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Enhancement of mobility in an interacting colloidal system under feedback control
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Feedback control schemes are a promising way to manipulate transport properties of driven colloidal
suspensions. In the present article, we suggest a feedback scheme to enhance the collective transport of colloidal
particles with repulsive interactions through a one-dimensional tilted washboard potential. The control is modeled
by a harmonic confining potential, mimicking an optical “trap,” with the center of this trap moving with the
(instantaneous) mean particle position. Our theoretical analysis is based on the Smoluchowski equation combined
with dynamical density functional theory for systems with hard-core or ultrasoft (Gaussian) interactions. For
either type of interaction, we find that the feedback control can lead to an enhancement of the mobility by several
orders of magnitude relative to the uncontrolled case. The largest effects occur for intermediate stiffness of the
trap and large particle numbers. Moreover, in some regions of the parameter space the feedback control induces
oscillations of the mean velocity. Finally, we show that the enhancement of mobility is robust against a small
time delay in implementing the feedback control.
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I. INTRODUCTION

The manipulation of colloidal transport properties with
feedback mechanisms has become an active topic of research
in recent years. Examples include the improvement of the
net current in one-dimensional ratchet systems [1–4], the
transport of interacting particles in a tilted washboard under
Pyragas control [5,6], the sorting of colloids in a microfluidic
channel [7], and the adjustment of viscosity of a sheared
colloidal suspension [8]. Furthermore, feedback control has
become an important concept in (bio)particle trapping [9–
14], reaction-diffusion systems [15], quantum transport [16–
18], laser dynamics [19], and brain dynamics [20,21]. An
essential factor supporting the development of and theoretical
research on feedback control strategies is the recent major
progress of corresponding experimental techniques, among
them the monitoring and steering of colloids [10,12,22] and
biomolecules [23], and preparation and nondestructive (weak)
measurement of quantum states [24].

Within colloidal transport, most of the feedback studies so
far involve single particles [11,25,26] or dilute suspensions
[1,3], i.e., systems of noninteracting particles. We note
that, even in this idealized situation, feedback can induce
effective interactions if the protocol involves system-averaged
quantities [27]. For many real colloidal systems, however,
direct interactions between the colloids stemming, e.g., from
excluded volume effects, charges on the particles’ surfaces,
or (solvent-induced) depletion effects cannot be neglected.
Initial studies of feedback control in the presence of colloidal
interactions indicate indeed complex dynamical scenarios. An
example was considered in Refs. [5,6], where a Pyragas-type
control of colloidal transport in one dimension resulted in
current reversal and oscillatory states.

In the present work, we explore the transport of interacting
(repulsive) colloids in the presence of a feedback-controlled
harmonic “trap.” Indeed, traplike devices appear as a standard
tool to implement feedback, both in experiments (see, e.g.,
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[1,9,10,12,14,28]) and in theory [25]. A prominent example
is an optical laser tweezer acting on polarizable colloids. The
corresponding trap potential can be modeled as a quadratic
function in space [14,29,30].

In conventional applications, the position of the center of the
trap acting on the colloidal particle(s) is either constant in space
or it moves in an externally prescribed manner [29,31,32]. In
contrast to these situations (which are termed “open-loop”
in control theory), we consider here a harmonic trap whose
center coincides with the mean position of the particles. Thus,
the trap potential depends on the particle’s position, yielding
a feedback scheme.

As a model system to demonstrate the principle of this
feedback control, we consider the paradigm example of col-
loids driven through a one-dimensional, spatially oscillating
tilted “washboard” potential with energy barriers much larger
than the thermal energy. Already without feedback or any trap
potential, these (overdamped) systems show interesting effects
such as absolute negative mobility [33] or enhancement of
diffusion at a certain “critical” force [34,35]. Many single-
particle transport properties in washboard potentials can be
derived analytically [36–39]. Furthermore, recent numeri-
cal studies indicate interesting interaction-induced transport
phenomena, examples being coherent motion of attractively
interacting particles [33,34,40], density excitations in Frenkel-
Kontorova models [41], or single-file diffusion [35]. Given
this background, one may expect that the interplay of external
potentials, particle interactions, and feedback yields exciting
additional effects. Our study shows that this is indeed the case.

