs
(ε − rn), (6)

where n = L−dN and ε = L−dE, satisfying the requirement
〈X〉 = L−d∂ lnZL/∂x for scaling field x. Note that the mixing
parameters r and s are system-specific quantities, and thus the
scaling fields and their corresponding conjugate variables can
exhibit system-size dependence.

In the vicinity of the tricritical point, the finite-size-scaling
ansatz for the limiting probability distribution function of the
scaling fields and their conjugate variables is written as

PL ∝ p̃L

(
a−1

t Ld−ytQ, a−1
g Ld−ygE, a−1

h Ld−yhm,

atL
yt λ,agL

ygg, ahL
yhh

)
, (7)

where p̃L is a universal scaling function, and a are nonuniversal
factors (for more details, see Refs. [34–36]). Precisely at the
tricritical point, the probability distribution function becomes

PL ∝ p̃∗
L

(
a−1

t Ld−ytQ, a−1
g Ld−ygE, a−1

h Ld−yhm
)
, (8)

where p̃∗
L is universal and scale invariant, which allows us to

measure the tricritical exponents y from the finite-size scaling
for systems with different sizes. The probability distribution
function of the field-conjugate variables can be estimated from
the histogram accumulating the occurrence of (E,N ) points
in the discrete bins of Q and E with the weighting factor
�(E,N )zN exp(βE).

C. Numerical aspects of Wang-Landau sampling

Our numerical estimate of �(E,N ) follows the standard
WL algorithm [1,2] except that our random walk needs to be
performed in the two-dimensional parameter space of E and
N . Initially, the density of states �(E,N ) is set to be unity,
and the random walk proceeds by trying out a new random
value for a spin randomly chosen in the lattices. The new trial
spin would move the energy from (E1,N1) to (E2,N2) in the
two-dimensional parameter space, and then this spin update is
accepted with the transition probability

p[(E1,N1) → (E2,N2)] = min

(
�(E1,N1)

�(E2,N2)
,1

)
(9)
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for the sake of the importance sampling of �. In every
trial of spin updates, the current energy state (E,N ) is
recorded in � and the histogram H of visited states as
ln �(E,N ) → ln �(E,N ) + ln f with the modification factor
f and H (E,N ) → H (E,N ) + 1, respectively. These WL
procedures continues until the histogram becomes flat enough
and then are restarted with a reduced modification factor and
with resetting the histogram as H = 0.

The modification factor f is initially given as ln f = 1 and
scaled down as

√
f when restarting. The flatness criterion

for the histogram is set to be 95% for L = 16 and 90% for
L = 20 and 24, and it is lowered to 80% for L � 32. To avoid
accidental satisfaction of the flatness criterion, the number
of Monte Carlo steps (MCSs) between successive flatness
inquiries is set to be the same as the number of available energy
states of (E,N ), where a unit MCS is defined as Ld trials of
a single spin update. The actual flatness-inquiry interval is
about 105 MCSs for L = 16 and increases to 107 for L = 48.
The stopping criterion for the modification factor is given as
ln f < 10−8 for L � 32, a less-stringent 10−7 for L = 40, and
10−6 for L = 48.

The main difficulty encountered in these procedures comes
from the increased dimensionality encoded in the importance
sampling with spin-update trial, causing very long computa-
tion times. Compared to the usual case with a single energy
parameter, many more spin-update trials are needed to cover
the two-dimensional space of (E,N ) since one spin-update trial
can visit only one energy state. For L = 48, the size of (E,N )
space is enlarged to be about 107, while the corresponding
number for the Ising energy E is just in the order of thousands.
Therefore, the WL simulations for multi-energy variables
cost significantly more in computational time than the one-
variable case does (see also Refs. [17,19,37]). For instance,
our computation of �(E,N ) for the system with L = 40
takes about six months on a 3.3 GHz Xeon E3 processor.
While the WL procedures that we consider here is standard
and essentially serial, extending the recently suggested broad
kernel update method [37,38] and massively parallel algorithm
[39,40] to a multiparameter system may help to reduce the
issue of long computation time.

