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Collisional statistics and dynamics of two-dimensional hard-disk systems: From fluid to solid
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We perform extensive MD simulations of two-dimensional systems of hard disks, focusing on the collisional
statistical properties. We analyze the distribution functions of velocity, free flight time, and free path length
for packing fractions ranging from the fluid to the solid phase. The behaviors of the mean free flight time and
path length between subsequent collisions are found to drastically change in the coexistence phase. We show
that single-particle dynamical properties behave analogously in collisional and continuous-time representations,
exhibiting apparent crossovers between the fluid and the solid phases. We find that, both in collisional and
continuous-time representation, the mean-squared displacement, velocity autocorrelation functions, intermediate
scattering functions, and self-part of the van Hove function (propagator) closely reproduce the same behavior
exhibited by the corresponding quantities in granular media, colloids, and supercooled liquids close to the glass
or jamming transition.
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I. INTRODUCTION

A system of two-dimensional (2D) hard disks is one of
the simplest models of a classical fluid. Despite the apparent
simplicity, the transport properties and the nature of the phase
transitions remain areas of active investigation ever since the
pioneering work of Alder and Wainwright [1,2] in the early
1960s. The appearance of slow power-law decaying tails in
the velocity autocorrelation function for moderately dense
systems has deeply changed the classical understanding and
the ensuing formulation of the kinetic theory (see, for instance,
Refs. [3,4]). Moreover, controversy about the nature of the
fluid-solid transition occurring at higher densities has persis-
tently involved generations of scientists, debating on whether
its best representation is the Kosterlitz-Thouless-Halperin-
Nelson-Young scenario [5,6], or a first-order transition [7,8].
This debate seems to have only recently arrived to a conclusion
thanks to the initial massive use of an event-chain Monte
Carlo algorithm [9] and by later adopting local Monte Carlo
algorithm and event-driven molecular dynamics simulations
[10].

A system may be followed via an external clock represented
by continuous time t or an internal clock associated with the
number of collisions n of each particle. The continuous-time
representation is said to be subordinated to the underlying
collisional process [11]. Though the system is clearly char-
acterized by collision events, a systematic analysis of this
system in collisional representation, spanning from the fluid
to the solid phase, is missing. To the best of our knowledge,
the only analytic and numerical studies in this sense concern
the non-Poissonian nature of the number of collisions within a
certain time interval in the dilute limit [12–14]. In what follows
we study statistical and dynamical properties of a 2D system of
hard disks in collisional representation, with packing fractions
ranging from the fluid to the solid regimes.

The first part of our analysis focuses on the statistics of
collisional velocity, free flight time τ , and the path undergone
by a disk between subsequent collisions, the free path length
〈|ξ |〉. Within this context we study correlations between the
x and y components of the velocity, and the dependence
of free flight times on the collisional velocities in systems
with various packing fractions spanning from the fluid to
the solid phase. We also compare our findings to the kinetic
approach and Enskog theory, reporting inconsistencies even in
the fluid phase. Furthermore, our analysis of 〈τ 〉 and 〈|ξ |〉 as a
function of packing fractions has unveiled plateaulike regions
corresponding to the fluid-solid coexistence phase, which, to
the best of our knowledge, have not been reported.

The second part focuses on dynamics, comparing single-
particle dynamical observables in continuous time (as a
function of t) and in collisional representation (as a function
of the number of collisions, n). We find a full analogy, in
spite of the fact that the process is not truly Poissonian
[13]. We show that the velocity is never a Markovian
process in either representations and in both fluid and solid
phases [15]. Furthermore, we have analyzed the mean-squared
displacement, intermediate scattering function, and self-part of
the van Hove function (or propagator) in both representations,
showing remarkable similarities to glassy behavior.

We consider a 2D system of size Lx × Ly , where Lx (Ly)
corresponds to the length in the x (y) direction, consisting
of N hard disks with diameter σ . The packing fraction η of
the system is defined as the ratio between the area occupied
by the disks, Nπ σ 2

4 , and the available area, Lx × Ly , yielding

η = N
Lx×Ly

πσ 2

4 . In collisional representation we follow a single
particle, counting the collisions it undergoes with a collision
index n. For a collision n we now define the particle’s position
xn, the external (continuous) time tn, and the collisional
velocity vn.
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We run event-driven molecular dynamics (MD) [16] nu-
merical simulations. Simulations start from a random configu-
ration, according to the desired η, obtained from NVT Monte
Carlo simulations. The temperature is constant throughout the
simulations, being defined by the equipartition theorem and the
total kinetic energy. At the very beginning of the simulations
we have rescaled all the velocities in order that the total kinetic
energy equals kBT = 1. The system is rectangular, where the
ratio between Lx and Ly is kept at

√
3. Periodic boundary

conditions are applied in both directions and the system length
is adjusted to keep constant the number of particles N , yielding
the desired η. We set σ = 1, the lengths Lx and Ly are
measured in units of σ . Throughout this work we consider the
following packing fractions: η = 0.3,0.56,0.695,0.713,0.72,
plotted respectively in black (crosses), blue (squares), red (cir-
cles), green (stars), and magenta (triangles), taking invariably
N = 2500. We thus span the different phases: fluid phase
for low η and the coexistence phase for 0.69 � η � 0.723
[17,18]. However, a detailed numerical analysis has been
performed also for η well inside the solid phase (the maximum
possible packing fraction is given by η = π/

√
12 ≈ 0.907

[19]), although for the sake of simplicity we do not show
the results.

II. COLLISIONAL REPRESENTATION: STATISTICS

The analysis of collisional statistics is based on three fun-
damental observables: (i) free flight times τn = tn+1 − tn, the
times between consecutive collisions (the index n represents
the number of collisions suffered by a particle in the system);
(ii) collisional velocity vn, the x and y components of the
particle velocity between collisions; and (iii) free path length,
namely the vector connecting the particle’s position on the
nth and (n + 1)-th collisions: ξn = xn+1 − xn. We first focus
on the statistics of these measurable observables by means
of event-driven MD numerical simulations, identifying the
stationary distributions and the corresponding average values
of collisional velocities, free flight times, and free path lengths.

A. Instantaneous velocity distribution function

The distribution of instantaneous velocities of the disks in
the continuous-time representation is given by the Maxwell-
Boltzmann equilibrium distribution function:

φMB(v) = 1

2πkBT
e
− |v|2

2kB T , (1)

where T is the system temperature and kB is the Boltzmann
constant. In collisional representation, however, it is known
that the stationary distribution of collisional velocities φcoll(v)
takes a different functional form [12,13,15]:

φcoll(v) = 1

23/2πkBT
e
− |v|2

2kB T

[( |v|2
2kBT

+ 1

)
I0

( |v|2
4kBT

)

+ |v|2
2kBT

I1

( |v|2
4kBT

)]
, (2)

where I0 and I1 represent the cylindrical modified Bessel func-
tions of 0th and first order, respectively. As is known [13], the
x component of the collisional distribution exhibits wider tails

FIG. 1. (Color online) Comparison of the velocity distribution
in continuous-time and collisional representations. (a) Maxwell-
Boltzman distribution function of single-component velocity for
the continuous-time representation, ϕMB(v), plotted with a blue
solid line (squares), and the collisional ϕcoll(v) in a red solid
line (circles). Black dashed lines represent, respectively, the usual
Maxwell-Boltzmann expression and the theoretical estimate obtained
by numerical integration of Eq. (2) over the y component. (b) Speed
distribution function in collisional representation fcoll(|v|): Numerics
are shown as a solid red line, while the theoretical expression fcoll(|v|)
is reported in dashed black line. kBT = 1, σ = 1, Lx , and Ly are
measured in units of σ . The distribution in both panels are calculated
at η = 0.3, although the same results are obtained for any η, as both
ϕMB and ϕcoll are constant throughout the dynamics.

[Fig. 1(a)], i.e., a higher probability for higher velocities, as
compared to its continuous-time counterpart. This discrepancy
can be understood intuitively with the following argument:
In continuous-time representation, the velocity distribution is
calculated across snapshots of the system at different intervals,
therefore higher velocities will be counted less often since their
respective free flight times are shorter on average, spanning
across fewer consecutive snapshots. In contrast, in collisional
representation each collisional velocity is counted only once,
upon collision.

