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Energy repartition for a harmonic chain with local reservoirs
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We exactly analyze the vibrational properties of a chain of harmonic oscillators in contact with local Langevin
heat baths. Nonequilibrium steady-state fluctuations are found to be described by a set of mode temperatures,
independent of the strengths of both the harmonic interaction and the viscous damping. Energy is equally
distributed between the conjugate variables of a given mode but differently among different modes, in a manner
which depends exclusively on the bath temperatures and on the boundary conditions. We outline how bath-
temperature profiles can be designed to enhance or reduce fluctuations at specific frequencies in the power
spectrum of the chain length.
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I. INTRODUCTION

The enhancement of nonequilibrium fluctuations at low
wave numbers is a key feature of systems driven by ther-
modynamic gradients (see [1] for a review). For temperature
gradients, it has been thoroughly studied both theoretically [2],
and experimentally in systems ranging from simple fluids [3] to
polymer solutions [4] and fluid layers also under the influence
of gravity [5]. More recently, fluctuations in nonisothermal
solids have been the subject of experimental investigation,
fostered by the possibility of technological applications in
fields as diverse as microcantilever-based sensors [6] and grav-
itational wave detectors [7]. For example, the low frequency
vibrations of a metal bar, whose ends are set at different
temperatures, were found to be larger than those predicted
by the equipartition theorem at the local temperature [8],
thus corroborating the generality of the results obtained
for nonequilibrium fluids [9]. (See also experiments with
cantilevers [10].)

Theoretical studies of nonequilibrium solids focused more
on thermal conduction in low dimensions, where crystals
are usually modeled as Fermi-Pasta-Ulam oscillator chains
coupled at the boundaries with heat baths at different tempera-
tures [11–13]. Thanks to their simplicity, integrable and quasi-
integrable models may be taken as a paradigm to describe
more comprehensively the energetics of normal solids under
nonisothermal conditions. For instance, anomalous features
are known to disappear when, in place of nonhomogeneous
boundary conditions at the borders, a temperature gradient
is generated by stochastic heat baths displaced along the
system [13]. Specifically, it has been shown that self-consistent
heat baths—such that no energy flows on average into or
out of the reservoirs—are sufficient to recover the Fourier’s
law of heat conduction in a harmonic chain [14–16]. Lifting
the “self-consistency” condition, one obtains a simple, yet
general, model which describes a solid immersed in a locally
equilibrated medium [17–19]. This can find application in all
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cases where the study of fluctuations is applied to an extended
system with a complex thermal balance. As an example,
we may cite cryogenic gravitational wave detectors, where
thermal fluctuations of the systems composed by the test
masses and their multistage suspension chains are of central
importance. The latter are effectively coupled to different heat
baths and flows [20].

Here we analyze the energy repartition among the elastic
modes of a harmonic chain held in temperature gradient,
as sketched in Fig. 1(a). In a coarse-grained picture, the
oscillator displacements can be thought of as the local strain
of a (one-dimensional) elastic dispersive body, such that the
model describes the damped propagation of thermal phonons
[Fig. 1(b)]. Our approach is fully analytic and provides an
explicit expression for the energy repartition among the modes
in terms of their effective temperatures Tkk . Exemplifying
our results for temperature profiles with a defined concavity,
we show that Tkk’s depend only on this concavity and on
the boundary conditions of the system. A naive expectation
could be that deviations from energy equipartition are to be
anticipated at long wavelengths only, since local equilibrium
conditions should hold at short scales. On the contrary, we
find that both long and short wavelength modes can either heat
up or cool down well beyond the average temperature. We
also study a reverse-engineering approach in which the heat
bath temperatures are inferred starting from a desired energy
repartition.

II. MODEL AND GENERAL RESULTS

Consider a linear chain of N + 1 equal oscillators lo-
cated at positions qn (n = 0,1, . . . ,N ). Successive masses
are connected through a harmonic potential of equilibrium
length l0. Each of them is in contact with a specific Langevin
bath at temperature Tn [21], providing viscous damping with
coefficient γ and thermal noise ξn. Setting masses to unity,
the equations of motion in the displacement coordinate Rn ≡
qn − n l0 read

R̈n = −γ Ṙn − κ

N∑
m=0

AnmRm + ξn, (1)
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FIG. 1. (Color online) (a) Sketch of the linear chain of N har-
monic oscillators held in a temperature gradient: each oscillator is
coupled to an independent heat bath at temperature Tn, n = 0, . . . ,N