Once �(E,N ) is obtained from the WL procedures, it
is straightforward to calculate the canonical average of a
thermodynamic observable O ≡ O(E,N ) at given T and �

as

〈O〉 ≡ 1

Z
∑
E,N

O(E,N )�(E,N )zN exp (βE). (10)

Similarly, one can also define the moment of microcanonical
magnetization as

〈|m|k〉 ≡ 1

Z
∑
E,N

[〈|m|〉E,N ]k�(E,N )zN exp (βE), (11)

where the microcanonical magnetization 〈|m|〉E,N is an av-
erage of |m| ≡ L−d | ∑i si | for a given (E,N ) which can be
measured simultaneously with the WL sampling [19,41]. In
practice, the microcanonical average is performed in the last
stage of the iterations with the smallest f where the density
of states is saturated. In our simulations, the random walk
done for convergence of the microcanonical magnetization is
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FIG. 1. (Color online) Phase diagram of the two-dimensional
spin-1 Blume-Capel model around the tricritical point in the plane
of temperature T and crystal field �. The transition line and
tricritical point are determined from the mixing-field analysis with
the calculations using the Wang-Landau density of states. The
phase-transition line plotted here is determined in the limit of infinite
L from the extrapolation of the pseudotransition points obtained
for the systems with different sizes up to L = 48 (for example,
see Fig. 3). The transition points previously available from the
literature [19,33,42] are given for comparison. The statistical error
was unspecified for the data in Ref. [33], and the error bars of the
data in Ref. [19] were given in temperature. All our transition points
are listed in Table II.

typically on the order of a thousand flatness inquiries; however,
we find that the estimation of 〈|m|〉E,N is still numerically
affordable for L � 40 within the limited computational time.
We calculate the susceptibility and fourth-order cumulant of
microcanonical magnetization by using Eq. (11). While the
moment of microcanonical magnetization may quantitatively
differ from the genuine canonical counterpart, our finite-size-
scaling analysis given in the later sections shows that it is still
very useful for the estimate of the first-order-transition points
and, more importantly, it shares the same universal behavior
anticipated at the tricritical point.

III. PHASE DIAGRAM OF BLUME-CAPEL MODEL

In this section, we particularly focus on the area of the phase
diagram of the BC model at large crystal fields just below
� = 2. It is known that the first-order transitions dominates
in this area; however, the detailed plot of the first-order
transition line is not available yet. In Fig. 1, we present the
transition line that we obtain as a function of temperature and
crystal field, where the estimated location of the tricritical
point is also specified. While our estimation of the tricritical
point is in good agreement with the previous numerical
results [19,33,34,36,43], the transition points available from
the literature [19,33] shows a significant deviation from the
first-order transition line that we identify with the WL method.
The finite-size scaling for the extrapolation is performed with
system sizes L � 48, and these large-scale calculations are
also crucial to reveal the valid physics of the specific heat
occurring deep in the first-order area.
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FIG. 2. (Color online) Specific-heat anomaly appearing with the
first-order transition. (a) Double-peak structure observed in the
specific heat at � = 1.994. While the diverging peak at the lower
temperature is associated with the phase transition, the anomalous
broad one at the higher temperature does not scale with the system
size. The inset indicates that the smaller systems cannot detect the
correct structure. (b) Corresponding density of nonzero spins 〈n〉 and
entropy per site s(T ). The zero-spin state is dominant right after the
transition and then starts to get thermally excited to the nonzero-spin
states distributed with increasing entropy.

Our Wang-Landau calculations also reveal an anomalous
double-peak structure of the specific heat at large crystal field,
yet in the first-order-transition area. Figure 2 displays the
structure of the specific heat at � = 1.994 where the broad
anomaly emerges above the sharp divergence of the first-order
transition. This anomaly does not scale with system size and
is associated with the Schottky-like mechanism. We find that,
at the first-order transition, the population of nonzero spins
sharply drops on the disordered side. Since the zero spins
dominate at this stage, similar to the Schottky anomaly, the
energy barrier for the excitation of the nonzero-spin states is
mainly from the crystal field �. While this anomaly could
be anticipated for very strong anisotropy with �/J 	 1, it
was not known whether it could appear together with the
phase transition. The previous WL calculations for the specific
heat are limited to L � 16 [19] which we find cannot detect
the double-peak structure [see the inset of Fig. 2(a)]. In our
calculation, for system sizes up to L = 48, the double-peak
structure of the specific heat is visible for � � 1.99.

