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Universal dynamic scaling in three-dimensional Ising spin glasses
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We use a nonequilibrium Monte Carlo simulation method and dynamical scaling to study the phase transition in
three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity v (temperature
change versus time) in Monte Carlo simulations starting at a high temperature. This approach has the advantage
that the equilibrium limit does not have to be strictly reached for a scaling analysis to yield critical exponents.
For the dynamic exponent we obtain z = 5.85(9) for bimodal couplings distribution and z = 6.00(10) for the
Gaussian case. Assuming universal dynamic scaling, we combine the two results and obtain z = 5.93 ± 0.07 for
generic 3D Ising spin glasses.
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I. INTRODUCTION

Understanding spin glasses analytically has proved diffi-
cult, and there are only very few exact results beyond Parisi’s
solution [1–3] of the infinite-range Sherrington-Kirkpatrick
model [4]. Furthermore, Monte Carlo (MC) simulations in
three dimensions proved challenging because d = 3 turns
out to be close to the lower critical dimension dl , below
which fluctuations destroy the transition. For Ising spins,
which we study here, dl � 2.5 [5]. Nonetheless, there has
been substantial progress in recent years, aided by increased
computer power, the technique of parallel tempering [6]
(exchange MC) to speed up equilibration and reduce au-
tocorrelations, and better methods of performing finite-size
scaling. In particular, Hasenbusch et al. [7] extracted not only
the leading singular behavior at the transition but also the
dominant correction to scaling. This gives confidence that the
asymptotic critical region has been reached (which it had not in
much of the earlier work, see, e.g., discussion in Ref. [8]), and
hence that the critical exponents are accurate. Subsequently,
massive simulations by Baity-Jesi et al. [9], using a special-
purpose computer, obtained even more accurate results, which
are consistent with the earlier work of Ref. [7].

These impressive developments have given a good under-
standing of the static critical behavior of spin glasses, but
our knowledge of their dynamic critical behavior is much
less well developed. To understand critical dynamics of spin
glasses (and other similar computationally hard problems) it
is useful to employ new techniques. Here we explore MC
simulations out of equilibrium in combination with a powerful
dynamic scaling theory [10] building on the Kibble-Zurek
(KZ) mechanism [11–19]. We will demonstrate that this
approach is particularly well suited for studies of spin glasses
because it avoids the normally very difficult problem of
ensuring that the simulations are fully equilibrated. Rather,
as we shall explain, deviation from equilibrium is turned into
a feature of the scaling methodology. Using this approach we
will obtain the dynamic exponent z of spin glasses with quite
high accuracy.

Universality is a cornerstone of the theory of critical
phenomena according to which critical exponents and many
other quantities do not depend on microscopic system details.
Thus, the exponents for a spin glass should not depend on

the distribution of interactions, so results obtained for, e.g.,
a bimodal distribution should be the same as those from
a continuous distribution such as Gaussian. An interesting
question, raised by Campbell and collaborators [20–22], is
whether universality may be violated in spin glasses. While
these works claim numerical evidence that the exponents do
depend on the distribution of interactions, other works, e.g.,
Ref. [8], found universal behavior, though with some incon-
sistencies due to corrections to scaling not being incorporated.
The work of Refs. [7,9] only used a bimodal distribution of
nearest-neighbor interactions, because considerable speedup
in the MC code can be obtained in this case. Unfortunately,
simulations of comparable quality to those in Refs. [7,9],
i.e., which systematically incorporate the leading correction to
scaling, have not yet been done for a continuous distribution
of the interactions.

A major focus of the present paper is to test universality
of spin glasses by determining the dynamic exponent for
both Gaussian and bimodal distributions with high accuracy.
Several earlier estimates of the dynamical exponent z are
summarized in Table I. It is seen that there there are significant
differences in the results from different works, and claims are
again made [21,22] that the dynamical exponent, like the static
ones, depend on the distribution of interactions. However, we
will see that our results for 3D Ising spin glasses with bimodal
and Gaussian distributions show the same value for z within
small error bars, thus supporting universality.

In the remainder of the paper, we discuss the model,
simulation method, and dynamical critical scaling scheme in
Sec. II and present results in Sec. III. We end with a brief
discussion in Sec. IV.