Specifically, we consider particles with either (infinitely)
hard or soft (Gaussian) repulsion, the latter describing poly-
meric particles in a coarse-grained fashion [42,43]. The feed-
back control is implemented on the level of the Smoluchowski
(overdamped Fokker-Planck) equation, in which the particle
interactions are treated via dynamical density functional
theory (DDFT) [44]. Our numerical results demonstrate that
the feedback-controlled trap in conjunction with particle
interactions can lead to a drastic increase in the mobility by
orders of magnitude. Loosely speaking, the particles “help to
push each other over the energy barrier.” This phenomenon
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is accompanied by a freezing of the width of the density
distribution (thus opposing normal diffusion), and to time-
periodic oscillations of the mean velocity not seen in the
uncontrolled case.

In the major part of our study, we assume instantaneous
feedback. This is clearly an idealization given the fact that,
in an experiment with feedback control, there is always one
(or several) time delay(s) due to measurement, information
processing, and implementation of the forcing [45]. However,
the time delay of modern experimental feedback techniques for
colloids [1,10,13,46] is much smaller than the time scale of
particle motion, justifying the approximation of instantaneous
feedback. Still, to estimate the effects we also consider briefly
the impact of time delay.

The remainder of this paper is organized as follows. After
the introduction of the theoretical background in Sec. II, we
discuss in Sec. III the effect of feedback on a single particle. In
the limit of vanishing washboard potential, the transport here
can be calculated analytically. The full problem is discussed
in Sec. IV, where we present the main results. A conclusion is
given in Sec. V.

II. MODEL

We consider the motion of N interacting Brownian particles
in one dimension under the influence of the externally imposed,
tilted washboard potential,

Vext(x) = u(x) − x F, (1)

where u(x) = u0 sin2(πx/a). In Eq. (1), F denotes a constant
driving force, and a and u0 denote wavelength and amplitude
of the periodic potential u(x), respectively. On the particle
level, the motion is described by the N coupled, overdamped
Langevin equations

γ ẋi(t) = − u′(xi) + F + f int
i (x1, . . . ,xN )

+ f DF
i (x1, . . . ,xN ) +

√
2kBT γ ξi(t) (2)

for the position xi(t) of the ith particle [36]. In Eq. (2), γ =
3πνσ (with ν being the viscosity and σ the particle diameter)
denotes the friction constant, kB denotes Boltzmann’s constant,
and T is the temperature. The ξi(t) are independent random
numbers chosen from a Gaussian distribution with zero
mean and unit variance. The particle mass’ influence on
the overdamped dynamics is zero [38,47]. Furthermore, f int

i

represents the force due to interaction between particle i and
other particles j , that is, f int

i = −∂/∂xi

∑
j �=i v(xi,xj ), and

f DF
i is the force due to feedback control, where DF stands for

dynamic freezing. These forces are specified below.
In the present study, we describe the motion in terms of the

space- and time-dependent one-particle density [44,48]

�(x,t) =
〈

N∑
i=1

δ(x − xi(t))

〉
, (3)

where 〈· · · 〉 denotes an average over all realizations of the
random force ξi(t). The density is normalized according to∫

dx �(x,t) = N . The time evolution of �(x,t) is governed by

the extended Smoluchowski equation

∂t�(x,t) =kBT

γ
∂xx�(x,t) + 1

γ
∂x{�(x,t)∂x[Vext(x)

+ VDF(x,�) + Vint(x,�)]}, (4)

where the impact of particle interactions and of feedback
control enters via the potentials Vint and VDF, respectively.
Specifically, to treat the particle interactions, we employ the
concepts of DDFT [44,49,50]. In this framework,

Vint(x,�) = δFint[�]

δ�(x,t)
, (5)

where Fint[�] is the interaction part of an equilibrium free-
energy functional and δ/δ� denotes a functional derivative.
Equation (5) implicitly contains an adiabatic approximation,
i.e., the assumption that nonequilibrium correlations, at each
time t , can be replaced by those of an equilibrium system with
density �(x,t).

We consider two types of interacting systems, that is,
ultrasoft particles described by the Gaussian core model
(GCM) and hard particles. The pair interaction potential
according to the GCM reads

vGCM(xi,xj ) = ε exp

(
− (xi − xj )2

σ 2

)
. (6)

This potential has been introduced as a coarse-grained
(center-of-mass) potential between two fluctuating polymer
chains, with the particle diameter σ being proportional to the
polymers’ radius of gyration [42,43,51]. To incorporate the
GCM interactions into the dynamical equation (4), we employ
the mean-field free-energy functional

FGCM
int [�] = 1

2

∫
dx dx ′ �(x,t) vGCM(x,x ′) �(x ′,t). (7)

This functional has been proven to give a reliable description
of the equilibrium structure of the GCM, particularly at
intermediate and high densities [52]. Combining Eqs. (7)
and (5), we obtain