A. First-order phase transitions

We determine the first-order phase transition line from the
symmetry condition for phase coexistence in the probability
distribution function PL(Q). The energy variable Q is con-
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FIG. 3. Finding the first-order transition points by using the
method of field mixing. (a) Symmetric double peaks in the distribution
of the field-conjugate variable Q at the phase coexistence � = �∗

L

established at temperature T = 0.5. The distribution is shifted and
rescaled for visualization of systems with different sizes. (b) Scaling
behavior of �∗

L with system size L. The extrapolation in the limit
of L → ∞ determines the transition point �∗

∞. The fourth-order
cumulant of microcanonical magnetization Um

L in panel (c) also find
its crossing point very close to the estimated transition point.

jugate to the scaling field λ across the phase transition, and
thus one may expect a symmetric doubly peaked PL(Q) at
the transition point in analogy with the probability distribution
of the order parameter in conventional first-order transitions
[34]. For our systems with finite sizes, we search for a
size-dependent pseudotransition point and mixing parameter
at which the symmetric doubly peaked PL(Q) emerges.

Figure 3(a) illustrates the symmetric probability distribu-
tion with the double peaks found for the phase coexistence at
a given temperature. In the graphical search for the symmetry
to find the pseudotransition point �∗

L and mixing parameter
s, a practical difficulty lies in discriminating the shape of the
distribution, which actually is the histogram of the discrete
values of Q constructed with finite bin size. For the optimized
identification of the symmetry, we compare various local
statistics of the double peaks, including populations and
heights.

The search occurs in three main steps. First, for a given T ,
we graphically search for a set of � and s that roughly gives
double peaks in PL(Q̃) where Q is normalized for Q̃ to have
zero average and unit variance. Second, starting from these
initial values, � is fine tuned to meet the equal-population
condition by measuring the difference in population below
and above Q̃ = 0. In this step, we also check the symmetry
of the local averages measured for the parts below and
above the zero point, which we find comes along with the
equal-population condition. Note that this step is independent
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FIG. 4. Probability distribution function of the field-conjugate
variable Q along the transition line. The calculations for the largest
available system with L = 48 are shown.

of any graphical visualization and therefore allows the high-
resolution determination of �∗

L in the WL approach. Then,
with � being fixed, the mixing parameter s can be determined
graphically for the condition of equal height of the double
peaks. We find that the two peaks are well separated in the
first-order transition region, as explicitly shown in Fig. 4,
and the tuning of s mainly changes the peak heights without
disturbing the equal-population condition. In our numerical
implementation, we determine the pseudotransition point �∗

L

when the difference in population and height is minimized
within the search step of 10−6 in � for T < 0.6 and 10−5

otherwise to get enough resolution for size scaling.
We obtain the transition point �∗

∞ from the extrapolation
of the pseudotransition point �∗

L in the limit of L → ∞. For
the area of the phase diagram shown in Fig. 1, we find that �∗

L

shows the scaling behavior

�∗
L = �∗

∞ + bL−2, (12)

where b is a fitting parameter, which agrees well with the L−d

scaling generally expected for the first-order phase transitions.
The scaling behavior around T = 0.5 is presented in Fig. 3(b),
for example. We also examine the crossing point of the fourth-
order cumulant of the microcanonical magnetization Um

L ≡
1 − 〈|m|4〉/3〈|m|2〉2 measured for systems with different sizes.
We find that the crossing of Um

L is in good agreement with
the transition point �∗

∞ obtained from the analysis of the
probability distribution [for instance, see Fig. 3(c)]. The
difference between the two different approaches is observed
to be about 10−4 for 0.58 < T < 0.64 beyond the estimated
errors, which could be further improved by averaging over
many samples of the WL density of states. The estimated
transition points are listed in Table II.

The scaling behavior in Eq. (12) certainly supports the first-
order characteristics of the transition occurring in the area of
the phase diagram that we are after. Within our data obtained
for systems with sizes up to L = 48, we have not found a
quantifiable change of the scaling behavior which, on the other
hand, one may expect to see above the tricritical point of the
BC model where the second-order transition should emerge.
However, in the probability distribution shown in Fig. 4, we
find that the positions of the double peaks in PL(Q̃) get closer

TABLE II. Estimated transition points. Shown are the extrapo-
lated values of �∗

∞ obtained from the size scaling in Eq. (12) and the
crossing points of the fourth-order cumulant Um

L .