The expression in Eq. (2) highlights two important features
of the velocity collisional process. The first is that the
collisional trajectory is an isotropic process, since the velocity
distribution depends only on its speed. The speed distribution
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fcoll(|v|) can indeed be derived from Eq. (2), yielding

fcoll(|v|) = e
− |v|2

2kB T

√
2kBT

|v|
[( |v|2

2kBT
+ 1

)
I0

( |v|2
4kBT

)

+ |v|2
2kBT

I1

( |v|2
4kBT

)]
. (3)

The value for fcoll(|v|) is plotted in Fig. 1(b) against the
numerical data: This extends to d = 2, the analytic expression
of the speed distribution in collisional representation furnished
for d = 3 and d = 5 in Ref. [14].

The second property highlighted by Eq. (2) is that the
velocity components are correlated within the collisional
process, i.e., φcoll(v) �= ϕcoll(vx)ϕcoll(vy), although ϕcoll(vx) =
ϕcoll(vy) [where ϕcoll(v) is the single-component velocity
distribution]. The single-component velocity distribution func-
tion can be obtained by integrating Eq. (2) over the other
component, i.e. ϕcoll(vx) = ∫ +∞

−∞ dvyφcoll(v). The numerical
evaluation of the integral expression of ϕcoll(vx) is shown
in Fig. 1(a), perfectly reproducing the numerical data. We
note that Maxwell molecules, interacting through a pairwise
potential such as V (|r|) ∼ |r|−2 [20], exhibit identical behavior
in both continuous-time and collisional representations: They
are both isotropic, and the x and y components are in fact
uncorrelated, yielding the same Gaussian form of the velocity
distribution functions as in Eq. (1) [21].

Noting that the collisional velocity is isotropic, and that the
x and y components are statistically identical (even though
they are correlated), we can henceforth limit our analysis to
the single component x (or y without loss of generality), i.e.,
vn ≡ vx

n and ξn = xn+1 − xn.

B. Free-flight-time distribution function

The probability distribution of free flight times P (τ ) was
first analyzed in Refs. [13,22,23], where it was shown that
it cannot be purely exponential, not even in the low density
limit [22]. This is rooted in the fact that the characteristic free
flight time (or its inverse, the collision frequency) of particles
with a given velocity, 〈τ (v)〉, depend on the speed |v| [13,20].
To explain the nonexponential shape of P (τ ) analytically, we
introduce the conditional probability of having a free flight
time τ given that the particle has a velocity v: P (τ |v). One can
then derive the free-flight-time distribution, following [12,13]:

P (τ ) =
∫ ∞

−∞
dv P (τ |v)φcoll(v). (4)

The conditional probability P (τ |v) is related to the viscosity
of the system [22], and is therefore interesting to study.
By introducing the single-component conditional probability
p(τ |v) [shown in Fig. 2(a)] we can also write:

P (τ ) =
∫ ∞

−∞
dv p(τ |v)ϕcoll(v). (5)

For low η, it can be shown that P (τ |v) = 1
〈τ (v)〉e

−τ/〈τ (v)〉

[13,15], a consequence of the molecular chaos assumption,
or stosszahlansatz, which holds in the dilute limit. In this
limit the collisional dynamics of a tagged particle is exactly
a Markov process in the space of velocities, where the

FIG. 2. (Color online) Dependence of free flight times on ve-
locity. (a) The probability distribution p(τ |v) for different η with
v = 0.0 ± 0.05 (arbitrary units). The exponential expression e−t/〈τ (v)〉

〈τ (v)〉
(dashed lines) successfully describes the numerical outcomes only
for the lower value of η, i.e., η = 0.3,0.56. (b) Average free flight
time as a function of v, 〈τ (v)〉, for several η. The dashed lines are
obtained from the numerical evaluation of Eq. (8).

hopping probability from velocity v′ to velocity v, given by
W (v|v′), can be calculated analytically [15]. We find that also
the single-component distribution function p(τ |v) exhibits
an exponential shape p(τ |v) = 1

〈τ (v)〉e
−τ/〈τ (v)〉 in the dilute

limit η → 0, as can be appreciated in Fig. 2(a). However,
though both the complete and single-component conditional
probabilities P (τ |v) and p(τ |v) are exponential in the dilute
limit, it must be stressed that the characteristic free flight
time given a single-component velocity, 〈τ (v)〉, shown in
Fig. 2(b), differs from 〈τ (v)〉. Deviation of P (τ |v) from a
pure exponential is expected at large η due to the loss of the
molecular chaos ansatz and to the ensuing hopping dynamics
which is no longer Markovian in velocity space. This deviation
is clearly observed also in the single component p(τ |v), as
displayed in Fig. 2(a). In any case, substituting Eq. (2) into
Eq. (4) means that P (τ ) cannot be an exponential either, as
shown in Fig. 3(a). The same argument can be specified to
p(τ |v) and ϕcoll(v) in Eq. (5).
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FIG. 3. (Color online) Free flight time (a) and free path (b)
probability distribution functions for several values of η. The
exponential expression e−t/〈τ 〉

〈τ 〉 [dashed lines in panel (a)] do not
capture the numerical outcomes in the low as well as in the high-η
regime. Dashed lines corresponding to η = 0.713 and η = 0.72 are
superimposed.

The characteristic free flight time is defined as 〈τ 〉 =∫ ∞
0 dτ τP (τ ). Substituting Eq. (4) or (5) yields 〈τ 〉 =∫ ∞
−∞ dv 〈τ (v)〉φcoll(v) or 〈τ 〉 = ∫ ∞

−∞ dv 〈τ (v)〉ϕcoll(v) accord-
ingly. 〈τ 〉 is displayed in Fig. 4(a) for different η, spanning
from the fluid to the solid regime. Interestingly, we observe
a plateau associated to the coexistence phase consistent to
a scenario where spatial regions with localized particles
(crystallites) can be observed in between regions of mobile
particles [7,8,18,24–37].

The relation between the characteristic free flight time 〈τ 〉
and 〈τ (v)〉 follows [13]:

〈τ (v)〉φcoll(v) = 〈τ 〉φMB(v). (6)

Changing to polar coordinates and integrating over the angle
yields [14]:

〈τ (v)〉fcoll(|v|) = 〈τ 〉fMB(|v|). (7)

We find that the same equality is valid for the single
components, as detailed in Appendix A:

〈τ (v)〉ϕcoll(v) = 〈τ 〉ϕMB(v). (8)

FIG. 4. (Color online) Average free flight time (a) and average
free path (b) shown as a function of η. It is seen that they both exhibit
a plateau in correspondence of the coexistence phase 0.69 � η �
0.716 [17] (blurred regions), while they decay monotonically in the
fluid and solid phases. Insets: Blue curves show the kinetic theory
predictions [Eqs. (B1) and (B3), respectively], while red curves refer
to the Enskog theory Eqs. (B6) and (B5).

Substituting into Eq. (8) the integral expression of ϕcoll(v) and
the numerical value of 〈τ 〉 [Fig. 4(a)] leads to a semianalytic
estimate of 〈τ (v)〉, shown in Fig. 2(b) to be in excellent
agreement with simulation data.

C. Free-path-length distribution function

The free path length r is defined as |ξ | = |v|τ , and the single
component obeys |ξ | = |v|τ . In this subsection we analyze
the single-component free-path-length distribution function
P (|ξ |), displayed in Fig. 3(b) for several values of η. In
step with the analysis made for the free flight distribution
function in the previous subsection, we can define a conditional
free-path-length distribution function as [13]:

P (|ξ ||v ) =
∫

dτ δ

( |ξ |
|v| − τ

)
P (τ |v)

|v| (9)

and, for the single component:

p(|ξ ||v) =
∫

dτ δ

( |ξ |
|v| − τ

)
p(τ |v)

|v| . (10)
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FIG. 5. (Color online) Dependence of free path length on veloc-
ity. (a) The probability distribution p(|ξ ||v) for different η for v =
0.0 ± 0.05 (arbitrary units). The exponential expression e−|ξ (v)|/〈|ξ (v)|〉

〈|ξ (v)|〉
(dashed lines) describes the numerical outcomes only for the lower
value of η, i.e., η = 0.3,0.56. (b) 〈|ξ |(v)〉 as a function of the
velocity for several η. The dashed lines are obtained by the relation
〈|ξ (v)|〉 = |v|〈τ (v)〉.

Using Eqs. (9) and (10) together with the analysis reported in
the previous subsection, it can be shown that in the low limit
of η, P (|ξ ||v) and p(|ξ ||v) are both exponentials [13]. At the
same time, a marked deviation from the exponential form is
expected for high η [as shown in Fig. 5(a)]. The conditional
mean free path, given a velocity v, is given by 〈|ξ (v)|〉 =
|v|〈τ (v)〉, and 〈|ξ (v)|〉 = |v|〈τ (v)〉 for what concerns the single
component reported in Fig. 5(b). Expressing 〈|ξ (v)|〉 in terms
of 〈τ (v)〉 allows the semianalytical evaluation of the mean-
free-path single component, in excellent agreement with the
numerics.

