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Percolation of the site random-cluster model by Monte Carlo method
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We propose a site random-cluster model by introducing an additional cluster weight in the partition function of
the traditional site percolation. To simulate the model on a square lattice, we combine the color-assignation and
the Swendsen-Wang methods to design a highly efficient cluster algorithm with a small critical slowing-down
phenomenon. To verify whether or not it is consistent with the bond random-cluster model, we measure several
quantities, such as the wrapping probability Re, the percolating cluster density P∞, and the magnetic susceptibility
per site χp , as well as two exponents, such as the thermal exponent yt and the fractal dimension yh of the
percolating cluster. We find that for different exponents of cluster weight q = 1.5, 2, 2.5, 3, 3.5, and 4, the
numerical estimation of the exponents yt and yh are consistent with the theoretical values. The universalities of
the site random-cluster model and the bond random-cluster model are completely identical. For larger values
of q, we find obvious signatures of the first-order percolation transition by the histograms and the hysteresis
loops of percolating cluster density and the energy per site. Our results are helpful for the understanding of the
percolation of traditional statistical models.
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I. INTRODUCTION

Broadbent and Hammersley initially presented the con-
cept of percolation [1–3], and then Stauffer introduced the
properties of percolation in detail [4]. There have been broad
applications of percolation: e.g., fluids in porous medium [5],
the spread of infectious diseases on complex networks [6], the
Hall effect with quantum spin [7], network vulnerability [8,9],
forest fires [10], number theory [11], etc. . .

The most studied percolation models are percolations on
regular lattices, in which a site (bond) on the lattice could be
occupied (vacant) with probability p (or 1 − p). At a given
critical probability pc, at least one large cluster, formed by the
occupied sites (bonds), spans to the opposite boundaries in the
lattices [1–3].

The construction of a site percolation or bond percolation
is similar. However, they are independent in some respects.
For example, the site percolation transition on the square
lattice occurs at pc = 0.592 746 21(13) according to the high
precision Monte Carlo method [12], while the exact solution
indicates that the bond percolation transition point pc = 1

2 on
the square lattice [13]. In the Monte Carlo simulations near
pc, the configurations are completely disordered and the local
structures in the configurations vary in a significant random
fashion [14].

The invariances behind the configurations are the critical
exponents and the universalities, which are the same for the
two types of percolations, without consideration of the site,
the bond, or other microscopic details [15].

Universality connects the phase transitions in a number
of lattice statistical models to the percolation transition. One
important model, the bond random-cluster (BRC) model [16]
created by Fortuin and Kasteleyn [17] in the 1960s, gives us
a unified description of several classical statistical models,
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including the Ising, Potts [18], Ashkin-Teller [19], and
the percolation models. This body of work results in the
extensions of the BRC model and many new possible critical
behaviors [20–22].

An additional cluster weight factor in the partition function
is the significant difference between the bond percolation
model and the BRC model. Inspired by this, we propose a new
model, the site RC (SRC) model, which is made by combining
the site percolation and the RC model, and adding a cluster
weight factor in the partition function.

To investigate the critical behaviors of the new SRC model,
we design a cluster-updating Monte Carlo method and simulate
the new model. Many useful quantities are measured, such as
the wrapping probability Re, the percolating cluster density
P∞, and the magnetic susceptibility per site χp. By performing
finite-size scaling analysis of the above quantities, the very
precise phase transition points are obtained. We also calculate
the thermal exponent yt , and the fractal dimension yh of the
percolating cluster in such a way as to check that whether
or not the universalities of the BRC percolation and the SRC
percolation are completely consistent.

The outline of this work is as follows. Section II shows a
brief review of the BRC model and shows how we generalize
the site percolation model to the SRC model. Section III
describes the algorithm and several sampled quantities in our
Monte Carlo simulations. Numerical results are then presented
in Sec. IV. Conclusive comments are made in Sec. V.

II. MODEL

A. Potts model and BRC model

This section provides a brief review of two classical models
in statistical physics: the Potts model [18] and its generaliza-
tion to the BRC model [17]. The reduced Hamiltonian of the
Potts model is

βH = −K
∑
〈ij〉

δσi ,σj
, (1)
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where 〈ij〉 means the nearest-neighbor summation, K is the
coupling interaction, β is the inverse temperature, and σi is the
state variable on the site i and can be any natural number less
than or equal to q. If q = 2, the model is identical to the Ising
model without an external field, which has two states for each
spin. The partition function of the Potts model is

Z =
∑

σ

∏
〈ij〉

e
Kδσi ,σj =

∑
σ

∏
〈ij〉

(
1 + uδσi ,σj

)
, (2)

where the symbol u is the bond weight and defined as
u = eK − 1 [23]. The above equation can be transformed into

Z =
∑

σ

∏
〈ij〉

1∑
bij =0

(
uδσi ,σj

)bij =
∑
{b}

∑
σ

∏
〈ij〉

(
uδσi ,σj

)bij
, (3)

where the bond variable bij = 0 if σi �= σj , while bij = 1 if
σi = σj . Through the summation over the spin variable σ , the
partition function Eq. (3) becomes

ZBRC =
∑
{b}

unbqnc , (4)

where the sum is over all bond configurations {b}, nb = ∑
bij

is the bond number in the configurations, and nc is the
number of clusters. The discrete number q now appears as a
continuous variable. Thus, the BRC model can be regarded as a
generalization of the Potts model. In the limit q → 1, it reduces
to the bond-percolation model, whose partition function is

Z =
∑
{b}

(eK − 1)nb . (5)

This form can be easily transformed into

Z =
∑
{b}

p
nb

b (1 − pb)Nb−nb , (6)

where pb = u
1+u

and Nb is the total number of bonds in
the lattice. The significant difference between the partition
functions of the bond percolation model and the RC model is
that Eq. (4) has the cluster weight qnc while Eq. (6) does not.