T �∗
∞ Crossing of Um

L Order of transition

0.3 1.99960 (1) 1.99960 First
0.32 1.99933 (1) 1.99932 First
0.34 1.99895 (1) 1.99894 First
0.36 1.99842 (1) 1.99842 First
0.38 1.99772 (1) 1.99772 First
0.40 1.99681 (1) 1.99681 First
0.42 1.99566 (1) 1.99566 First
0.44 1.99423 (1) 1.99423 First
0.46 1.99248 (1) 1.99248 First
0.48 1.99038 (1) 1.99038 First
0.5 1.98789 (1) 1.98789 First
0.52 1.98496 (1) 1.98496 First
0.54 1.98157 (1) 1.98157 First
0.56 1.97766 (1) 1.97766 First
0.58 1.97323 (1) 1.97322 First
0.59 1.97080 (1) 1.97077 First
0.595 1.96953 (1) 1.96949 First
0.6 1.96825 (1) 1.96817 First
0.605 1.96690 (1) 1.96681 First
0.608 1.96604 (1) 1.96597 Tricritical point
0.61 1.96550 (1) 1.96541 Second
0.615 1.96412 (1) 1.96399 Second
0.62 1.96270 (1) 1.96253 Second
0.625 1.96125 (2) 1.96106 Second
0.63 1.95980 (5) 1.95954 Second
0.64 1.9565 (1) 1.95647 Second
0.65 1.9534 (1) 1.95331 Second
0.66 1.9501 (1) 1.95006 Second

as the temperature increases. Above T = 0.64, the peaks start
to merge together in the larger systems, which implies that the
character of the transition indeed alters.

B. Tricritical point

We determine the precise location of the tricritical point
from the scale-invariant universal form of the probability
distribution function PL(Q), as indicated in Eq. (8). The scale
invariance at the tricritical point can be conveniently indicated
by a size-independent crossing point of the fourth-order
cumulant

UQ
L ≡ 1 − 〈Q̃4〉

3〈Q̃2〉2
(13)

for the field-conjugate variable Q̃ normalized to have zero
average and unit variance [19,34,36].

We identify the tricritical temperature as Ttc = 0.6080 (1)
from the location of the crossing point of the fourth-order
cumulant UQ

L along the transition line, as shown in Fig. 5(a).
Note that the transition line here is for finite L; namely,
the line of the pseudotransition points �∗

L(T ) that we have
determined for the phase coexistence. The error estimate is
only graphical since the our calculation is based on a single
sample of the WL density of states. We estimate the tricritical
crystal field as �tc = 1.9660 (1) from the extrapolation of the
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FIG. 5. Location of tricritical point. (a) The tricritical temperature
Ttc � 0.6080 is determined at the crossing point of the fourth-order
cumulant of the field-conjugate variable UQ

L along the transition line
� = �∗

L(T ). The extrapolation of the transition points �∗
L(Ttc) in

panel (b) and the crossing point of the fourth-order cumulant of
microcanonical magnetization Um

L in panel (c) provide the estimate
of the tricritical crystal field as �tc � 1.9660 (1).

pseudotransition point �∗
L and also from the crossing point

of the fourth-order cumulant Um
L measured at T = Ttc [see

Figs. 5(b) and 5(c)]. Our estimate of the tricritical point, Ttc =
0.6080 (1) and �tc = 1.9660 (1), is in very good agreement
with the previous results for the spin-1 Blume-Capel model
in square lattices, which provide Ttc = 0.610 (5) and �tc =
1.965 (5) [33], Ttc = 0.608 (1) and �tc = 1.9665 (3) [34],
Ttc = 0.609 (4) and �tc = 1.965 (5) [43], Ttc = 0.609 (3) and
�tc = 1.966 (2) [19], and very recently Ttc = 0.608 (1) and
�tc = 1.9665 (3) [36].

IV. TRICRITICAL SCALING BEHAVIOR

In this section, we present the three different forms of
finite-size-scaling analysis that we perform to determine the
tricritical eigenvalue exponents. The thermal exponent yt is
extracted from the probability distribution function of the
field-conjugate variable Q at the tricritical point. The scaling
of the fourth-order cumulant UQ

L along the transition line is
examined to obtain the next-to-leading thermal exponent yg .
Finally, we perform the phenomenological finite-size-scaling
analysis with thermodynamic quantities including specific
heat, compressibility, susceptibility, and magnetization to
measure the thermal and magnetic exponents yt and yh.