The free-path-length distribution function is defined as:

P (|ξ |) =
∫ ∞

−∞
dv P (|ξ |)|v )φcoll(v), (11)

and has been the subject of an extensive numerical analysis in
Ref. [38]. In this early study it was shown that: (i) P (|ξ |) is
nearly exponential in the fluid and solid limit; (ii) the kinetic
theory predicts a very accurate mean free path at all packing
fractions, namely 〈|ξ |〉kt = πσ

25/2η
; (iii) the dimensionless free

path distribution as a function of the rescaled free path
length, 〈|ξ |〉ktP ( |ξ |

〈|ξ |〉kt
), exhibits a nearly universal behavior,

independent of η; and (iv) the rescaled free-path-length
distribution does not agree well with the zero density scaled
distribution, 〈|ξ |〉0P ( |ξ |

〈|ξ |〉0
), where 〈|ξ |〉0 is the mean free path

achieved from the Enskog theory [39]. In step with Eq. (11), the
single-component path length distribution function is defined
as:

P (|ξ |) =
∫ ∞

−∞
dv p(|ξ ||v)ϕcoll(v). (12)

Equations (11) and (12) yield nonexponential free path
distribution functions for all η, once the expressions for φcoll(v)
and ϕcoll(v) are substituted [see Fig. 3(b)]. In the very dilute
case this result coincides with the finding in Ref. [13]. In
Fig. 4(b) we plot the average free path with η ranging from
the fluid to the solid phase: 〈|ξ |〉 = ∫ ∞

0 d|ξ | |ξ |P (|ξ |). As
for the average free flight time, the plateau can be considered
as the signature of the coexistence phase [17]. In Appendix B
the single-component mean free path furnished by the kinetic
theory is shown to be 〈|ξ |〉kt = σ

27/2η
[Eq. (B3)] and, in the

inset of Fig. 4(b), one can see that this estimate reproduces
just qualitatively the numerical mean free path 〈|ξ |〉, in
contradiction to what has been observed in Ref. [38]. As a con-
sequence, no universal behavior is expected from the rescaled
single-component mean-free-path distribution 〈|ξ |〉ktP ( |ξ |

〈|ξ |〉kt
)

[see Fig. 6(a)]. Moreover, this rescaling provides no correct
collapse of the numerical curves or when the kinetic theory
estimate 〈|ξ |〉kt is replaced by the true 〈|ξ |〉, as displayed in
Fig. 6(b). In Appendix B we also provide the mean-free-path-
length estimate 〈|ξ |〉0 which arises from the Enskog theory
[see Eq. (B5)]. Plotting the rescaled free path probability
distribution by 〈|ξ |〉0 corroborates the finding of Ref. [38]:
The agreement of the data with the zero-density limit is indeed
unsatisfactory [Fig. 6(c)]. In the insets of both panels of Fig. 4
we report the Enskog theory prediction for the mean free flight
time and the mean free path, 〈τ 〉0 and 〈|ξ |〉0, respectively. The
expressions furnished in Eqs. (B5) and (B6) do not describe
the observed behavior also in the limit of very dilute systems.

Finally, defining the mean free path as 〈|ξ |〉 =∫ ∞
−∞ dv 〈|ξ (v)|〉φcoll(v) yields, in view of Eq. (9) and Eq. (6),

the following relation:

〈|ξ |〉 = 〈|v|〉cont〈τ 〉 (13)

or

〈|ξ |〉 = 〈|v|〉cont〈τ 〉 (14)

for the single component. The same relation in Eq. (13) is
imposed within the framework of the kinetic theory to define
the mean free path (see Eq. (B2) and Ref. [40]). Moreover,
it has been rigorously validated also in one-dimensional
pointlike particle systems, also known as Jepsen’s gases [41],
and for elastic rods systems known as Tonk’s gas [42]. Indeed,
as in 1D the velocity distribution function is invariant upon
elastic collisions [43], and the Eq. (14) has been shown to
hold for any type of distributions ϕ(v), not only for the
Maxwell-Boltzmann distribution ϕMB(v).
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FIG. 6. (Color online) Free-path-length probability distribution
[appearing in Fig. 3(b)] rescaled by (a) the kinetic theory expression
[Eq. (B3)], (b) the average free path [Fig. 4(b)], and (c) the free path
furnished by the Enskog theory [Eq. (B5)]. None of them shows good
collapse of the curves.

III. COLLISIONAL REPRESENTATION:
SINGLE-PARTICLE DYNAMICS

Our analysis now turns to the dynamical properties of
the single particle or tracer. In particular, we reinterpret the
stochastic motion of a tagged particle in positional space xn

and velocity space vn as a global collisional process, where the
continuous time t is now replaced by the collisional index n.

Correspondingly, our analysis will extend to the study of the
properties of τn.

In what follows we will first consider the velocity autocor-
relation function and discuss the mean-squared displacement
(MSD) and the connection among them through the Green-
Kubo relation. We then continue to investigate autocorrelation
functions of free flight path and free flight time. Last, we
complete the picture by discussing the intermediate scattering
function and the self-part of the van Hove function or the
propagator.

A. Velocity autocorrelation function

We wish to follow the argument of Markovianity and its
intrinsic connection to the ansatz of molecular chaos in dilute
systems. This issue is particularly important and compelling
since it constitutes the fundamental hypothesis from which the
collisional velocity distribution function in Eq. (2) is derived
and which leads to the exponential shape of the free-flight-time
conditional probability distribution P (τ |v) in the low-density
limit. Thus, let us briefly recall the theoretical framework in
Refs. [12,13,15] that hinges on this assumption. The diluteness
of the system guarantees the molecular chaos ansatz, meaning
that the evolution of the tracer velocity distribution function
φ(v) is governed by a linear Boltzmann equation. This, in turn,
leads to the Maxwell-Boltzmann distribution φMB(v) in the
stationary regime. The analysis of the Boltzmann equation pro-
vided in Ref. [15] clarifies that the tracer undergoes a sequence
of collisions, performing a Markov process in velocity space,
whose transition rates W (v|v′) are analytically calculated
from the linear Boltzmann equation. Hence, the conditional
characteristic free flight time 〈τ (v)〉 is obtained through the
relation 〈τ (v)〉−1 = ∫

dv′W (v|v′). Finally, substituting this
in Eq. (6) yields the full expression of φcoll(v) in Eq. (2).
It is important to note that Eqs. (6) and (2) are generally
valid, since they must hold for any η, not only in the dilute
limit η → 0. This means that the ratio 〈τ (v)〉

〈τ 〉 is a universal
function of the speed 
(|v|), independent of the packing
fraction of the system. In view of these simple considerations,
it is critical to verify whether the molecular chaos and/or
Markovian assumptions are necessary and verified conditions
in the dilute limit. However, since we restrict our analysis
to the dynamical properties of single particles, we will
focus on testing the Markovian assumption by studying the
behavior of the velocity autocorrelation function (ACF) in
collisional representation: 〈v0vn〉. Furthermore, the Markov
property leads to the exponential shape of P (τ |v) in the
low-η limit, as is reported in Refs. [12,13] and shown in
Fig. 2(a).

It is instructive to compare the dependence of the velocity
ACF 〈v0vn〉 on the collision index n to the dependence of
its continuous-time counterpart 〈v(0)v(t)〉 on t . In continuous
time, velocity is known to be a non-Markovian process for
any value of η. The pioneering numerical work of Alder and
Wainwright [1,2] in the dilute limit has shown that 〈v(0)v(t)〉 ∼
t−1 for long times. The discovery of these persistent memory
effects greatly influenced the further development of nonequi-
librium statistical physics of liquid states, and it is often
referred to as the “2D long-time-tail problem” [4]. Several
theories based on mode-coupling theory [44], nonequilibrium

022131-6



COLLISIONAL STATISTICS AND DYNAMICS OF TWO- . . . PHYSICAL REVIEW E 92, 022131 (2015)

FIG. 7. (Color online) Normalized velocity ACF. (a) Continuous
time. The velocity ACF exhibits persistent memory effects in the
low-η limit and in the high-η region. The predicted 1/t behavior
is evident in the inset, while the antipersistent tails characterize the
caging effect for high η. (b) Collisional representation. The velocity
appears to be non-Markovian also in the collisional representation,
showing a surprisingly analogy with the continuous-time counterpart.
In the inset the 1/n behavior appears to define the low-η systems,
while the antipersistent memory effects dominate the high-η regime.

statistical mechanics [45], and a kinetic approach [46] have
been devised to explain this surprising numerical finding,
marking, in the latter case, the birth of the “modern era” of
kinetic theory (see also the partial review in Ref. [3]). However,
the exact form of the long-time tail is not fully understood [47]:
While an earlier result [48] estimated the first correction to
the t−1 tail as ln(t/t0), mode-coupling theories [49,50] and the
renormalization group approach [51] have led to the prediction
that the t−1 decay corresponds to intermediate times, while at
longer times the asymptotic decay takes the form of (t

√
ln t)−1.