II. MODEL AND METHODS

We study Ising spin glasses that can be described by the
Hamiltonian

H =
∑

〈i,j〉
Jijσiσj , (1)

where σi ∈ {−1,1} and 〈i,j 〉 stands for the nearest neighbors
on a simple cubic lattice of linear size L. We consider (i) a
bimodal distribution in which Jij = ±1 with equal probability
and (ii) Jij drawn from a Gaussian with mean 0 and standard
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TABLE I. Estimates of the dynamical critical exponent z for 3D
Ising spin glasses with local updates (metropolis dynamics) with
a bimodal (±J ) or Gaussian coupling distribution (G). The papers
indicated by an asterisk determine a nonequilibrium coherence length
ξ (t) below or at Tc. This increases with time t like t1/zeff(T ), where
an effective exponent zeff(T ) is found empirically to vary as T −1

and is also found to merge smoothly into the critical exponent z

at Tc, i.e., zeff(T ) = (Tc/T )z. The value of z quoted by the authors
was obtained by using the best accepted value of Tc at that time.
Reference [25] plots values for a temperature-dependent x(T ), related
to zeff(T ) by x(T ) = (d − 2 + η)/2zeff(T ). The value quoted in the
table is obtained from the data point for x(T ) closest to the currently
accepted Tc, and the currently accepted value of η was used [9].

Study Model Exponent z

Pleimling and Campbell (Ref. [22]) ±J 5.7(2)
G 6.2(1)

Nakamura (Ref. [23])� ±J 5.1(1)
Katzgraber and Campbell (Ref. [24])� G 6.80(15)
Rieger (Ref. [25])� ±J �6
Ogielski (Ref. [26]) ±J 6.0(8)
Belletti et al. (Ref. [27])� ±J 6.86(16)
This study ±J 5.85(9)

G 6.00(10)

deviation 1. The relevant quantity to characterize the spin-glass
transition is the Edward-Anderson order parameter:

q = 1

N

N∑

i=1

σ
(1)
i σ

(2)
j , (2)

where N = L3, and (1) and (2) stand for two independent
simulations (“replicas”) of the same coupling realizations. We
will study the mean-squared order parameter 〈q2〉.

The spin-glass transition temperature Tc for the bimodal
case has been determined to very high numerical accu-
racy [9,28]: Tc = 1.102(3). Tc for the Gaussian case is not
as well determined, although a reasonable estimate is also
available [24,29]: Tc = 0.94(2). The static exponents for the
bimodal case are also well studied in Refs. [7,9], which gave
the correlation length exponent ν = 2.562(42) and correlation
function exponent η = −0.3900(36). We will here regard the
Tc values and static critical exponents quoted above as known
values, given as input in our scaling analysis to be discussed
below. The effects of the uncertainties given by the error bars,
treated as one standard deviation of a normal distribution,
will be taken into account using a detailed error propagation
analysis.

A. Dynamic simulation scheme

The simulations start from an initial temperature Ti = 2,
roughly twice Tc where the system is easily equilibrated prior
to each dynamic (“quench”) simulation. We proceed with a
linearly varying T as a function of the simulation time τ

(measured in units of a standard MC sweep consisting of
N = L3 metropolis spin-flip attempts) until a final temperature
Tf = 0.5 is reached. Thus, our quench velocity is defined as
v = 1.5/τ and the temperature is lowered by �T = v after
each MC step. We choose the total quench time τ = 150 × 2n

with n = 0,1,2, . . . . This kind of process is also known as
simulated annealing [30], but in that case one normally has in
mind a very slow reduction of T with the goal of finding an
energy minimum or reaching equilibrium. We are interested
in both slow and fast processes and carry out detailed studies
of the behavior of averages over many quenches as a function
of v and L.

We use 64-bit multispin coding to simulate 64 replicas
with the same interactions Jij in a single run (using different
random numbers for the acceptance probabilities for each
replica, to avoid correlations). To compute the order parameter
in Eq. (2) we consider overlaps between 32 replica pairs. Since
the fluctuations among different realizations of Jij will in
general be much larger than the statistical errors within a given
realization, we only perform one such 64-replica quench for
each disorder realization. For small sizes and short quenches,
we generate O(105) realizations and for larger sizes and longer
quenches we have at least O(102) realizations.

For simplicity of notation, we use 〈. . . 〉 to denote all
averages involved. After the simulations we use polynomial
interpolation to obtain 〈q2〉 at any T within [Ti,Tf ]. We focus
on the squared order parameter 〈q2〉 at or in the close vicinity
of the known Tc. An alternative would be to perform quenches
that stop at exactly Tc (instead of continuing below Tc).
However, since we will also consider the propagation of errors
from the uncertainties of Tc, we need at least a corresponding
window of temperatures around Tc. We actually continue to
still lower temperatures, at not much cost of CPU time, since
our results in this region could then be used in a future analysis
of the dynamics of the spin-glass phase without needing to run
new simulations.