A. Distribution of field-conjugate variable

We examine the tricritical thermal exponent yt from the
probability distribution function given in Eq. (8). Precisely at
the tricritical point, T = Ttc and � = �∗

L(Ttc), the distribution
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FIG. 6. (Color online) Finite-size-scaling tests of field-conjugate
variable Q for the tricritical thermal exponents. (a) Scaling plots
of the probability density distribution PL(Q̃) with the exponent
yt = 1.8 at the tricritical temperature Ttc = 0.608. The large systems
with L � 40 provide smooth curves (solid lines) falling on a
universal distribution which also fits well with the data points for the
smaller systems (symbols). (b) Finite-size scaling of the fourth-order
cumulant UQ

L along the transition line. The data points fall onto each
other very well, given the next-to-leading exponent yg = 0.8.

function for the relevant field-conjugate variable Q̃ can be
reduced to the simple finite-size-scaling ansatz [34] as

PL(Q̃) = Ld−yt p∗
Q(Ld−yt Q̃), (14)

where p∗
Q is a universal function and the dimension is given

as d = 2 for square lattices.
Figure 6(a) presents our finite-size-scaling analysis for the

probability distribution with the tricritical thermal exponent
yt = 1.80 (1), showing the data of PL(Q̃) falling well onto
a single curve. In particular, the lines for L = 40 and 48 can
hardly be distinguished in the plot because of the almost perfect
overlap. The possible error in this estimate with the shape of
the distribution mainly originates from the discrete nature ofQ
which affects the visualization of its histogram, particularly in
small systems, and thus can cause ambiguity in the graphical
determination of the mixing parameter.

Our estimate of yt � 1.80 numerically confirms the exact
conjecture yt = 9/5 within the graphical identification. The
data collapse of PL(Q̃) for systems with different sizes L =
16 to 48 shows good agreement with the previous finite-size
scaling for the spin-fluid model, which was also compared
for universality with the BC model with size L = 40 [34].
In principle, one can also attempt to extract the next-to-
leading exponent yg from the similar finite-size scaling of the
probability distribution function PL(E), as implied in Eq. (8).
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However, we find that PL(E) does not give any meaningful
estimate of yg because the distribution is too close to the
Gaussian normal distribution, regardless of the system size
L. The same issue was also reported by the previous work [34]
where yg = 1.03 (7) was estimated from the finite-size-scaling
test of PL(E).

B. Fourth-order cumulant along transition line

Instead, we utilize the fourth-order cumulant UQ
L for the

estimate of the next-to-leading thermal exponent yg . From
Eq. (7) as well as from the scaling hypothesis of the persistence
length [33], one can find that the finite-size scaling of UQ

L

along the transition line may follow the scaling form UQ
L =

u∗[Lygg], where u∗ is a universal function, and the scaling
field g is the deviation from the tricritical point in the direction
tangent to the coexistence curve. Moreover, in our observation
of the data for the phase diagram, it turns out that (μ − μt )
is almost linearly proportional to (β − βt ) along the transition
line near the tricritical point, which leads to g ∼ (T − Ttc) in
Eq. (4). Therefore, for the explicit finite-size scaling tests, one
can further simplify the scaling ansatz of UQ

L as

UQ
L

∣∣
�=�∗

L(T ) ≈ u∗[Lyg (T − Ttc)], (15)

where the constraint � = �∗
L(T ) ensures that it is along the

transition line for a system with finite size L.
Figure 6(b) shows that our data points of UQ

L along the
transition line fall perfectly onto the same curve in the test with
yg = 0.8 for Eq. (15). Within the graphical uncertainty, we
determine the next-to-leading thermal exponent yg = 0.80 (1),
which confirms the exact conjecture yg = 4/5. Our finite-size-
scaling analysis of UQ

L can be compared with the finite-size-
scaling test of the persistence length, which indicates yg =
0.80 (1) [33] and the estimate made by using the slope of the
fourth-order cumulant which provides yg = 0.83 (5) [34].