Extensive numerical simulations carried out using a direct
approach [52], a cellular automaton lattice gas model [53–57],
and an event-driven direct hard-disk simulation scheme [58]
provided the evidence in favor of the (t

√
ln t)−1 long-time

behavior.
In Fig. 7(a) we report the single-component velocity ACF

〈v(0)v(t)〉 for different η. In the inset one can appreciate the
asymptotic t−1 behavior for the lower η, while the accuracy

of our event-driven simulations cannot clearly distinguish the
predicted (t

√
ln t)−1 for larger times. For higher η, well inside

the coexistence region and the solid phase, it is possible to
see how the velocity ACF exhibits negative antipersistent tails.
This antipersistence is due to the backscattering resulting from
the “caging effect,” where particles are confined to transient
cages, resulting in temporal anticorrelations in particle dis-
placements. The cage effect has been observed in colloidal
systems close to the glass transition [59–63], supercooled
liquids [64–74], or granular systems close to the jamming
transition [75–77] and mainly connected to a reduction of the
displacements of the particles trapped in the cages [28,78,79].
Here we claim that velocity anticorrelations might reveal the
presence of solidlike structures, characterizing the solid-fluid
coexistence phase in hard-disk systems. We note that the focus
here is not on the continuous-time behavior summarized in
Fig. 7(a), which is meant only to provide a confirmation of
the overall behavior in continuous time, but rather on the
behavior of the velocity ACF in collisional representation.
In Fig. 7(b) we report 〈v0vn〉 for several η. The inset shows
that in the dilute limit 〈v0vn〉 ∼ n−1 for large times. The main
panel displays the progressive approach from the persistent
to the antipersistent regime as η increases. These numerical
results highlight the complete analogy between the asymptotic
behavior exhibited by the velocity ACF in the continuous time
and the collisional representations for any η. Most importantly,
it demonstrates that the Markovian assumption for velocity
in collisional representation is never fulfilled. In particular,
surprisingly, it does not hold in the limit η → 0, revealing
that the Markov property is not a necessary condition for
Eq. (2) to be valid. Nonetheless this is puzzling, since the
exact expression provided by Eq. (2) is derived by assuming
the single-particle collisional velocity process to be Markovian
in the dilute limit.

Finally, let us compare the results obtained in 2D with
the properties of Jepsen gas, mentioned earlier. In 1D, the
velocity process in collisional representation (i.e., 〈v0vn〉) is
Markovian only in systems with bimodal (or dichotomic) ve-
locity distributions, i.e., ϕ(v) = 1

2 [δ(v − c) + δ(v + c)], where
δ(x) stands for the Dirac’s δ function. The collisional ve-
locity process is non-Markovian for systems with any other
distribution function, including ϕMB(v) [41]. On the other
hand, in continuous time, the behavior of 〈v(0)v(t)〉 in 1D
considerably differs from the collisional representation, in
contrast to what we have shown in 2D. For bimodal velocity
distribution functions the continuous-time velocity ACF is
strictly exponential [41,43,80], while weak memory effects of
the form 〈v(0)v(t)〉 ∼ −t−3 result from velocity distribution
functions such as Maxwell-Boltzmann [41,43,80,81], uniform
[80]

ϕ(v) = 1

2c
θ (v + c)θ (v − c)

or [43]

ϕ(v) = c2

2
(c2 + v2)3/2,

where θ (x) and c represent the Heaviside’s function and a
constant, respectively. For velocity distribution functions like
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the three-modal [41,80]

ϕ(v) = μδ(v) + 1 − μ

2
[δ(v − c) + δ(v + c)]

or four-modal [41]

ϕ(v) = μ

2
[δ(v − c1) + δ(v + c1)]

+ 1 − μ

2
[δ(v − c2) + δ(v + c2)]

(0 < μ < 1, c1 and c2 constants), the memory effects are
stronger: 〈v(0)v(t)〉 ∼ −t−3/2. Based on the numerical ev-
idence, it was argued in Ref. [41] that the nonexponential
behavior observed in the velocity ACF in continuous time are
ascribable only to the non-Markovian nature of the underlying
collisional mechanism. This conjecture seems to be fulfilled
also in 2D.

B. Mean-squared displacement and free path
autocorrelation function

We analyze the single-particle MSD in collisional repre-
sentation and compare it to its counterpart in continuous time.
For the sake of clarity, let us start by discussing the MSD in the
common continuous-time representation. The MSD is defined
as

〈δx2(t)〉 = 〈[x(t) − x(0)]2〉. (15)

We will be referring to Eq. (15) as the Einstein-Helfand
expression, in clear connection to the well-established
Einstein-Helfand formula for the diffusion coefficient D =
1
2 limt→∞ d〈δx2(t)〉

dt
[16,82–85]. In Fig. 8(a) we report the

outcome of our numerical simulations for several η. After
a transient ballistic regime, it is clearly seen that systems
characterized by a lower η exhibit normal diffusion behavior,
whereas, for higher η, the MSD reaches a plateau which
eventually turns into a linear regime. This plateau can be
considered as further evidence of the caging undergone by
a tracer during the coexistence phase, in analogy with colloids
[59–61,86], supercooled liquids [69–71,74,86], and granular
systems [75,77]. Due to the stationarity of the velocity process,
the MSD can be also written as

〈δx2(t)〉 = 2
∫ t

0
ds〈v(0)v(s)〉(t − s), (16)

referred to as the Green-Kubo MSD expression, in relation
to the definition of the diffusion coefficient according to the
Green-Kubo relation, D = ∫ ∞

0 dt〈v(0)v(t)〉 [87]. Figure 8(a)
shows the excellent agreement between the MSD calculated
according to the Einstein-Helfand expression from Eq. (15)
(solid lines) and that resulting from the Green-Kubo formula
in Eq. (16) (dashed lines). The logarithmic tail of the velocity
ACF shall lead to the weak divergence of the diffusion
coefficient D in the long-time limit (D ∼ [ln(∞) + const]1/2)
[49,50]. However, as stressed in Ref. [88], in spite of the
enormous numerical effort devoted to the identification of
the 〈v(0)v(t)〉 logarithmic asymptotic regime, very little work
has been dedicated to the study of its influence on the actual
value of the diffusion coefficient [88,89]. Indeed, the numerical
simulations shown in Fig. 8(a) seem to point out the absence
of any correction to the linear behavior exhibited by the

FIG. 8. (Color online) (a) MSD in continuous time for several
η. The solid lines refer to the Einstein-Helfand formula (15) while
the dashed ones are obtained by the Green-Kubo expression (16).
They both coincide yielding, after an initial ballistic regime, normal
diffusion for low η and an intermediate slowdown (plateau) for η

in the coexistence phase and beyond. (b) Time-dependent trans-
port coefficient defined as D(t) = ∫ t

0 ds〈v(0)v(s)〉. For the lowest
analyzed η, η = 0.3, D(t) increases as ∼√

ln t consistent with the
predicted 〈v(0)v(t)〉 ∼ (t

√
ln t)−1 [49–51]. For the higher η shown,

D(t) displays a “subdiffusive” decay in correspondence of the caging
regime in panel (a) (see Ref. [91]).