(in the picture N = 3). (b) Schematic interpretation in terms of sound
propagation in a medium.

where Anm is a tridiagonal matrix accounting for first-
neighbors interactions via the potential κ

2 (Rm − Rm−1)2. In
Eq. (1) the standard Gaussian white noise ξn has an amplitude
given by the fluctuation-dissipation theorem at the local
temperature (in units of kB):

〈ξm(t)ξn(t ′)〉 = 2γ Tnδ(t − t ′)δmn. (2)

In the following, we first consider the case of free boundary
conditions (A00 = ANN = 1); fixed (A00 = ANN = 0) and
mixed (A00 = 1, ANN = 0) boundary conditions are discussed
in Sec. III and in Appendix A. With free boundaries the matrix
Anm is diagonalized by the linear transformation �−1A�,
with

�−1
kn = 1

N + 1
cos

(
kπ

N + 1

(
n + 1

2

))
, (3)

mapping the spatial coordinates Rn into the coordinates of the
normal modes Xk ≡ ∑

n �−1
kn Rn, for which

Ẍk = −γ Ẋk − ω2
kXk + ηk, (4)

where ω2
k = 4κ sin2 ( kπ

2(N+1) ) is the (squared) eigenfrequency
of the kth mode. In this dynamics, the only source of correlation
between modes is contained in the transformed Gaussian white
noises ηk ≡ ∑

n �−1
kn ξn,

〈ηk(t)ηk′(t ′)〉 = 2γTkk′δ(t − t ′)/(N + 1). (5)

These correlations include a “temperature” matrix

Tkk′ ≡ (N + 1)
N∑

n=0

�−1
kn �−1

k′nTn, (6)

which is certainly diagonal only in the equilibrium case
Tn = T ∀n, where energy equipartition is recovered. In a
nonequilibrium state, generated by heterogeneous bath tem-
peratures, the diagonal Tkk still encodes information about how
energy is distributed among the modes. Nonzero off-diagonal
Tkk′ emerge in connection with energy fluxes. To show this, we
consider the average kinetic energy (Kk) and potential energy
(Vk) of the kth mode,

Kk ≡ (N + 1)
〈
Ẋ2

k

〉
(1 − δk0/2), Vk ≡ (N + 1)ω2

k

〈
X2

k

〉
,

where expectation values 〈·〉 are taken over different realiza-
tions of the thermal noise ξn. We get the variances 〈X2

k〉, 〈Ẋ2
k〉

from the solution of Eq. (4) (Appendix B),

Xk(t) =
∑

α=1,2

∫ t

−∞
dt ′

(−1)α

λ1
k − λ2

k

e−λα
k (t−t ′)ηk(t ′), (7)

where λ
(α)
k with α = 1,2 are the roots of the characteris-

tic equation for the unforced harmonic oscillator; namely,
λ

(α)
k = − 1

2 [γ + (−1)α
√

γ 2 − 4ω2
k]. For each mode k, both the

average kinetic and potential energy turn out to coincide with
one half of the mode temperature (Appendix B):

KX
k = V X

k = Tkk/2 (k 	= 0). (8)

This relation establishes a form of energy equipartition be-
tween the conjugate variables of a single mode. Interestingly,
from (6) and (3) one sees that Tkk does not depend on the details
of both the harmonic interaction (κ) and the damping (γ ).
Therefore, the amount of energy stored in the kth mode is
directly determined by the choice of the bath temperature
profile Tn, for given boundary conditions. Put in other words,
properly designing thermal profiles it is in principle possible
to enhance or reduce the thermal vibrations of specific modes.
All these findings are confirmed by numerical integration of
Eq. (1).