V GCM
int (x,�) =

∫
dx ′�(x ′,t)vGCM(x,x ′). (8)

Hard particles with diameter σ are described by the
interaction potential

vhard(xi,xj ) =
{

0 for |xi − xj | � σ,

∞ for |xi − xj | < σ.
(9)

For one-dimensional systems of hard spheres, there exists an
exact free-energy functional [53],

Fhard
int [�] = − 1

2

∫
dx ln

(
1 −

∫ x+σ/2

x−σ/2
dx ′�(x ′,t)

)

×
[
�

(
x + σ

2
,t

)
+ �

(
x − σ

2
,t

)]
. (10)
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The free energy (10) corresponds to the one-dimensional limit
of fundamental measure theory [54]. We note that while the
Gaussian core potential allows for the possibility that the
particles can pass through each other in our 1D setup, this
is not the case for the hard-sphere system.

We now turn to the modeling of feedback control. Toward
that end, we use the potential

VDF(x,�) = η(x − 〈x〉)2, (11)

where

〈x〉(t) = 1

N

∫
dx x �(x,t) (12)

is the time-dependent mean particle position. Thus, Eq. (11)
describes a moving harmonic trap centered around the
mean position, resembling the potential seen by particles in
moving optical traps [14,29]. The strength of the harmonic
confinement, η, is set to constant. Since VDF depends on
〈x〉(t) and, thus, on the dynamical state of the system, it
corresponds to a true feedback control. This is different
from an “open-loop controlled” moving trap, where 〈x〉 in
Eq. (11) would be replaced by a position moving with fixed
velocity v0.

We also note that the fact that our feedback control is cou-
pled to an ensemble-averaged quantity is in contrast to other
feedback mechanisms that are based on individual particle
positions [45]. At the level of the Langevin equation (2), our
feedback control force reads f DF

i (xi,〈x〉) = 2η[xi − 〈x〉(t)].
Thus f DF

i only depends on a single coordinate, xi , and on 〈x〉.
This differs from other feedback control approaches in which
the feedback force itself depends on the number of particles
[3,27,45].

III. SINGLE-PARTICLE TRANSPORT

To understand the basic properties of the effect of the
feedback control [Eq. (11)], we first discuss the single-particle
case (N =1,Fint = 0) or, equivalently, the case of many
noninteracting particles (indeed, for Fint = 0 the parameter
N becomes a trivial factor). The latter picture better fits the
idea of feedback control via an ensemble average [see Eqs. (11)
and (12)]. Furthermore, we first focus on a system without the
periodic potential (u0 = 0). In this case, Eq. (4) reduces to the
one-dimensional Smoluchowski equation

γ ∂t� = kBT ∂xx� + ∂x[�(V ′
DF − F )]. (13)

A main quantity characterizing the transport is the mean
particle position 〈x〉, defined in Eq. (12), as a function of
time. Solving Eq. (13) analytically with the initial condition
�(x,t = 0) = δ(x − x0) yields

〈x〉(t) = F

γ
t + x0. (14)

Equation (14) shows that the mean particle position does
not depend on the confinement strength η. This can also be
seen by applying the coordinate transformation x ′ = x − vt

to the Smoluchowski equation (13), setting v = F/γ . With
this transformation, the term ∂x(�F ) vanishes. Furthermore,
the force related to VDF is invariant with respect to this
transformation. Hence, the influences of F and η decouple.

From Eq. (14) we calculate the mobility,

μ := lim
t→∞

∂t 〈x〉
F

, (15)

= 1

γ
, (16)

which only depends on the friction constant γ . We will refer
to this value of μ as the mobility of free motion.

A further quantity of interest is the mean-squared displace-
ment

w(t) = 〈(x − 〈x〉)2〉. (17)

To calculate w(t), we use 〈VDF〉 = ηw [cf. Eqs. (11) and (13)],
which yields

w(t) = kBT

2η
(1 − e−4ηt/γ ). (18)

For short times, w(t) grows linearly with time, corresponding
to diffusive behavior. For long times, diffusion is suppressed:
w(t) approaches a limiting value determined by η. Interest-
ingly, a similar behavior of w(t) occurs in a model of feedback
control of quantum transport [17]. There, the fluctuations
of the number of electrons tunneling through a quantum
junction are suppressed with a feedback control force, which
is linear in the fluctuation of the number of electrons. This
corresponds to our harmonic confinement of the density
fluctuation, and indeed, the two physically different situations
are describable by a formally identical Smoluchowski equation
[55].