C. Phenomenological finite-size scaling

In this section, we present the phenomenological finite-size-
scaling analysis of thermodynamic quantities to determine the
thermal and magnetic exponents yt and yh. This approach
does not directly rely on the field-conjugate variable Q and
its probability distribution function. Therefore, it is free from
the explicit dependence of the mixing parameter and the
histogram-visualization issue for the discrete data of Q.

We consider susceptibility, magnetization, specific heat,
and compressibility as the thermodynamic quantities to be
examined for our finite-size-scaling analysis. The susceptibil-
ity χ ≡ (Ld/T )(〈|m|2〉 − 〈|m|〉2) and the magnetization 〈|m|〉
are estimated with the microcanonical magnetization by using
Eq. (11). The specific heat c ≡ (Ld/T 2)(〈ε2〉 − 〈ε〉2) and the
compressibility κT ≡ (Ld/T )(〈n2〉 − 〈n〉2)/〈n〉2 are related to
the fluctuations of the energy E and the number N of nonzero
spins. With the WL density of states being sampled with high
accuracy, one can freely access these thermodynamic variables
at any temperature and crystal field.

Figures 7 and 8 show our finite-size-scaling analysis of
the thermodynamic quantities for two different choices of an
appropriate scaling axis. First, we choose to perform the finite-
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FIG. 7. (Color online) Tricritical behavior along the crystal field
axis at the tricritical temperature. The finite-size-scaling analysis of
(a) number fluctuations 〈n〉2κT , (b) susceptibility χ , and (c) mag-
netization 〈|m|〉 is performed to determine the tricritical exponents.
While the WL method guarantees high-enough resolution to plot the
data as continuous curves, the points in low resolution (L � 24) are
also given for visualization of finite-size scaling. The ratios αt/νt and
γt/νt are determined from the power-law fits of the maxima of 〈n〉2κT

and χ , respectively. Each scaling plot with the estimated exponent
shows the excellent collapse of the data points falling onto a single
curve. The tricritical eigenvalue exponents are deduced as yt = 1.804
and yh = 1.925 from αt/νt and γt/νt .

size scaling along the fugacity axis selected from the natural
variables of the grand partition function. With the temperature
fixed at T = Ttc, the scaling variable can be expressed as x ≡
� − �tc. In this case, the relevant thermodynamic quantities
are the number fluctuations, susceptibility, and magnetization,
while the specific heat is discarded for our choice of the scaling
test with fixed T . The corresponding scaling ansatz can be
written as

〈n〉2κT = Lαt/νtN o(xL1/νt ), (16)

χ = Lγt/νt χo(xL1/νt ), (17)

〈|m|〉 = L−βt /νtMo(xL1/νt ), (18)

where N o, χo, and Mo are universal functions. In comparison
with Eq. (7), one can also obtain the relations between the
conventional exponents, νt , αt , βt , and γt through the tricritical
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FIG. 8. (Color online) Tricritical behavior along the temperature
axis. The fugacity is fixed at ln z ≡ �/T = �tc/Ttc. The finite-
size-scaling analysis of (a) specific heat c, (b) susceptibility χ ,
and (c) magnetization m is presented. The tricritical exponents are
determined by the same procedures used in Fig. 7. The resulting
scaling plots show the excellent collapse of the data points falling
onto a single curve, where the corresponding tricritical eigenvalue
exponents are deduced to be yt = 1.809 and yh = 1.9275 from αt/νt

and γt/νt .

eigenvalue exponents yt and yh as

αt/νt = −d + 2yt , (19)

−βt/νt = −d + yh, (20)

γt/νt = −d + 2yh. (21)

Provided the hyperscaling identity νtd = 2 − αt , the thermal
exponents are simply related as yt = 1/νt .

The thermal exponent yt can be easily extracted from the
maxima of 〈n〉2κT which scales as 〈n〉2κT ∝ Lαt/νt . Figure 7(a)
shows the power-law fit of the maxima, providing the estimate
of αt/νt = 1.608. This ratio of the exponents can be directly
converted into the tricritical thermal exponent as yt = 1/νt =
1.804 which turns out to be very close to the exact conjecture
yt = 9/5. The full finite-size-scaling ansatz for 〈n〉2κT is also
examined with the estimated exponents αt/νt = 1.608 and
1/νt = 1.804, showing the excellent collapse of the data curves
falling onto a single line, as shown in Fig. 7(a).