B. Dynamic scaling

According to now well-established equilibrium finite-size
scaling theory [31], the critical order parameter in the neigh-
borhood of Tc depends asymptotically on the linear system size
L of a d-dimensional system and the distance δ = (T − Tc)/Tc

from the critical point as

〈q2〉eq = L−(d−2+η)f (δL1/ν), (3)

where the function f is nonsingular. We now have the quench
velocity v as an additional parameter. The KZ framework
[11–19] then suggests that there is a characteristic velocity,

vKZ(L) ∼ L−(z+1/ν), (4)

separating slow (quasistatic) and fast processes, and that a
generalized finite-size scaling ansatz applies with v/vKZ as a
second scaling argument:

〈q2〉v = L−(d−2+η)f (δL1/ν,vLz+1/ν). (5)

We focus on results when the quench has reached the critical
temperature, i.e., δ = 0 and the above form reduces to a much
simpler scaling function of a single argument:

〈q2〉v = L−(d−2+η)f (vLz+1/ν). (6)

This form should hold for v small and L large for any value
of the argument x = vLz+1/ν . Data for large v, v � 1, is not
described by the scaling form in Eq. (6). Rather there is a
crossover to a constant value of 〈q2〉v , which depends on the
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initial state at temperature Ti . For example, when v → ∞ the
system does not evolve at all and its properties are just those in
equilibrium at Ti [10]. This crossover is interesting but we will
not discuss it here, focusing instead on the slow dynamics.

For v → 0 at fixed L, the argument of the scaling function
f (x) in Eq. (6) tends to zero, and we must have f (x → 0) =
const. in order that equilibrium finite-size scaling behavior at
Tc be obtained. In the opposite limit, v 	 vKZ (L) (but still
v 
 1), where x → ∞, the scaling function crosses over to
a universal power-law behavior. To determine the power, note
that in this region the correlation length ξv at Tc satisfies ξv 

L, so the finite size does not limit the correlations. Hence the
dependence of 〈q2〉v on L is just the trivial prefactor L−d in
the definition in Eq. (2). Consistency between this behavior
and the general scaling form in Eq. (6) requires that

〈q2〉 ∝ 1

Ld

1

v(2−η)/(z+1/ν)
, (7)

which should apply for v 
 1 down to some v ∝ vKZ before
the crossover into the quasistatic regime as v is further lowered.
The scaling function itself in the scaling regime is given by

f (x) ∝ x−(2−η)/(z+1/ν), (x → ∞). (8)

We will use Eq. (8) below to constrain data fits for scaling
collapse onto the function f in the appropriate regime.

The dynamic finite-size scaling form in Eq. (6) has been
thoroughly tested on standard Ising models [10] and yielded
high-precision results for z for different types of dynamics
(local and cluster updates) and dimensionality. In the case
of a spin glass, in particular, as anticipated in Ref. [10] and
as will be demonstrated with results in the present work, a
major additional advantage of the quench approach combined
with dynamic scaling is that uncertainties related to poor
equilibration due to critical slowing down are avoided. In
standard approaches one has to make sure that equilibrium
indeed has been reached, and this can be very difficult to
confirm in practice. In our approach, equilibration only has to
be carried out at the high initial temperature Ti (or, one could
also start with some other initial condition). In the subsequent
quench process, equilibration, or lack thereof, is manifested
as the scaling behavior in Eqs. (6) and (8), and the simulation
results themselves are never questionable. Of course, one still
has to make sure that the simulation times are long enough
that the system probes sufficiently large length scales that
corrections to scaling are small, but it is highly advantageous
that we do not need to ensure equilibration.

III. RESULTS

We use many different velocities and system sizes L =
8,12, . . . up to L = 128 for the bimodal case and up to L = 96
for the Gaussian case. With the static exponents ν and η known
(we use the values quoted above for both the bimodal and
Gaussian cases), the dynamic exponent z enters as the only
unknown exponent in fitting our data to Eq. (6). We present
our data in Fig. 1. We quantify the quality of the collapse using
χ2 per degree of freedom relative to a function fitted to all the
data. As fitting function we choose a high-order polynomial
at lower velocities, which is matched to a linear function at
high velocities with a slope equal to the exponent in Eq. (8).
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FIG. 1. (Color online) Scaling after quenching to Tc, using the
form Eq. (6). The static exponents ν and η have been fixed so the only
exponent to be optimized for scaling collapse is the dynamic exponent
z, for which we obtain z = 5.85(9) and 6.00(10) for bimodal (top) and
Gaussian (bottom) distributions, respectively. The error bars on the
data points are not visible as they are much smaller than the plotting
symbols.

After z is determined this way, we introduce Gaussian noise to
the MC data points as well as to the parameters Tc, ν, and η,
with standard deviation equal to the corresponding error bars,
repeating the scaling analysis with such altered data many
times to obtain error estimates for z.