MSD, in agreement with the results reported in Refs. [88,90].
However, plotting the time-dependent transport coefficient
D(t) = 1

2
d〈δx2(t)〉

dt
= ∫ t

0 ds〈v(0)v(s)〉, as shown in Fig. 8(b),
shows a small but persistent increase within the time scale
corresponding to the linear region exhibited by the MSD, for
which one would have expected a constant value. For η =
0.3 we observe D(t) ∼ √

ln(t), consistent with the velocity

ACF form 〈v(0)v(t)〉 ∼ (t
√

ln t)
−1

, and in contradiction to
the numerical finding already present in one of the earliest
numerical works on this subject [89]. For larger η, D(t)
exhibits a “subdiffusive” decay consistent with the appearance
of negative tails of 〈v(0)v(t)〉 [shown in Fig. 7(a)] and with
the corresponding plateau observed in the MSD [shown in
Fig. 8(a)] for intermediate times; asymptotically it approaches
a constant value, in line with the asymptotic diffusive regime.
The rigorous connection between anomalous diffusion and
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FIG. 9. (Color online) (a) MSD in collisional representation for
several η. The solid lines refer to the Einstein-Hellfand formula (17)
while the dashed ones are obtained by the Green-Kubo expres-
sion (19). They both coincide, displaying normal diffusion for low
η and an intermediate slowdown (plateau) for η in the coexistence
phase and beyond, in analogy with the results shown in Fig. 8(a).
(b) Transport coefficient defined as Dn = ∑n−1

m=0 Cξξ (m). Dn exhibits
a persistent increasing behavior consistent with ∼ √

n ln n for η =
0.3. This is in agreement with the continuous-time behavior displayed
in Fig. 8(b) and with the power-law tails in Fig. 10. For the higher
η, Dn shows the same “subdiffusive” decay of D(t) [Fig. 8(b)], in
correspondence of the caging regime in panel (b) (see the detailed
analysis in Appendix C).

power-law tails exhibited by 〈v(0)v(t)〉 is provided by the
generalization of Kubo’s theorem in Ref. [91].

In collisional representation the analog of the Einstein-
Hellfand MSD can be expressed as〈

δx2
n

〉 = 〈[xn − x0]2〉 (17)

and is reported in Fig. 9(a) (solid lines). For low η the MSD
undergoes normal diffusion in the collision index n. We note
that in collisional representation the initial ballistic regime is
suppressed by definition. Increasing η, the same intermediate
plateau as in continuous time is observed. Since the single-
component trajectory is expressed as

xn − x0 =
n−1∑
l=0

ξl, (18)

FIG. 10. (Color online) Normalized free path length ACF. The
non-Markovianity of the free path length is apparent both at low
and high η. For low η (inset) the 1/n behavior is clearly shown,
consistent with the velocity ACF in Fig. 7(b). The systems with high
η are displayed in the main panel, exhibiting a negative part, i.e.,
antipersistence due to the caging phenomenon.

and assuming the stationarity of the free path process,
one arrives at the Green-Kubo expression in collisional
representation:

〈
δx2

n

〉 = n〈ξ 2〉 + 2
n−1∑
m=1

〈ξ0ξm〉(n − m), (19)

where 〈ξ 2〉 = ∫ ∞
−∞ dξξ 2P (ξ ). Hence, the numerical evaluation

of Eq. (19) requires the calculation of the free path ACF 〈ξ0ξn〉,
which is reported in Fig. 10. The observed behavior resembles
that of the velocity ACF. Indeed, for any η the free path process
ξn is non-Markovian, with persistent asymptotic tails ∝ n−1

for small η (see the inset of Fig. 10), and antipersistent as
η increases. When calculated according to the Green-Kubo
expression in Eq. (19), the MSD [dashed lines in Fig. 9(a)]
is shown to coincide with the Einstein-Hellfand expression in
Eq. (17). In analogy with the continuous-time analysis, the
asymptotic n−1 regime should lead to the divergence of the
MSD in Eq. (19). However, no appreciable deviation from
the linear MSD trend is detected, albeit in the range for
which 〈ξ0ξn〉 displays the n−1 behavior. We now recast the
Green-Kubo MSD expression in Eq. (19) by introducing the
“symmetrized” free path autocorrelation function as C̃ξξ (n) =
〈ξ0ξn〉 − 1

2 〈ξ 2〉δn,0 [91,92]:

〈
δx2

n

〉 = 2
n−1∑
m=0

C̃ξξ (m)(n − m). (20)

We now identify the collisional transport coefficient Dn =∑n−1
m=0 C̃ξξ (m) and report it in Fig. 9(b). This quantity dictates

the n dependence of the MSD in collisional representation as
D(t) does for 〈δx2(t)〉, detailed in the theorem in Appendix C.
This theorem can be viewed as the extension to impact
dynamics of the generalized Kubo theorem valid in continuous
time [91]. In particular when Dn attains a constant value,
one expects normal diffusion 〈δx2

n〉 ∼ n as displayed in
Fig. 9(a) for low η. However, Dn behaves as ∼ √

n ln n for
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FIG. 11. (Color online) Normalized free-flight-time ACF,
Cττ (n) = 〈τ0τn〉 − 〈τ 〉2. The non-Markovianity of the free-flight-time
process τn characterizes both low and high η.

the lowest packing fraction η = 0.3, in complete analogy with
the continuous-time analysis reported in Fig. 8(b) and in partial
agreement with the observed persistent tails exhibited by the
free path ACF 〈ξ0ξn〉 (Fig. 10). When Dn exhibits a decay in
the form of a power law, 〈δx2

n〉 is sublinear in the collision
index n. This is indeed the case for intermediate n with large
η, ultimately ascribable to the caging effect.

C. Free-flight-time autocorrelation function and free flight
and free path cross-correlation function

Since in collisional representation space and time can
be studied separately, we now focus on the free-flight-time
autocorrelation function defined as Cττ (n) = 〈τ0τn〉 − 〈τ 〉2,
reported in Fig. 11 for different η. As for the free path ξn, the
free flight time τn is a stationary process. For an uncorrelated
process one would expect 〈τ0τn〉 − 〈τ 〉2 = [〈τ 2〉 − 〈τ 〉2]δn,0.
However, the analysis in Sec. II B demonstrates that the time
elapsed between subsequent collisions is velocity dependent;
this velocity, on the other hand, is a correlated process both
at low and high packing fractions, as discussed in Sec. III A.
Therefore correlations should also characterize the discrete
dynamics of free flight times of single particles [13], as
indeed confirmed by the numerical outcomes in Fig. 11. The
expression for the time ACF Cττ (n) is formally defined through
the correlation

〈τ0τn〉 =
∫

dτ0 · · · dτn dv0 · · · dvn τ0τn

p(τ0 · · · τn|v0 · · · vn)φcoll(v0 · · · vn). (21)

Hence as long as times depend on velocities, the un-
correlation of the velocity process implies the uncorrela-
tion of the free-flight-time collisional dynamics and vice
versa. Indeed, if we assume the collisional velocities to be
uncorrelated, i.e., φcoll(v0 . . . vn) = φcoll(v)n, then we have
p(τ0 . . . τn|v0 . . . vn) = p(τ |v)n, yielding 〈τ0τn〉 = 〈τ 2〉 and
therefore Cττ (n) = [〈τ 2〉 − 〈τ 〉2]δn,0.

Now, let us make the hypothesis that free flight times
are independent of the velocities, i.e.. p(τ0 . . . τn|v0 . . . vn) ≡
p(τ0 . . . τn). We want to discuss the implication of this

simplification on the free path ACF. In general, since ξn =
vnτn, the free path ACF is expressed as 〈ξ0ξn〉 = 〈τ0τnv0vn〉,
where

〈τ0τnv0vn〉 =
∫

dτ0 · · · dτn dv0 · · · dvn τ0τnv0vn

p(τ0 · · · τn|v0 · · · vn)φcoll(v0 · · · vn). (22)

Consistent with our assumption, we obtain 〈ξ0ξn〉 =
〈τ0τn〉〈v0vn〉. Moreover, if we make the additional hypothesis
that τn is an uncorrelated process, then the free path ACF trans-
forms to 〈ξ0ξn〉 = 〈τ 〉2〈v0vn〉. Substituting this into Eq. (20)
we then obtain:

〈
δx2

n

〉  〈τ 〉2

[
n〈v2〉 + 2

n−1∑
m=1

〈v0vm〉(n − m)

]
, (23)

with 〈τ 〉 = ∫ ∞
0 dτP (τ )τ and 〈v2〉 = ∫ ∞

−∞ dvφcoll(v)v2. The
former approximation corresponds to a Poisson process, as
we will discuss in Sec. IV. We highlight that the only two
assumptions made to define a Poisson process are (i) indepen-
dence between free flight times and velocities in collisional
representation and (ii) no memory effects characterizing the
free flight collisional process. The numerical evaluation of the
approximated MSD in Eq. (23) is reported in Fig. 12(a) and
compared to the expression in Eq. (17), showing a satisfactory
agreement only in the low-packing-fraction limit. For more
dense fluids, the intermediate caging regime appears to be
poorly captured by Eq. (23). The negative antipersistent part
of the free path ACF (Fig. 10) is indeed less pronounced in the
approximation 〈ξ0ξn〉  〈τ 〉2〈v0vn〉.