We estimate the magnetic exponent yh through the similar
analysis for the susceptibility of which maxima scales as

χ ∝ Lγt/νt . From the power-law fit shown in Fig. 7(b), we
find out γt/νt = 1.850, and this ratio is directly converted into
the tricritical magnetic exponent yh = 1.925 which precisely
agrees with the exact conjecture yh = 77/40. Figure 7(b)
shows the data perfectly falling onto a single curve in the test
of the finite-size-scaling ansatz, confirming the accuracy of
our estimate of the magnetic exponent. For the magnetization,
while βt/νt can be directly determined by the obtained γt/νt

by using the scaling relations through yh, we also examine
the finite-size-scaling ansatz of 〈m〉 for explicit confirmation,
where we find the excellent collapse of the data curves falling
onto a single line, as indicated in Fig. 7(c).

One the other hand, we perform another estimate of the
tricritical exponents by choosing the T axis for a similar finite-
size-scaling analysis. The fugacity z is now fixed at ln z ≡
�/T = �tc/Ttc, and thus the scaling variable is given as x ≡
T − Ttc. In this case, the relevant thermodynamic quantity for
finite-size scaling includes the specific heat; namely, the energy
fluctuations, instead of the number fluctuations. Although, the
finite-size-scaling ansatz for the specific heat c can be written
similarly as

c = Lαt/νtCo(xL1/νt ), (22)

where Co is a universal function. The same scaling relation
between αt/νt and yt holds for the specific heat as well. By
applying the same procedures as done for the earlier finite-size
scaling in the � axis, here we estimate the tricritical exponents
as yt = 1.809 and yh = 1.9275 on the T axis, as shown in
Fig. 8. While the estimate of the tricritical exponents on
the T axis are slightly different from those estimated in the
finite-size scaling on the � axis, both estimates are still in
very good agreement with the exact conjectures, yt = 9/5 and
yt = 77/40. The source of the discrepancy found between
the two estimates may originate from the possibility that the
error in locating the tricritical point propagates differently
in our two choices of the scaling and fixed variables in the
phenomenological finite-size-scaling analysis.

Finally, from the different forms of finite-size scaling that
we have performed so far in this section, we can write the
tricritical eigenvalue exponents of the BC model as

yt = 1.804(5), yg = 0.80(1), yh = 1.925(3),

showing very good agreement with the exact conjectures, yt =
9/5, yg = 4/5, and yh = 77/40, respectively. The estimated
errors are mainly from the slight difference between the values
observed in the different approaches of finite-size scaling. The
comparison with the previous works using different numerical
methods are also listed in Table I.

V. CONCLUSIONS

In conclusion, we have demonstrated the effectiveness of
the Wang-Landau method in the finite-size-scaling analysis
for tricritical behavior within the spin-1 Blume-Capel model
in two dimensions. The significance of our results is twofold.
First, we have constructed the detailed line of first-order
transitions, completing the previously-less-explored area
of the phase diagram at low temperatures, which is hardly
accessible in conventional Monte Carlo simulations. In the
area of large crystal fields very close to � = 2, we have
found a double-peak structure in the specific heat where
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the Schottky-like anomaly is observed above the first-order-
transition temperature. Second, through the various forms of
the finite-size-scaling analysis, we have successfully estimated
the tricritical point as Ttc � 0.6080 and �tc � 1.9660 and the
tricritical exponents as yt = 1.804 (5), yg = 0.80 (1), and yh =
1.925 (3). In particular, our high-resolution analysis of the
phenomenological finite-size scaling takes a great advantage
from the Wang-Landau methods, granting unrestricted access
to the values of temperatures and crystal fields.

The performance of the Wang-Landau method may de-
pend on its practical limit in the system size, which is
still much smaller than those accessible in conventional
methods. The large computational resource requirement is
indeed one of the biggest obstacles that the Wang-Landau
method should overcome to show its effectiveness in chal-
lenging problems of phase transitions. We have shown that,
within the limit of our computational resources, the standard

Wang-Landau algorithm now allows us to simulate the Blume-
Capel model with sizes up to 48 × 48 sites, which provide
excellent finite-size scaling for the tricritical behavior. Our
demonstration suggests that, with increasing computational
power and potential support from more advanced techniques
such as the recently suggested parallel algorithm for scalability
[39,40], the Wang-Landau method may provide a promising
tool of high-precision numerics for multicritical phenomena.
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