III. ROLE OF THE BOUNDARY CONDITIONS

In the case of free boundaries, Eq. (6) gives

Tkk = T

[
1 +

∑N
n=0 Tn cos

(
2n+1
N+1 kπ

)∑N
m=0 Tm

]
(k 	= 0), (9)

where T ≡ ∑N
n=0 Tn/(N + 1) is the average imposed temper-

ature. The center-of-mass kinetic energy (N + 1)〈Ẋ0
2〉/2 is

equal to T00 = T . Notice that Eq. (9) is valid in particular
when Tn corresponds to a self-consistent profile [14–16].
In (9) the energy stored by the mode k under stationary
nonequilibrium conditions emerges like a correction to the
average temperature T , which at most amounts to ±T . This
correction can be viewed as a weighted average of a cosine
function over the temperature profile: For parity, it vanishes
for all temperature profiles which are odd with respect to
(N/2,T ). The relevant physical consequence is that with
free boundary conditions energy equipartition is extended
to all nonequilibrium temperature profiles which are odd
symmetric with respect to (N/2,T ), like linear profiles. At
variance, if the temperature profile has a definite upwards
(downwards) concavity in the interval [0,N ], low- (high-)
k modes heat up and high- (low-) k modes freeze down.
We exemplify these findings assuming heat-bath temperatures
Tn = T0 + (n/N )α(TN − T0) with T0 = 10, TN = 1, and N =
99 (see Fig. 2): α = 1 corresponds to a linear temperature
profile, whereas α < 1 (α > 1) corresponds to a profile with
upwards (downwards) concavity. In Fig. 3(a) one finds the
resulting Tkk for free boundary conditions.

Transport properties might depend crucially on the bound-
ary conditions [22]. We show that the latter strongly influences
also the repartition of energy among the normal modes. For
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FIG. 2. (Color online) Heat-bath profiles utilized for exemplify-
ing our results.

fixed boundary conditions, Tkk becomes (Appendix A)

Tkk = (N − 1)T

N

[
1 −

∑N−1
n=1 Tn cos

(
2nk
N

π
)∑N−1

m=1 Tm

]
(10)

(0 < k < N ), with T ≡ ∑N−1
n=1 Tn/(N − 1). Figure 3(b) shows

the mode energy repartition for the same profiles Tn used for
open boundary conditions in Fig. 3(a). Notably, the low-k
behavior is inverted. For instance, while free boundaries
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FIG. 3. (Color online) Modes normalized temperatures Tkk/T

calculated through Eqs. (9), (10), and (11) for the heat-bath profiles
mentioned earlier. The four panels refer to different boundary
conditions: (a) free, (b) fixed, (c) mixed with free end hotter than
the fixed end, and (d) vice versa. Insets enlarge the plots at low k’s.

enhance the long-wavelength energy storage for concave-up
Tn, fixed boundaries do the opposite. Hence, if the aim were to
store energy at low k’s, a convenient strategy would be to heat
up the boundaries and cool down the middle of a free chain,
and vice versa with a fixed chain.

For mixed boundaries in which we leave free the mass at
n = 0 and fix the mass at n = N we have (Appendix A)

Tkk = 2NT

2N + 1

[
1 +

∑N−1
n=0 Tn cos

( (2n+1)(2k+1)
2N+1 π

)∑N−1
m=0 Tm

]
(11)

(k < N ), with T ≡ ∑N−1
n=0 Tn/N . Due to the broken symmetry

upon profile reflection with respect to the vertical axis passing
through N/2, in our exemplification we may distinguish
two cases for each temperature profile: one in which the
hotter temperatures are applied at the side of the free end
in n = 0 (as in Fig. 2) and one in which hot temperatures are
applied at the side of the fixed mass in n = N (perform the
transformation Tn 
→ TN−n to the profiles in Fig. 2). Results are
respectively depicted in Figs. 3(c) and 3(d). In both cases, even
the linear temperature profile does not lead to equipartition.
From the plots one notices that low-k modes store more
energy if the free end is hotter. This alludes to suggestive
implications: the mixed boundary is the case considered in
Ref. [8], where an experiment with a solid bar and a numerical
study of an anharmonic chain displayed behaviors qualitatively
consistent with that of Fig. 3(c). Our results thus suggest
that the noise at lowest k’s would be lowered by letting the
free end float in a colder environment. This also points out
a conceivable indication for reducing the measured thermal
noise in experiments passible to schematizations analogous to
those in Fig. 1.