We finally study the cross-correlation functions 〈ξ0τn〉 and
〈τ0ξn〉. Both vanish since 〈ξ 〉 = 0; we therefore consider the
absolute values, i.e., 〈|ξ0|τn〉 and 〈τ0|ξn|〉. Figure 13 shows
〈|ξ0|τn〉. The first term can be analyzed in the low-packing-
fraction limit, reading:

〈|ξ0|τ0〉 =
∫ ∞

−∞
dv |v|φcoll(v)

∫ ∞

0
dτ τ 2p(τ |v), (24)

where we dropped the index 0 on the right-hand side to simplify
the notation. The conditional probability p(τ |v) is exponential
for low η [see Fig. 2(a)], and substituting Eq. (8) we have:

〈|ξ0|τ0〉 = 2〈τ 〉2
∫ ∞

−∞
dv |v|ϕ

2
MB(v)

ϕcoll(v)
. (25)

In 1D (Jepsen gas), where ϕcoll(v) ≡ ϕMB(v), one obtains

〈|ξ0|τ0〉 = 23/2〈τ 〉2
√

kBT
π

[41].

D. Intermediate scattering function

We now study a different dynamical function at the single-
particle level, the single component intermediate scattering
function. In continuous time it is defined as:

FS(q,t) = 〈cos [q(x(t) − x(0))]〉. (26)

This function is the real part of the x component of the single-
particle (incoherent) dynamic structure factor with a wave
vector q, FS(q,t) = 〈eiq·(r(t)−r(0))〉, and has been the subject of
an extremely large amount of numerical and theoretical work
in recent years. While a single exponential decay is expected
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FIG. 12. (Color online) Poisson approximated expression for the
MSD. (a) MSD in collisional representation for several η calculated
according to the Poisson approximation in Eq. (23) (dashed lines).
The solid lines refer to the Green-Kubo expression from Eq. (19),
coinciding with the Poissonian approximation only in the low-η limit.
(b) MSD in continuous-time representation using the first two terms
of the Poisson formula appearing in Eq. (40) (dashed lines), and the
Green-Kubo expression in Eq. (16) (solid lines). Here, too, the low-η
systems appear to be well captured by the approximated formula. The
high-η limit requires a complete determination of the correlations
appearing in Eq. (39).

FIG. 13. (Color online) Normalized cross-correlation of free
flight time and free path length.

FIG. 14. (Color online) Intermediate scattering function. (a)
Continuous time FS(q,t) for several η calculated according to
Eq. (26). The passage from the exponential decay to the stretched
exponential regime, particular to caging in granular and colloidal
systems is evident. (b) Collisional representation FS(q,n), Eq. (27).
The exhibited trend traces that of panel (a).

for a normal fluid state, the emergence of a q-dependent
two-step decay at high packing fractions has been recognized
to characterize the behavior of systems in different areas
of physics, ranging from supercooled liquids and granular
materials to glasses and colloidal systems [71,77,93–99].
Intuitively, this nonexponential regime (often referred to
as a stretched exponential decay) should be related to the
cage effect, which has been discussed as the main reason
for the plateaulike region observed in the MSD [Fig. 8(a)]
and the antipersistent back-scattering phenomenon exhibited
by the velocity ACF [Fig. 7(a)]. The two steps of the FS

relaxation dynamics consist in a fast and local “caged” β

process, and a slow “cage escape” α process, related to the
cage restructuring, occurring in a more and more cooperative
manner as the molecular packing increases [86]. The apparent
stretching of the relaxation functions can also be explained by
spatial heterogeneity, where relaxation occurs exponentially
on different time scales in each spatial domain [100]. In
Fig. 14(a) we report the numerical study of the intermediate
scattering function Eq. (26) for several η. The progressive
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approach from the single exponential toward the two-step
stretched exponential relaxation is clearly shown, and, to our
knowledge, this is the first time that such evidence is presented
for a hard-disks system. This result, together with the plots in
Figs. 7(a) and 8(a), demonstrates that 2D hard-core systems
present several important analogies with complex colloids,
glasses, and supercooled liquids.

Inspired by the previous analogy between continuous-time
and collisional dynamical quantities, we study the intermediate
scattering function in collisional representation, which takes
the form:

FS(q,n) = 〈cos [q(xn − x0)]〉. (27)

Once again, if one neglects the early-stage regime characteriz-
ing the ballistic behavior in the continuous-time analysis, the
decay exhibited by FS(q,n) in Fig. 14(b) closely resembles that
of FS(q,t). In particular, the exponential relaxation expected
for the fluid state is recovered for low η, while the stretched
exponential decay appears to be more marked as η increases.

E. Self-part of the van Hove function

The last dynamical quantity that we study at the single-
particle level is the self-part of the van Hove function
[101]. This function is the equilibrium, canonically averaged,
probability distribution of the particle displacements (the
propagator) that, for technical reasons, is used in experiments
in its one-dimensional form:

GS(x,t) = 〈δ(x − [x(t) − x(0)])〉. (28)

Generally, in materials close to the glass or jamming transition
and colloidal gelation, the non-Fickian character of the
single-particle displacements is indicated by four factors:
(i) the relaxation functions decay nonexponentially, (ii) the
MSD exhibits a subdiffusive plateau at intermediate time
scales, (iii) the intermediate scattering function FS exhibits
stretched-exponential decay, and (iv) the self-part of the van
Hove distribution function is non-Gaussian. In the previous
sections we have provided numerical evidence of the first
three phenomena in both continuous-time and collisional
representations, and we now tackle the last one. Moreover, the
deviation from the Gaussian form is generally interpreted as the
key signature of the so-called dynamical heterogeneity [94,96],
i.e., when slow particles tend to cluster together forming
cages, as well as faster particles forming fluidlike regions
[59–61,66,102–104]. In Fig. 15(a) we report the van Hove
function from Eq. (28) calculated for η = 0.56 in the dilute
regime (solid line). The dashed lines represent the Gaussian

expression 1√
2π〈δx2(t)〉e

− x2

2〈δx2(t)〉 , where the value of the MSD

has been obtained from data in Fig. 8(a). It is apparent that in
this case the Fickian behavior is respected and the Gaussian
form reproduces with remarkable accuracy the numerics at two
different times. In Fig. 16(a) the van Hove distribution function
is displayed for η = 0.695, within the coexistence phase.
GS(x,t) has been calculated at two different times according to
the different stages attained by the MSD in Fig. 8(a): within the
subdiffusive plateau and the subsequent diffusive phase, once
the tracer has escaped from the cage. In this case one can clearly
see that the dashed lines accounting for the Gaussian Fickian

FIG. 15. (Color online) Self-part of the van Hove function. (a)
Continuous-time GS(x,t) for η = 0.3, calculated according to
Eq. (28), for two different times t (solid lines). The dashed lines
represent the Gaussian form 1√

2π〈δx2(t)〉
exp (−x2/2〈δx2(t)〉), where

the values of 〈δx2(t)〉 have been drawn from Fig. 8(a). (b) Collisional
representation GS(x,n) for η = 0.3, calculated according to Eq. (29),
for two different values of n (solid lines). The dashed lines represent
the Gaussian form 1√

2π〈δx2
n〉

exp (−x2/2〈δx2
n〉), where the values of

〈δx2
n〉 have been drawn from Fig. 9(a).

behavior do not capture the tails of the van Hove function for
times corresponding to the plateau region in Fig. 8(a). When
the dynamics is diffusive, the Gaussian behavior is instead
restored. The appearance of non-Gaussian tails is even more
apparent for η = 0.713 [Fig. 17(a)] where at short and larger
times the exponential tails characterize the behavior of the van
Hove function, suggesting that the particle dynamics can be
represented by a number subsequent caging events. This is in
line with the observation of plateaulike regions detected in the
MSD [Fig. 8(a)] and with the velocity ACF antipersistent tails
observed in Fig. 7(a).