We now turn to the system in the presence of the
potential u(x), defined below Eq. (1). In the single-particle
case (N =1,Fint =0), Eq. (4) reduces to the Smoluchowski
equation

γ ∂t� = kBT ∂xx� + ∂x[�(V ′
DF + V ′

ext)] . (19)

Without control (η=0), Eq. (19) describes the thoroughly
studied case of a Brownian particle in a washboard potential,
where the mobility, as well as the long-time diffusion constant,
are accessible analytically [36,37,56]. From that, it is known
that the mobility is very small if u0 � kBT and if the driving
force F is smaller than the so-called critical force Fc = u0π/a,
related to the diffusion maximum [37,57] (for F > Fc, the
potential minima vanish). Otherwise the mobility is large; in
particular, it approaches 1/γ for u0/F → 0. The goal of our
study is to enhance the mobility in the regime of deep wells.

A. Numerical results

To explore the single-particle transport for finite η and
Vext �= 0, we solve Eq. (19) numerically, choosing u0 = 15kBT

and F = 0.2Fc. As the initial condition, we choose the
equilibrium (Boltzmann) distribution corresponding to the
case F = 0,

�(x,0) = exp{−[η x2 + u(x)]/kBT }/Z, (20)

where Z is a normalization constant.
Figures 1(a)–1(c) show plots of the one-particle density

�(x,t) for three values of η. As expected for a trap, the width
of the density distribution becomes smaller the larger η is.
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FIG. 1. (Color online) Single-particle transport through a poten-
tial with wavelength a = 2.5σ . (a)–(c) Density plots (black, left axis)
and potential VDF + u (gray, right axis). The time t is (a) 105τB

and (b,c) 104τB , where the Brownian time τB = σ 2γ /(kBT ). Part (d)
shows the mean particle position with respect to time for different η.
For strong confinements, an oscillatory behavior emerges.

Figure 1(d) shows additionally the mean particle position
with respect to time. Interestingly, we find that at large
values of η, oscillatory solutions emerge. At the corresponding
values of η, the confinement is so strong that the particle
is confined to a single well of the periodic potential; cf.
Fig. 1(c).

We explain the occurrence of oscillations as follows. We
take a view on the beginning of one step of an oscillation at
time t = 104τB for η = 1kBT σ−2 [cf. Fig. 1(d)]. The potential
VDF + u at this time, shown in Fig. 1(c) as gray shade, shows
that the particle is localized at a minimum of VDF + u. As
time progresses, the constant driving force causes the diffusion
of the particle to the next minimum. This leads to a slow
increase of the mean particle position 〈x〉. Then, the feedback
control, which moves with 〈x〉, lowers the energy barrier
and steadily accelerates the diffusion through the barrier.
This leads to a fast motion until the particle arrives in the
next well. The next oscillation then starts again with slow
diffusion over the next barrier. The repeated cycle of motion
consisting of slow and fast portions is particularly visible in the
velocity

v(t) = d

dt
〈x〉(t), (21)

and the width w(t), which are plotted in Figs. 2(a) and 2(b),
respectively. Notice that w(t) oscillates around a constant
value, reflecting that the width of the distribution stays finite
even at large times (“dynamic freezing”).

We analyze the occurrence of these oscillations numerically
in terms of period T and amplitude v = (vmax − vmin)/2 of
velocity, shown in Fig. 2(c). The values vmax and vmin are
the global maximum and minimum of v(t)|t>t1 , respectively,
where t1 is a time after the disappearance of transients. From
Fig. 2(c), we find that oscillatory solutions occur in a range of
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FIG. 2. (Color online) Velocity v(t) (a) and width w(t) (b) as a
function of time for different confinement strengths η for a = 2.5σ .
Oscillatory solutions are characterized by sharp peaks. (c) Amplitude
v and period T of the velocity as a function of η for a = 2.5σ . Data
points are shown only for values of η where we find oscillations.
The dashed line indicates the time 1/rK , where rK is Kramers’
rate.

intermediate η. In that range, the amplitude v increases with
η from nearly zero to large values. Furthermore, the period
T of oscillations coincides roughly with the inverse Kramers
rate, which is the relevant time scale for the slow barrier-
crossing mentioned before. As we see in Fig. 1(d), the regime
of pronounced oscillations partly coincides with a “speedup”
of the motion. We quantify this “speedup” via an average
mobility based on the time-averaged velocity

v̄ = 1

T

∫ t1+T

t1

dt v(t) (22)

such that

μ = v̄

F
. (23)