IV. REVERSE ENGINEERING

The expression Tkk(Tn) may be inverted, thus determining
which heat-bath temperature profiles Tn may correspond to a
given mode energy repartition. For definiteness, let us focus
on the case of free boundaries. Thanks to simple identities
(Appendix C), the inversion of Eq. (9) gives

Tn + TN−n = 2
N∑

k=1

cos

(
2n + 1

N + 1
kπ

)
Tkk + 2T . (12)

Notice that, given Tkk , the temperature profile Tn is not
uniquely identified. In fact, the relation Tkk(Tn) is many-to-
one—for instance, already on the basis of symmetry one can
figure out that temperature profiles Tn, T ′

n related by the trans-
formation T ′

n = TN−n produce the same energy repartition Tkk .
In the lower panel of Fig. 4 we display a profile reconstruction
originated from the specific choice for Tkk reported in the
upper one. For simplicity, we complemented Eq. (12) with the
condition Tn = TN−n; this means, in particular, T0 = TN . Our
example points out that in principle it is possible to design
heat-bath temperature profiles so that the energy stored in the
normal modes of the chain is arbitrarily distributed in the range
[0,2T ], consistently with the condition

∑N
k=1 Tkk = N T .
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FIG. 4. (Color online) Reconstruction of the temperature profile
(lower panel) through Eq. (12), starting from Tkk/T displayed in the
upper panel and T = 5.5.

V. POWER SPECTRUM

To show that Tkk also encodes the dynamics of fluctuations,
we compute the power spectrum S(ω) of the chain length RN −
R0 + N l0 in the frequency domain, a quantity typically mon-
itored in experiments [8]. According to the Wiener-Khinchin
theorem [23], under stationary conditions S(ω) is given by
the Fourier transform of the chain length’s autocorrelation
function. Referring again to free boundary conditions, in terms
of normal modes we have RN − R0 = ∑N

k=1(�Nk − �0k)Xk .
Hence (Appendix D)

S(ω) = 2γ

N + 1

N∑
k,k′=1

(�Nk − �0k)(�Nk′ − �0k′)Tkk′(
ω2

k − ω2 − iγ ω
)(

ω2
k′ − ω2 + iγ ω

)
(13)

� 16γ

N + 1

∑
odd k

cos2
(

k
2(N+1)π

)
Tkk(

ω2
k − ω2

)2 + γ 2ω2
(14)

(ω 	= 0), where even modes do not contribute owing to
the symmetry of the boundaries. Equation (14) neglects the
cross correlations between modes at different k. Such cross-
correlation terms are instead responsible for the heat flux along
the chain, Jn = l0κ〈ṘnRn−1〉 [12]. In terms of normal modes
we have (Appendix D) in fact

Jn = − il0κ

(2π )2

2γ

N + 1

∑
k 	=k′

�nk�n−1,k′Tkk′

×
∫

dω
ω(

ω2
k − ω2 − iγ ω

)(
ω2

k′ − ω2 + iγ ω
) (15)

(0 < n < N). We have checked that the contribution of terms
with k′ 	= k in Eq. (13) can only be appreciated in proximity

of the negative peaks of the power spectrum, away from the
resonances ωk .

VI. CONCLUSIONS

In summary, our analytic study of energy repartition in
a harmonic chain in contact with independent heat baths
shows that both long and short wavelength modes may have
energies which deviate significantly from the level expected if
equipartition were to hold. This enhanced or reduced storage
of energy depends critically on the shape of the temperature
profile and on the boundary conditions. Other dynamical
properties, such as the damping or the elastic coupling, are
instead totally irrelevant. Thus, for a generic harmonic chain,
information encoded in the temperature profile is mapped into
a sequence of vibrational mode temperatures, which in turn
shape the power spectrum of the chain length. Investigations
about the influence on the above picture of nonlinearities
originating thermomechanical couplings is the next important
step.
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APPENDIX A: BOUNDARY CONDITIONS

1. Free boundary conditions

In the case of free boundary conditions with N + 1
oscillators the Laplacian matrix is

A ≡ (Anm)n,m=0,1,...,N

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 −1 0 · · · 0

−1 +2 −1
. . .

...

0 −1
. . .

. . .
...

. . .
. . . −1 0

−1 +2 −1
0 · · · 0 −1 +1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A1)

which is diagonalized by the linear transformation �−1A�,
with

�nk =
{

1, k = 0,√
2 cos

( (2n+1)k
2(N+1) π

)
, k 	= 0,

(A2)

�−1 = �t

N + 1
. (A3)

It is straightforward to see that the definition

Tkk ≡ (N + 1)
N∑

n=0

�−1
kn �−1

kn Tn (A4)
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leads to

Tkk = T

[
1 +

∑N
n=0 Tn cos

(
2n+1
N+1 kπ

)∑N
m=0 Tm

]
(0 < k � N )

(A5)

and T00 = T ≡ ∑N
n=0 Tn/(N + 1). Notice that

∑N
n=0 cos

( 2n+1
N+1 kπ ) = 0, so that at equilibrium, Tn = T ∀n, we recover

Tkk = T ∀k.