Studying the single-component van Hove function in
collisional representation through the definition

GS(x,n) = 〈δ(x − [xn − x0])〉 (29)

traces the behavior exhibited in continuous time. In
Figs. 15(b), 16(b), and 17(b) the solid lines represent the
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FIG. 16. (Color online) Self-part of the van Hove function. (a)
Continuous-time GS(x,t) for η = 0.695, calculated according to
Eq. (28), for two different times t (solid lines). The dashed lines
represent the Gaussian form 1√

2π〈δx2(t)〉
exp (−x2/2〈δx2(t)〉), where

the values of 〈δx2(t)〉 have been drawn from Fig. 8(a). Small
but persistent deviations from the Gaussian expression in the tails
of the distributions are displayed at both times. (b) Collisional
representation GS(x,n) for η = 0.3, calculated according to Eq. (29),
for two different values of n (solid lines). The dashed lines represent
the Gaussian form 1√

2π〈δx2
n〉

exp (−x2/2〈δx2
n〉), where the values of

〈δx2
n〉 have been drawn from Fig. 9(a). Deviations similar to the

ontinuous time case appear.

numerical data, whereas the dashed curves account for the

Gaussian form 1√
2π〈δx2

n〉e
− x2

2〈δx2
n 〉 , where 〈δx2

n〉 is drawn from

the results in Fig. 10(a). For the lowest packing fraction
the agreement observed in continuous time is respected.
For η = 0.695 shown in Fig. 16(b), the agreement between
numerical curves and Gaussian expressions seems to be better
for n = 1000 than n = 30. For η = 0.713 [Fig. 17(b)] the
exponential non-Gaussian tails characterize the subdiffusive
regime as well as the ensuing diffusive phase. We also note
the continuous-time propagator exhibits oscillations related to
the disk packing, which seem to disappear in the collisional
representation. This can be attributed to the fact that solid

FIG. 17. (Color online) Self-part of the van Hove function. (a)
Continuous-time GS(x,t) for η = 0.713, calculated according to
Eq. (28), for two different times t (solid lines). The dashed lines
represent the Gaussian form 1√

2π〈δx2(t)〉
exp (−x2/2〈δx2(t)〉), where

the values of 〈δx2(t)〉 have been drawn from Fig. 8(a). Deviations
from the Gaussian form are clearly displayed: In particular, for
the longer time corresponding to the asymptotic linear regime in
Fig. 8(a), non-Gaussian tails are reminiscent of what is found in
granular gases and colloids. (b) Collisional representation GS(x,n)
for η = 0.3, calculated according to Eq. (29), for two different values
of n (solid lines). The dashed lines represent the Gaussian form

1√
2π〈δx2

n〉
exp (−x2/2〈δx2

n〉), where the values of 〈δx2
n〉 have been

drawn from Fig. 9(a). Deviations from the Gaussian diffusive form
appear. Moreover, non-Gaussian tails similar to those in panel (a)
characterize the free path dynamics for n well beyond the plateau
in Fig. 9(a). We note that oscillations present in the continuous,
representing spatial order due to high packing fractions, are not
apparent in the collisional representation, due to the decoupling of
space and time.

packing is a collective process, orchestrated with external
time t .

IV. FROM COLLISIONAL TO CONTINUOUS-TIME
REPRESENTATION

We now wish to study the relation between continuous-time
and collisional representation. In Sec. III C we have provided
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evidence that the free flight time τn evolves according to a non-
Markovian dynamics, and this property is fulfilled by gases at
any η. The distribution of times t required for a particle to
undergo n collisions, i.e., the probability that a particle makes
exactly n collisions up to a time t , is given by:

P (n,t) =
∫

dτ0 · · · dτn−1 dv0 · · · dvn−1 δ

(
t −

n−1∑
i=0

τi

)

p(τ0 · · · τn−1|v0 · · · vn−1)φcoll(v0 · · · vn−1). (30)

Hence, the exact expression of P (n,t) can be derived uniquely
upon knowing the joint probability distribution of the velocities
and the ensuing conditional probability of the free flight times.
Following Ref. [13], we take the Laplace transform of both
sides of Eq. (30):

P (n,s) =
∫

dτ0 · · · dτn−1 dv0 · · · dvn−1e
−s

∑n−1
i=0 τi

p(τ0 · · · τn−1|v0 · · · vn−1)φcoll(v0 · · · vn−1). (31)

Assuming the velocity process to be uncorrelated, the former
Laplace transform then reads:

P (n,s) =
[∫

dv p(s|v)φcoll(v)

]n

, (32)

where P (s) = ∫
dv p(s|v)φcoll(v) is the Laplace transform of

the free-flight-time distribution function P (τ ) in Eq. (5). In the
dilute limit, the exponential form of p(τ |v) leads to:

P (n,s) =
[∫

dv
1

〈τ 〉sφcoll(v) + φMB(v)

]n

, (33)

where we made use of Eq. (6). The same expression has been
derived in Ref. [13] assuming the velocity collisional process
to be Markovian, where the numerical Laplace inversion of
Eq. (33), or analogously of P (s)n, has been shown to closely
agree with P (n,t) extracted from simulations for η in the fluid
phase. This tells us that the uncorrelation assumption of the
velocity collisional process hold in the dilute limit, if one
considers P (n,t) or P (τ ) [13]. In the large-packing-fraction
limit, however, this assumption fails and the inverse Laplace
transform of Eq. (33) does not capture the probability P (n,t).

Let us consider the case in which the free-flight-time distri-
bution takes the exponential form P (τ ) = 1

〈τ 〉e
−t/〈τ 〉. In view

of Eq. (5), we are implicitly assuming p(τ |v) = 1
〈τ 〉e

−t/〈τ 〉,
i.e., a unique time scale characterizes the collisional process
irrespective of the undergone velocity. This corresponds,
de facto, to taking free flight times independent of velocities.
We can thus write the former Eq. (5) as:

P (n,t) =
∫

dτ0 · · · dτn−1 δ

(
t −

n−1∑
i=0

τi

)
P (τ0 · · · τn−1),

(34)
and, if we make the further assumption of considering the free
flight times to be uncorrelated, the one finally obtains for the
Laplace transform (31):

P (n,s) = 1

(〈τ 〉s + 1)n
. (35)

FIG. 18. (Color online) Average time after n collisions, 〈tn〉, for
several η η (solid lines). Dashed lines correspond to the Poissonian
approximation in Eq. (37).

Inverting back in the time domain yields the Poisson formula
[14]:

P (n,t) = 1

〈τ 〉
(

t

〈τ 〉
)n−1

e
− t

〈τ 〉

(n − 1)!
, (36)

which has shown a large discrepancy to Eq. (30) even in the
dilute limit [13,14]. However, the collisional MSD expression
in Eq. (23) derived in this framework seems to work fairly
well in the low-η limit [see the black curve corresponding to
η = 0.3 in Fig. 12(a)].

We now turn to the average time between n collisions,
i.e., the first moment of P (n,t), within the context of the
Poisson approximation, i.e., using the Poisson approximated
expression in Eq. (36). A straightforward calculation yields:

〈tn〉 = n〈τ 〉, (37)

and, surprisingly, it reproduces very well the numerical values
reported in Fig. 18 not only for low η but also for η in the solid
regime.

To conclude this section, let us turn to the single-particle
propagator. To obtain the self-part of the van Hove function in
continuous time of Eq. (28) from the corresponding function
in collisional representation of Eq. (29), we have to refer to
the well-known subordination relation [11]:

G(x,t) =
∞∑

n=1

G(x,n)�(n,t), (38)

where �(n,t) is the single-particle probability of having n

collisions at time t . The connection between the formerly
introduced probability P (n,t) in Eq. (30) and �(n,t) is given,
for large n, by �(n,t) = 〈τ 〉P (n,t). Thus, the MSD can be
easily cast in the following form:

〈δx2(t)〉 = 〈τ 〉
∞∑

n=1

〈
δx2

n

〉
P (n,t). (39)

This expression constitutes the relation between the MSD in
collisional representation and that in continuous time, but the
rigorous evaluation at any η requires the knowledge of the
conditional probability distributions in Eq. (30). However, a
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semianalytical expression of the MSD in continuous time can
be achieved if we use the Poissonian approximation. Thanks
to Eq. (23) and Eq. (36) we have, after elementary algebraic
passages:

〈δx2(t)〉 = 〈τ 〉2〈v2〉 + 〈τ 〉〈v2〉t + 2
∞∑

n=2

n−1∑
m=1

〈v0vm〉(n − m)

×
(

t

〈τ 〉
)n−1

e
− t

〈τ 〉

(n − 1)!
. (40)

This approximated expression can be considered valid only
in the low η regime and, as such, the three terms in it can
easily be interpreted. The first term accounts for the ballistic
regime, and the second is the leading diffusive term which
dominates the single-particle dynamics after the first collision.
The third term represents the logarithmic corrections expected
for a hard-disk gas. It is interesting to notice that the second
moment of the velocity 〈v2〉 is obtained using the collisional
stationary distribution of velocity ϕcoll(v) instead of the regular
Maxwell-Boltzmann ϕMB(v). As a first approximation we
neglect the logarithmic corrections in Eq. (40) which are
believed to play a significant role for large times (see the dis-
cussion in Sec. III B). In Fig. 12(b) we observe that the
approximated Poisson formula (40) accurately reproduces the
MSD in continuous time for low η, whereas it clearly fails to
account for the high packing regime, as indeed is expected.