Figure 3 shows μ/μ0 depending on η, where μ0 ≈ 1.2 ×
10−4/γ is the mobility of the uncontrolled system (η = 0)
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FIG. 3. (Color online) Single-particle transport: Mobility μ in
dependence on η for a = 2.5σ . The mobility is scaled by the mobility
μ0 of uncontrolled diffusion in a washboard potential. The feedback
control can enhance the mobility by up to ≈20%. Inset: potential
VDF(x,t = 0) + u(x) for the three values of η, which are indicated by
arrows in μ(η).
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with the same external potential [36,56]. For small η, μ

consistently approaches μ0. At intermediate values of η, the
mobility shows a global maximum that lies above μ0. From
comparison with Fig. 2(c), we see that the maximum of μ(η)
lies in the range of η where the oscillation periods of v(t) are
about (in fact, somewhat smaller than) the inverse Kramers rate
[36,39]. Quantitatively, the maximal enhancement of mobility
of ≈20.4% is reached at η ≈ 0.96kBT σ−2. For even larger
values of η, a sharp decrease of the mobility to zero is
observed – the motion comes to a halt. To investigate this
phenomenon, we first note that the motion is always oscillatory
(for these large η) as long as there is transport at all [compare
Figs. 3 and 2(c)]. From the explanation of the oscillations
above, we recall that the oscillation period is determined by
the slow diffusion process over the energy barrier. The inset
of Fig. 3 shows the potential VDF(x,t = 0) + u(x) for three
values of η. To ignite transport, the particle must diffuse from
the central valley at x = 0 to the next valley at x ≈ 2.5σ .
The larger η is, the larger is the energy barrier. Thus, the
larger η is, the smaller is the probability that the particle
diffuses to the next valley, the longer is the period of the
oscillations, and the lower is the mobility. For η = 3kBT/σ 2,
there is no motion at all in the time range of our calculations
(t � 105τB).

Finally, we note that for single-particle transport, the actual
value of a is essentially arbitrary because a only determines
the scales of time, density, and confinement strength, not the
qualitative behavior.

B. Comparison with open-loop control

To estimate the benefit of the feedback control scheme over
the more established open-loop control, we briefly discuss the
motion of a single particle under the potential

Vopenloop(x,t) = η (x − v0t)
2, (24)

where v0 is a constant velocity of the trap. Choosing v0 equal
to the mean velocity v̄ of the feedback controlled system,
one observes the same general behavior, but slight variations
of oscillation frequency and amplitude. Large values v0 > v̄

(x
,t

)
σ

(V
o
p
en

lo
o
p
(x

,t
)
+

u
(x

))
/(

k
B
T

)

x/σ

Vopenloop + u

0

0.2

0.4

0.6

0.8

1

1.2

1.4

370 375 380 385
0

20

40

60

80

100

FIG. 4. Single-particle transport in the presence of the open-loop
potential Vopenloop [see Eq. (24)] with η = 1kBT σ−2 and v0 = F/γ

at t = 100τB and a = 2.5σ . Black line: one-particle density �(x,t).
Gray: potential Vopenloop + u.

lead, by construction, to a fast transport, but the particle is no
longer located in the center of the trap. We can see this from
Fig. 4, which shows the one-particle density for the velocity
v0 = F/γ [corresponding to free motion, see Eq. (14)] and
the effective trap generated by the potential Vopenloop + u. In a
real optical trap, a large distance of the particle position to the
center of the trap implies a large probability to escape [9,14].
Hence, driving the particle too fast implies the risk of losing
the particle completely. On the other hand, being too cautious
and driving the particle too slowly is inefficient. Thus, the
optimal velocity is difficult to predict in open-loop control. The
feedback control automatically finds the optimal driving speed
without taking the risk of losing the particle. Furthermore, the
feedback control does not influence the direction of motion, it
only enhances the absolute value of the mobility.

IV. MANY-PARTICLE TRANSPORT

We now turn to interacting systems, as described by the
SE (4) with Eq. (8) for ultrasoft particles and Eq. (10) for hard
particles. There are now two relevant length scales, namely
the wavelength of the periodic potential, a, and the particle
diameter σ . Hence, the wavelength a is not just a scaling factor,
as was the case in single-particle transport. In addition, the
number of particles N will play a role because the equations are
now nonlinear in �. In our numerical calculations, we set the
ultrasoft particles’ interaction strength ε appearing in Eq. (8)
to ε = 4kBT . The hard-particle interaction has no parameter
besides σ . The initial condition is set to the equilibrium density
resulting at F = 0.