2. Fixed boundary conditions

In the case of fixed boundary we can stick to our notations by
fixing the two masses at the border. The number of oscillators
becomes N − 1, and the Laplacian matrix reads

A ≡ (Anm)n,m=0,1,...,N

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0

0 +2 −1
. . .

...

0 −1
. . .

. . .
...

. . .
. . . −1 0

−1 +2 0
0 · · · 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A6)

which now is diagonalized by

�nk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
N, (n,k) = (0,0) or

(n,k) = (N,N ),
0, (0 < n � N,k = 0) or

(0 < n � N,k = N ),√
2 sin

(
nk
N

π
)
, otherwise,

(A7)

�−1 = �t

N
. (A8)

Also in this case it is straightforward to show that

Tkk = (N − 1)T

N

[
1 −

∑N−1
n=1 Tn cos

(
2nk
N

π
)∑N−1

m=1 Tm

]
(A9)

(0 < k < N),

with T ≡ ∑N−1
n=1 Tn/(N − 1). We have

∑N−1
n=1 cos ( 2nk

N
π ) =

−1, so that at equilibrium we again recover Tkk = T ∀k.

3. Mixed boundary conditions

In the case of mixed boundary we fix only the mass at
n = N . The number of oscillators becomes N and the
Laplacian matrix is

A ≡ (Anm)n,m=0,1,...,N

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 −1 0 · · · 0

−1 +2 −1
. . .

...

0 −1
. . .

. . .
...

. . .
. . . −1 0

−1 +2 0
0 · · · 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A10)

which is diagonalized by the linear transformation �−1A�

with

�nk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
2N+1

2 (n,k) = (N,N ),

0 (n = N,0 � k < N ) or

(0 � n < N,k = N ),√
2 cos

( (2n+1)(2k+1)
2(2N+1) π

)
otherwise,

(A11)

�−1 = 2�t

2N + 1
. (A12)

As for the previous cases, it is easy to prove that

Tkk = 2NT

2N + 1

[
1 +

∑N−1
n=0 Tn cos

( (2n+1)(2k+1)
2N+1 π

)∑N−1
m=0 Tm

]
(A13)

(0 � k < N ),

with T ≡ ∑N−1
n=0 Tn/N . In this case

∑N−1
n=0 cos

( (2n+1)(2k+1)
2N+1 π ) = 1/2, and again one recovers Tkk = T ∀k at

equilibrium.

APPENDIX B: ENERGY REPARTITION
AMONG THE MODES

Equation

Ẍk = −γ Ẋk − ω2
kXk + Fk (B1)

is a first-order linear differential equation in the vector Yk ≡
(Xk,Ẋk). Its stationary solution is formally given by

Yk(t) =
∫ t

−∞
dt ′ exp[(t − t ′)�k] · Fk(t ′), (B2)

with the definitions

�k =
(

0 1
−ω2

k −γ

)
, Fk =

(
0
Fk

)
. (B3)

The matrix exponential in Eq. (B2) is computed by diago-
nalizing �k . Its eigenvalues λ1,2

k are the two solutions of the
characteristic equation for the unforced harmonic oscillator,
namely

λα
k = 1

2

(−γ + (−1)α−1
√

γ 2 − 4ω2
k

)
, α = 1,2. (B4)

Therefore, from the solutions

Xk(t) =
∑

α=1,2

∫ t

−∞
dt ′Aα

k exp
(−λα

k (t − t ′)
)
Fk(t ′), (B5)

Ẋk(t) =
∑

α=1,2

∫ t

−∞
dt ′Bα

k exp
(−λα

k (t − t ′)
)
Fk(t ′), (B6)

with

A1
k = 1

λ2
k − λ1

k

= −A2
k, (B7)

B1
k = −λ1

k

λ2
k

B2
k = λ1

kA
2
k, (B8)
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we can evaluate the stationary equal-time correlations

〈XkXk′ 〉 = 2ζTkk′
∑

α,β=1,2

Aα
k A

β

k′

λα
k + λ

β

k′
, (B9)

〈ẊkẊk′ 〉 = 2ζTkk′
∑

α,β=1,2

Bα
k B

β

k′

λα
k + λ

β

k′
. (B10)