V. DISCUSSION

We have studied statistical and dynamical properties of a
2D system of hard disks in collisional representation, with
packing fractions ranging from the fluid to the solid phase.
Throughout this paper we tried to place our results withing
a broader context, resulting in a comprehensive study of 2D
hard-disk systems. The first part of our analysis focused on the
statistics of velocity, free flight time, and the path undergone
by a disk between subsequent collisions. We have provided
the numerical and theoretical evidence that the velocity x

and y components are correlated in collisional representation,
together with the fact that free flight times are strongly cor-
related to the collisional velocities. This result has previously
been investigated [12,13,15] only in the low-packing-fraction
limit, and we have extended it to the coexistence and solid
phase. We have shown that kinetic and Enskog theory do not
furnish correct expressions for the average free flight time
〈τ 〉 and path 〈|ξ |〉 as a function of the packing fraction η,
not even in very dilute systems. Furthermore, our numerical
analysis spanning packing fractions up to the high-η limit has
unveiled plateaulike regions of 〈τ 〉 and 〈|ξ |〉 corresponding to
the fluid-solid coexistence region, which, to the best of our
knowledge, have not been reported before.

The second part of this study has been devoted to the dy-
namical single-particle properties in collisional representation
and the comparison to their continuous-time equivalents. We
have shown a full analogy between observables calculated
in continuous time (as a function of t) and in collisional
representation (as a function of the number of collisions, n),
in spite of the fact that the process is not truly Poissonian [13].
We have shown that the velocity is never a Markovian process

in either continuous-time or collisional representation. This
is attributed to the persistent memory effects characterizing
the velocity autocorrelation function at low packing fractions
that eventually turn into antipersistent tails at high packing
fractions. In particular, this finding contradicts the common
assumption of Markovianity of velocity in the collisional
representation at low packing fractions [15]. Furthermore, we
have analyzed the mean-squared displacement, intermediate
scattering function, and self-part of the van Hove function,
or propagator, in both continuous-time and collisional rep-
resentations, showing remarkable similarities with colloidal
systems, glassy systems, and supercooled liquids close to the
glass or jamming transition. These analogies provide a strong
indication that within the coexistence phase the simplistic
hard-disk model captures properties of glassy behavior.

Finally, our analysis shows that, according to the observable
of interest, different approximations yield better descriptions
of the data. Indeed, we have shown that, although the system
is generally non-Poissonian, at low packing fractions it can be
fairly well described as a Poissonian model, i.e., considering
uncorrelated free flight times independent of velocities. This
approximation works well if one considers the mean-squared
displacements 〈δ2x(t)〉 and 〈δ2xn〉 or the average time as a
function of the number of collisions 〈tn〉. On the other hand, we
have pointed out that a different approximation, considering
the collisional velocity process uncorrelated or Markovian
but still correlated to the free flight times, provides excellent
predictions in describing the probability P (τ ) at low η, the
probability �(n,t) of having n collisions up to a time t in
the dilute limit, or when one attempts to derive the collisional
stationary velocity distribution function ϕcoll(v) [13]. However,
none of the former assumptions is entirely correct, since
velocities are correlated in collisional representation at any η,
and they are also correlated with free flight times: Therefore
none of them can furnish an overall satisfactory theoretical
framework, not even in the very dilute regime.
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APPENDIX A: SINGLE-COMPONENT MEAN
FREE-FLIGHT TIMES RELATION

Let us assume the sequence of velocities a particle acquires
during N collisions is {vi} where i ∈ [1,N ]. The number of
occurrences of some velocity v is denoted:

nv =
N∑
i

∫ ∞

−∞
dvδ(vi − v), (A1)
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and the total time spent on the velocity v is then given by
Tv = ∑N

i τi

∫
dvδ(vi − v). The velocity distribution function

in collisional representation follows:

ϕcoll(v) = nv

N
, (A2)

and the velocity distribution function in continuous time can
be approximated as:

ϕMB(v) = Tv

〈τ 〉 . (A3)

Multiplying and dividing the right-hand side by N , substituting
Eq. (A2), and realizing that TV can be approximated as Tv =
nv〈τ (v)〉 yields the relation:

ϕMB(v) = 〈τ (v)〉
〈τ 〉 ϕcoll(v). (A4)

APPENDIX B: MEAN FREE PATH AND MEAN FREE
FLIGHT TIME FROM KINETIC AND ENSKOG THEORY

The familiar expression for the average free flight time arising
from kinetic theory for a system of elastic hard disks is [40]

〈τ 〉kt = 1

4
√

πkBT nσ
, (B1)

where n is the density number, i.e., n = N
L2 . Recalling that the

packing fraction is η = nπσ 2/4, we obtain 〈τ 〉kt = σ
16η

√
π

kBT
.

Figure 4(a) shows that Eq. (B1) agrees with the numerical data
only qualitatively (blue line). The mean free path is defined as:

〈|ξ |〉kt = 〈|v|〉cont〈τ 〉kt = πσ

29/2η
. (B2)

The corresponding expression for the single component reads:

〈ξ 〉kt = 〈|v|〉cont〈τ 〉kt = σ

27/2η
. (B3)

The mean free path value furnished by the Enskog theory for
a system of 2D hard disks is given by:

〈|ξ |〉0 = πσ

29/2ηY [η]
, (B4)

where Y [x] = (1 − 7
16x)/(1 − x)2 is the Enskog factor. Notice

that the expression furnished in Eq. (B4) differs from the
formula provided in Refs. [58,105] by a factor 1/2 to match
the kinetic theory expression in Eq. (B2), as should be the case.
The single component is then:

〈ξ 〉0 = σ

27/2ηY [η]
. (B5)

The expressions in Eqs. (B5) and (B3) are displayed in the
inset of Fig. 4(b), showing a nonsatisfactory agreement with
the average free path obtained in the numerical simulations
(red and blue lines, respectively). The mean free flight time
can be obtained through:

〈τ 〉0 = 〈|ξ |〉0

〈|v|〉cont
= σ

16ηY [η]

√
π

kBT
(B6)

and is plotted in the inset of Fig. 4(a) with the expression in
Eq. (B5) for the mean free path (red line).

APPENDIX C: GENERALIZED KUBO THEOREM
IN COLLISIONAL REPRESENTATION

Let us consider a discrete stochastic process ξn such that
〈ξn〉 = 0. The relation between the MSD and the symmetrized
ACF is provided by Eq. (20), and shown again here:

〈
δx2

n

〉 = 2
n−1∑
m=0

C̃ξξ (m)(n − m). (C1)

The collisional transport coefficient Dn is defined as:

Dn =
n−1∑
m=0

C̃ξξ (m), (C2)

and it is possible to study its behavior once the dependence of
C̃ξξ on n is defined. Two main situations can arise: (i) Dn ∼
const and (ii) Dn ∼ n1−β (β > 0).

(i) Suppose that C̃ξξ is such that Dn = ∑n−1
m=0 C̃ξξ (m) ∼ D

with D = const. Hence from Eq. (C1) we have:

〈
δx2

n

〉 = 2Dn − 2
n−1∑
m=0

C̃ξξ (m)m. (C3)

The second term on the right-hand side of Eq. (C3) is∑n−1
m=0 C̃ξξ (m)m � Dn, yielding:

〈
δx2

n

〉 ∼ 2Dn (C4)

for a large-enough n.
(ii) Consider now a process for which C̃ξξ (n) ∼ cβn−β . The

corresponding discrete transport coefficient is then given by
[106,107]:

Dn = cβ

[
ζ (β) + (n − 1)1−β

1 − β
+ β

∫ ∞

n−1
dx

x − [x]

xβ+1

]
, (C5)

where ζ (β) is the Riemann ζ function and [· ] represents the
integer part. Hence for large n we can write Dn ∼ D + cβ

n1−β

1−β

where D is a constant. From Eq. (C1) it then follows:

〈
δx2

n

〉 ∼ 2Dn + 2cβ

n2−β

(1 − β)(2 − β)
. (C6)

If 0 < β < 1, then the process is superdiffusive. Indeed cβ is
positive, meaning that persistent memory effects characterize
the free path ξn. Moreover, Dn diverges as ∼ n1−β according
to Eq. (C5). If 1 < β < 2 and D = 0, then the process is
subdiffusive. In this case cβ < 0, which defines the antipersis-
tent tails of the symmetrized ACF C̃ξξ (n). Dn is positive and
decays to zero as n1−β . If D �= 0, then the process is diffusive
and Dn ∼ D. If β � 2, then D �= 0, one has normal diffusion,
and Dn ∼ D.
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