In the following, we study the motion of clusters of
interacting particles for various trap strengths η, numbers of
particles N , and dimensionless wavelengths a/σ .

A. General behavior

The overall goal is to explore whether particle interactions
enhance the efficiency of our feedback control in terms of the
mobility. Before we start with the analysis of the mobility,
we want to give an impression of the general behavior of our
interacting systems.

We begin our study of the three-dimensional parameter
space (N,η,a) with small N and small η. In Fig. 5(c), we
present a plot of the density profile and the potential VDF + u

at η = 0.01kBT σ−2,N = 4. In fact, the density profiles shown
in Figs. 5(c) and 1(a) are very similar. Similarities to the single-
particle case vanish gradually if N or η (or both) are increased
(at constant a), yielding larger values of the density in the trap.
To describe the effect of these changes in density, we consider
the effective potential Vint that one particle experiences due
to the interaction with the other particles. The value of Vint

at a position x increases with the corresponding densities
�(x ′),x ′ ≈ x. Particularly large values of both, �(x) and
Vint(x), occur at the minima of VDF + u. As a consequence, the
potential VDF + u + Vint, which governs the motion (together
with the constant driving force), is characterized by smaller
energy barriers than VDF + u. Loosely speaking, Vint fills the
valleys of VDF + u [see Fig. 5(b)]. For high densities, the hard
particles form a “chain” and the ultrasoft particles form a
cluster that is characterized by mutual overlap. In this dense
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FIG. 5. (Color online) One-particle density �(x,t) on the left axis
(black lines) and the potentials VDF, u, and Vint on the right axis.
The parameters show (a) the case in which u is suppressed, (b) the
decrease of barrier height by interaction, and (c) the low-η/low-
N regime. In detail, (a) shows N = 10 hard particles forming a
chain in a narrow trap (η = 10kBT σ−2,a = 2.5σ ) at t = 28.9τB,
(b) N = 4 hard particles forming a loose chain in a moderately
narrow trap (η = 0.7kBT σ−2,a = 2.5σ ) at t = 985τB, and (c) N = 4
ultrasoft particles in a wide trap (η = 10−2kBT σ−2,a = 2.5σ ) at
t = 105τB.

situation, the contribution of Vint to VDF + u + Vint can become
so large that u becomes negligible. Thus, there are no hindering
energy barriers anymore. For both interacting systems, i.e.,
ultrasoft and hard particles, we actually find such a case.
Figure 5(a) shows the hard-particle case as an example. The
potentials plotted in Fig. 5(a) show that u is in fact a minor
contribution to VDF + u + Vint. We continue the discussion of
parameter variations with a focus on the mobility in Sec. IV B.

Similar to the single-particle case, we find oscillatory
solutions in the range of intermediate to large η. For a rep-
resentative system (N = 4 hard particles), Fig. 6 summarizes
different characteristics of the oscillations in terms of width
w(t), velocity v(t), and plots of the density for four times
during one oscillation period. The oscillation period is of
the order of τB, which is much shorter than the oscillation
periods of several 103τB we observed in the single-particle
case [see Fig. 2(b)]. From Fig. 6 we see that these oscillations
are intimately related to configurational changes while the
particle chain moves over a distance of about one wavelength
a. Studying v(t) for different η, see Fig. 7, we find that a
couple of different oscillation patterns emerge. Moreover, the
oscillations’ frequency rises with the mean of the velocity
itself. This can be explained with the observation that the
particles move one wavelength a during one period. Note that
the maximal amplitude of oscillation coincides with neither the
largest η nor the largest mean velocity. To close this section, we
note that similar oscillations have been reported in a study of
cluster-forming attractive particles driven through a washboard
potential [58].
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FIG. 6. (a) One-particle density �(x,t) for N = 4 hard particles
subject to the tilted washboard potential Vext [see (b)] at η =
3kBT σ−2,a = 2.5σ at four times. For clarity, the curves are shifted
vertically. Each time is labeled with a symbol, reappearing in parts
(c) and (d), which show the width w(t), given by Eq. (17), and the
velocity v(t), Eq. (21), over time, respectively.

B. Mobility

We now turn to the mobility as a measure of the efficiency
of feedback control. We define the mobility μ in the same
way as in the single-particle case via Eq. (23). Figures 8 and 9
show μ in dependence of η for ultrasoft and hard particles,
respectively.