Results of the data collapse procedure are shown for both
coupling distributions in Fig. 1. Here high-velocity points were
removed for each L until the data collapse was satisfactory, and
only the points included are shown in the figure. The removed
high-v points gradually split off from the power-law scaling
regime in a way very similar to the behavior in ferromagnets
found in Ref. [10]. We obtain z = 5.85(9) for the bimodal
case and z = 6.00(10) for the Gaussian case. The plateau on
the low-velocity side indicates the quasistatic regime, while
the straight line on the high-velocity side in these log-log plots
shows the universal scaling governed by the power-law in
Eq. (8).

We have, thus, demonstrated dynamic scaling at the spin-
glass transition and its cross-over into the standard equilibrium
finite-size scaling. The fits have excellent reduced χ2 values
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close to 1 and the values of z are also stable with respect to
removing small system sizes.

Note that the way the fitting function is parametrized is not
important in practice, provided that the function is capable of
reproducing the true scaling function and that the number of
parameters is much less than the total number of data points
included in the fit (which here is easily satisfied because the
number of data points is of the order 100 and the number of
parameters is less than 10). We have not found any significant
discrepancies between fits using different values of the break
point between the polynomial and linear regimes, as long as it
is in the beginning of the linear scaling regime where a straight
line is an appropriate fit.

The above analysis did not consider any scaling corrections,
as the data for the larger system sizes follow the expected forms
very precisely despite the error bars being very small. We have
also carried out fits using various correction terms but have
not found any statistically significant corrections within the
data set used in Fig. 1. We conclude that the dynamic scaling
corrections must be very small, as can also be visually observed
in the very linear behavior over several orders of magnitude
of the scaling variable. The internal consistency built in as a
constraint on the fitting function obeying power-law scaling
exactly with the exponent in Eq. (8) in the scaling regime is
also an indication of the soundness of the procedures without
corrections.

IV. DISCUSSION

The nonequilibrium MC simulations and accompanying
scaling analysis we have used here in large-scale studies of 3D
Ising spin glasses demonstrate the utility of this method for
highly frustrated systems. We have used existing knowledge
of the Tc values and static exponents of the systems studies and
found remarkably good fits with the dynamic exponent z as
the only adjustable parameter. We note that the dynamic MC
scheme can also be used to extract critical points and static
exponents, as has recently been done for quantum models in
Refs. [32,33].

The results presented in Fig. 1 for two different coupling
distributions are in agreement with each other within fairly
small error bars, thus supporting universality for the dynamic
exponent for Ising spin glasses with single-spin metropolis
MC updates. We naturally expect this to extend to any local
dynamics. If we assume universality, we can combine our
two independent estimates of the dynamic exponent (see the
caption of Fig. 1) to obtain a more precise value for the 3D
Ising spin-glass universality class:

z = 5.93 ± 0.07. (9)

Looking back at Table I, our results are in good overall
agreement with those of Pleimling and Campbell [22], though

the spread in their values is wider and the error bars are
somewhat larger. Our results are quite far away (up to 5–10
error bars) from many of the other estimates which have
similar or only slightly larger statistical errors. The discrepancy
illustrates the difficulties in reliably studying systems with a
large dynamic exponent. Our method circumvents problems
related to insufficient equilibration, and our scaling plots
extend all the way from the equilibrium behavior to a
wide region of universal power-law scaling, with confirmed
negligible scaling corrections. We therefore do not expect our
results to be affected by any errors beyond purely statistical
ones.

The complete description of all our data by the simple
scaling function Eq. (6) also demonstrates that the spin-glass
transition, when approached from T > Tc, is not qualitatively
different from a ferromagnetic transition as far as scaling is
concerned, only the values of the exponents are different, with
the dynamic exponent being very much larger in the spin glass.
Even the form of the scaling functions shown in Fig. 1 are very
similar to those of ferromagnetic Ising models [10]. From the
perspective of the generic derivation of KZ scaling behavior
recently presented in Ref. [10], this simply reflects the fact
that there is a single dominant divergent length scale ξ in the
system, and the characteristic time scale τ is just a power of
this length-scale: τ ∼ ξz. The situation may be completely
different when approaching the spin-glass transition from the
ordered side, where the dynamic exponent is temperature
dependent; see, e.g., Ref. [34] for a recent discussion. It would
be interesting to also study such quenches using generalized
KZ scaling, but from a technical perspective this is much more
difficult as the advantage of fast equilibration at Ti no longer
applies when Ti < Tc.

After the completion of all calculations reported in this
paper another nonequilibrium study appeared [34] for the J =
±1 model in which a random (T = ∞) state was suddenly
quenched to the temperature of interest and the growth of
correlations versus simulation time was monitored. Close to
Tc a dynamic exponent z ≈ 6.0 was found in this way, in
excellent agreement with our results. The good agreement
further supports our assertion made above that corrections to
dynamic scaling are very small in this system.
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