For the average kinetic and potential energy per mode,

Kk ≡ (N + 1)
〈
Ẋ2

k

〉
(1 − δk0/2), (B11)

Vk ≡ (N + 1)ω2
k

〈
X2

k

〉
, (B12)

we thus obtain the basic result

KX
k = V X

k = Tkk/2 (k 	= 0). (B13)

APPENDIX C: RECONSTRUCTING
THE TEMPERATURE PROFILE

Expressing the cosine in complex notation it is easy to prove
the following identities:

N∑
k=1

cos

(
(2m + 1)k

N + 1
π

)
cos

(
(2n + 1)k

N + 1
π

)

= N + 1

2

(
δmn + δmN−m

)
− 1, (C1)

N∑
k=1

cos

(
(2m + 1)k

N + 1
π

)
= 0. (C2)

Hence, from Eq. (6), we obtain

N∑
k=1

cos

(
(2m + 1)k

N + 1
π

)
Tkk (C3)

=
N∑

k=1

cos

(
(2m + 1)k

N + 1
π

)
T

×
[

1 +
∑N

n=0 Tn cos
(

2n+1
N+1 kπ

)∑N
m=0 Tm

]
, (C4)

or

Tn + TN−n = 2
N∑

k=1

cos

(
2n + 1

N + 1
kπ

)
Tkk + 2T . (C5)

APPENDIX D: SPECTRAL DENSITY

According to the Wiener-Khinchin theorem [23], under
stationary conditions the spectral density S(ω) of the chain
length RN − R0 + Nl0 is given by

S(ω) =
∫

dτ eiωt 〈[RN (t0) − R0(t0)]

× [RN (t0 + τ ) − R0(t0 + τ )]〉 + 2πN2l2
0δ(ω). (D1)

We have

RN (t) − R0(t) =
N∑

k=1

(�Nk − �0k)Xk(t), (D2)

so that

S(ω) =
N∑

k,k′=1

(�Nk − �0k)(�Nk′ − �0k′)

×
∫

dτ eiωt 〈Xk(t0)Xk′(t0 + τ )〉 + 2πN2l2
0δ(ω).

(D3)

We indicate the Fourier transform of a generic function h(t)
as ĥ(ω) ≡ ∫

dt eiωth(t), and denote its complex conjugate as
ĥ∗(ω). The Fourier transform of Eq. (4) gives

−ω2X̂k(ω) = iωγ X̂k(ω) − ω2
kX̂k(ω) + η̂k(ω). (D4)

Solving for X̂k(ω) and using

〈ηk(t)ηk′(t ′)〉 = 2γTkk′δ(t − t ′)/(N + 1) (D5)

we obtain, for ω 	= 0,

S(ω) = 2γ

N + 1

N∑
k,k′=1

(�Nk − �0k)(�Nk′ − �0k′)Tkk′(
ω2

k − ω2 − iγ ω
)(

ω2
k′ − ω2 + iγ ω

) .

(D6)

The local heat flux Jn along the chain [12] is given by

Jn = l0κ〈ṘnRn−1〉 (0 < n < N ). (D7)

In terms of normal modes the local heat flux becomes

Jn = l0κ
∑
k 	=k′

�nk�n−1k′ 〈ẊkXk′ 〉. (D8)

Indeed, stationarity implies 〈ẊkXk〉 = 0 for equal-time aver-
ages. We then have

〈ẊkXk′ 〉 = 1

(2π )2

∫
dω

∫
dω′(−iω)e−iωt eiω′t 〈X̂k(ω)X̂∗

k′(ω′)〉 (D9)

= 1

(2π )2

∫
dω

∫
dω′(−iω)e−iωt eiω′t 2γ

N + 1

Tkk′(
ω2

k − ω2 − iγ ω
)(

ω2
k′ − ω′2 + iγ ω′)δ(ω − ω′) (D10)

= − i

(2π )2

2γTkk′

N + 1

∫
dω

ω(
ω2

k − ω2 − iγ ω
)(

ω2
k′ − ω2 + iγ ω

) . (D11)

Putting things together we obtain

Jn = − il0κ

(2π )2

2γ

N + 1

∑
k 	=k′

�nk�n−1,k′Tkk′

∫
dω

ω(
ω2

k − ω2 − iγ ω
)(

ω2
k′ − ω2 + iγ ω

) (0 < n < N ). (D12)
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