For a > σ , we observe an extreme growth of μ with η and N

over several orders of magnitude for both particle species. We
explain this behavior with the corresponding decrease of the
height of the energy barriers in VDF + u + Vint, which results
in a larger diffusion rate and a faster transport. The same effect
was observed in a study of the transport of superparamagnetic
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FIG. 7. (Color online) Velocity v(t), Eq. (21), for N = 10 hard
particles at a = 2.5σ for a broad range of η. The velocity
3.7698σ/τB = F/γ corresponds to the velocity of free motion under
the force F . This value is reached at large η. Oscillations occur for
η � 0.03kBT σ−2.
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FIG. 8. (Color online) Mobility μ for ultrasoft particles in depen-
dence of η. Given that enough particles contribute, the mobility can
rise to 1/γ , the mobility of free motion. The thick line indicates the
mobility in the uncontrolled case. Results from Fig. 3 are included
with the notation N = 1.

colloids [59]. For certain η and N , μ increases by several
orders of magnitude even up to the maximal possible value
μ = 1/γ , the mobility of free motion. To give an estimate
for the free mobility, we refer to an experiment described
in [60] involving particles of size σ = 2.8 μm. There, the
inverse friction constant is about γ −1 = 42 × 106 s/kg. An
example for the mobility being 1/γ is the case of N = 10 hard
particles at η = 10kBT σ−2, shown in Fig. 5(a). In this case,
there are no hindering energy barriers (as we have analyzed in
Sec. IV A), which then results in the high mobility. To achieve
this suppression of u, the well created by the trap potential must
be very deep, i.e., 300kBT for the exemplary case shown in
Fig. 5(a). This value exceeds those in typical experiments with
light fields [1,60]. However, the transport of N =40 ultrasoft
particles at the mobility μ = 1/γ at a = 8σ needs a trap that
is only 40kBT deep.
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FIG. 9. (Color online) Mobility μ for hard particles in depen-
dence of η. The mobility reaches 1/γ , the mobility of free motion,
if enough particles contribute. The thick line indicates the mobility
in the uncontrolled case. Results from Fig. 3 are included with the
notation N = 1.

Furthermore, we see from Figs. 8 and 9 that our feedback
control does not lead to a significant speedup for a = σ . By
analyzing the potential landscape for a = σ for a series of η

and N (not shown), we find that the effective potential Vint

develops peaks between the minima of VDF + u. This means
that the effective potential barrier encountered by a moving
particle increases when η or N is enlarged. This is in contrast
to the case a > σ , in which the peaks of Vint are found at the
minima of VDF + u [see Fig. 5(b)]. Our interpretation for the
case a = σ , therefore, is that the particles “pin” each other to
the potential minima of u(x).

We now consider the behavior of μ(η) for large η (Figs. 8
and 9). For small N we observe a breakdown of motion, similar
to the one observed in the single-particle case (see Fig. 3).
However, this breakdown is shifted toward larger values of η.
We recall that an increase of N at fixed η (Sec. IV A) leads to
a decrease of the barriers of the potential VDF + u + Vint. This
enhances the mobility (relative to that at N =1) in the first
place. However, upon an increase of η (at fixed N ), there can
be a situation in which the diffusion rate is no longer sufficient
to populate the next local minimum of the potential VDF + u.
This is where transport breaks down. The combination of these
two effects leads to the observed shift of the breakdown of
mobility. Upon further increase of N and η, there comes a
point where the large energy scales of VDF and Vint suppress
any influence from u. Therefore, we expect that the transport
for high N exists for arbitrarily large η.

In Figs. 8 and 9 we see that the increase of a at constant η and
N often leads to an enhancement of mobility (as long as there
is transport at all). This can be explained with the potential
VDF + u, whose valleys become broader the larger a is. In a
broader valley, more particles accumulate, which strengthens
the role of interaction for the barrier crossing. However, this
effect is limited by N : The particle number must be large
enough to fill at least one valley with particles, otherwise the
transport breaks down.

C. Time delay

In a realistic setup with feedback control, a finite time is
required to perform the measurement required to define the
control (in the present case, this measurement process concerns
the average particle position). Hence, there is a certain time
delay τdelay. To explore the sensitivity of our results toward
τdelay, we change the control potential given in Eq. (11) into
the expression

V
delay

DF (x,�) = η[x − 〈x〉(t − τdelay)]2. (25)

We now consider two special cases involving hard particles,
where the nondelayed feedback control leads to a particularly
high mobility (see Fig. 9). Numerical results are shown in
Fig. 10. The delay causes a pronounced decrease of mobility
that appears to be linear in τdelay for small delay times.
Realistically, feedback mechanisms can be implemented at
the time scale of 10 ms [1,11,46], whereas τB, the time scale
of Brownian motion, is for μm-sized particles on the order of 1
s [1,61] or larger [62]. Hence, we expect that the ratio τdelay/τB

is rather small, that is, of the order 10−1. For such situations,
our results in Fig. 10 predict only a small decrease of μ

relative to the nondelayed case. However, even for large delays
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the mobility only decreases about one order of magnitude.
This implies that even the time-delayed feedback control can
enhance the mobility by more than two orders of magnitude
with respect to the uncontrolled case.

V. CONCLUSION

Inspired by the physics of a moving optical tweezer, we
have proposed a feedback control strategy for the collective
transport of interacting colloids through a corrugated potential
landscape. Our main goal was the theoretical demonstration
of the working principle for a well-defined model system.
Toward that end, we have considered the one-dimensional,
overdamped motion of colloids with either hard or soft
repulsive interactions in a tilted washboard potential. The
feedback control enters into the (Smoluchowski-like) equation
of motion via a harmonic potential centered at the mean
particle position. Thus, contrary to other studies [25,26],
the present feedback control cannot induce motion on
its own.

The main result of our study is that the interplay of the
feedback control on the one hand, and particle interactions
on the other hand, can generate a drastic increase in the
average mobility by several orders of magnitude relative to
the uncontrolled, single-particle reference case. The largest
mobilities occur for rather stiff traps and high densities (i.e.,
large N ) inside the trap, yielding chainlike or clusterlike
packages of colloids. Here, the mobility rises up to its
limiting value defined by the mobility of a freely moving,
overdamped particle. Interestingly, this giant increase does not
occur for a single particle under the same feedback control.
This shows that the observed mobility enhancement is indeed
an interaction effect. The enhancement can be explained by
the fact that, in the presence of particle interactions, these
dominate the effective “field” acting on an individual particle,
while the impact of the external potential barriers vanishes.
Thus, particles “help each other” to overcome the external
barriers. Another noteworthy feature is the emergence of
oscillatory behavior of the mean velocity (and the width of the

density distribution) due to the feedback-controlled trap. The
latter effect occurs for both single and interacting particles,
with the period of oscillations being close to the inverse of
Kramers’ escape rate.

From an application point of view it is interesting that, due
to its coupling to the mean position, the feedback-controlled
trap implies a small risk to “lose” particles. Indeed, the width
of the distribution stays constant on time-average, reflecting a
“dynamical freezing.” This is different from externally moved,
“open-loop” traps, where an inappropriate choice of the trap
velocity easily leads to a broadening of the density distribution,
and thus a spreading of particles out of the trap (see the
discussion in Sec. III B). Another experimentally relevant issue
concerns the impact of time delay(s). Here we have shown that
time delay does indeed reduce the mobility, similar to what has
been observed in ratchet systems [3]. However, for realistic
time delays, the remaining mobility is still enhanced by two
orders of magnitude.

Concerning the methodology, we note that the DDFT
scheme employed here implies an “adiabatic” approximation
of the time-dependent two-particle correlations. It is now well
established [49,63,64] that this approximation may generate
artefacts especially for densely packed particles, e.g., during
the expansion of a cluster. Since we are mainly focusing on
steady transport conditions, we expect our results to be at
least qualitatively right. Still, it would be very interesting and
important to test our predictions against explicit Brownian
dynamic simulations of the corresponding (overdamped)
Langevin equation, Eq. (2).

Finally, we would like to point out that the concept
behind dynamical freezing is not restricted to one-dimensional
washboard potentials. Indeed, the present feedback control
can easily be formulated in two or three spatial dimen-
sions. Of course, in two- (or three-) dimensional setups,
the particles can diffuse in more than one direction, which
tends to counteract the density-driven mobility-enhancement
effects reported here. However, by adjusting the feedback
strength (i.e., η), we expect the main phenomenon to remain.
Moreover, in two dimensions the additional possibility arises
to influence the cluster structure by feedback control [65].
Furthermore, the external potential hindering the motion
does not have to be static or even periodic, which enriches
possible applications. An interesting question is how well the
present control strategy works for other types of colloidal
interactions, particularly attractive (conservative) ones or
(nonconservative) hydrodynamic interactions. The latter have
been neglected in our study, but they may be important due
to their long-range nature (see Misiunas et al. [66] for a very
recent study). Indeed, hydrodynamic interactions have been
shown to induce effective attractions [67,68]. Another open
question concerns the implications for the (nonequilibrium)
thermodynamics of the system, an area that currently receives
much attention [4,69–71]. Work in these directions is in
progress.
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