B. SRC model

Now, we generalize the site percolation to the SRC
model [16]. The partition function of the site percolation is

Z =
∑
{σ }

pns

s (1 − ps)
N−ns , (7)

where N = L × L is the total number of sites. We directly
generalize it by introducing a cluster weight qnc and then
derive the partition function of the SRC model as

ZSRC =
∑
{σ }

pns

s (1 − ps)
N−ns qnc ∝

∑
{σ }

uns qnc , (8)

where ps = u
1+u

, ns is the number of occupied sites, N − ns is
the number of vacant sites, and ps is the occupation probability
for the sites in the configuration. The weight of a configuration
is given by

W = pns

s (1 − ps)
N−ns qnc . (9)
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FIG. 1. (Color online) (a) A typical configuration of a SRC model
on a two-dimensional lattice with size L = 7, in which the number
of clusters nc is 3 and the number of the occupied sites ns is 17.
The two circles labeled by “1” in the top and bottom collected by
the dashed line, which means the first cluster is a wrapping cluster.
(b) A cluster labeled by “1”, distributed diagonally or “spirally” [24],
wraps around both directions before joining up.

As shown in Fig. 1, the weight of the typical configuration is
p17

s (1 − ps)32q3.

III. ALGORITHM AND THE SAMPLED QUANTITIES

A. Algorithm

There are a few efficient methods [25] to simulate the
RC model. In the present paper, we combine the color-
assignation [26,27] and the Swendsen-Wang [28] methods
to design a highly efficient cluster algorithm with a small
critical slowing-down phenomenon. Similar methods have
been applied in several papers [29,30]. The algorithm to
simulate this model is as follows:

(1) Initially, all sites are active.
(2) Active sites are randomly assigned to be occupied,

with probability p or vacant with probability 1 − p. After
all sites have been assigned, they are grouped into clusters: if
the nearest-neighbor sites are both occupied, they belong to
the same cluster. Vacant sites don’t belong to any cluster.

(3) With probability 1 − 1
q

, clusters are declared inactive.
The boundary sites—the nearest neighbors of the sites belong-
ing to an inactive occupied cluster—are also inactive. All other
sites are declared active, in effect erasing their contents.

(4) If there are any active sites, return to step 2. Otherwise,
we have constructed a configuration that obeys the statistics of
Eq. (9).

We define the percolating cluster as follows: If any cluster
spans the whole lattice, the configuration is called a percolation
configuration. For a finite system, it can be defined by various
rules. In the present work, a percolation state means there is at
least one “wrapping” cluster [31] in the lattice and “wrapping”
refers to a cluster that connects itself along one of the lattice
directions. For example, in Fig. 1(a), the cluster labeled by “1”
is a wrapping cluster, and the wrapping direction is the vertical
direction. The wrapping cluster is only applicable to a lattice
with periodic boundary conditions.

In Fig. 1(b), the occupied sites labeled by “1” are distributed
diagonally or “spirally” in the lattice. In this case, the cluster
wraps around both horizontal and vertical directions, which is
called the “single spiral” configuration [24].
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B. The sampled quantities

In order to obtain the critical phase transition points, we
define the wrapping probability as

Re = 〈Rx + Ry〉/2, (10)

where the subscript e represents a cluster forming along the
x or y direction, and 〈. . . 〉 denotes ensemble averaging. If
a wrapping cluster exists in the x direction, then Rx = 1,
otherwise, Rx = 0. The rule is the same for the y direction. If
a cluster forms along both x and y direction, then both Rx = 1
and Ry = 1.

The SRC model can be explored in view of site percolation.
Therefore, we can define the order parameter of the percolating
cluster density [32] and magnetic susceptibility per site:

P∞ = 〈P 〉 = L−d〈n∞〉, (11)

χp = L−2d

〈
nc∑

i=1

n2
i

〉
, (12)

where n∞ is the size (the number of sites) of the percolating
cluster and d = 2 is dimensionality of the lattice. According
to the finite-size scaling theory [33,34], the above parameters
provide us the scaling behavior of them as a function of the
system size L and the site occupation probability p:

Re = R(0)
e + a1(p − pc)Lyt + a2(p − pc)2L2yt

+ · · · + b1L
y1 + b2L

y2 + · · · , (13)

P∞ = Lyh−d (e0 + e1(p − pc)Lyt + e2(p − pc)2L2yt

+ · · · + f1L
y1 + f2L

y2 + · · · ), (14)

χp = L2yh−2d (g0 + g1(p − pc)Lyt + g2(p − pc)2L2yt

+ · · · + h1L
y1 + h2L

y2 + · · · ). (15)

It should be noted that the occupation probability is for
the site occupation, instead of the bond occupation proba-
bility [32], where pc is the percolation threshold, yt is the
thermal exponent, yh is the fractal dimension of the percolating
cluster, d is the space dimension, and y1, y2, . . ., are negative
correction-to-scaling exponents.

Equations (13)–(15) give a model scaling form for various
physical quantities. The three quantities Re, P∞, and χp are
assumed in an analytic function in p and L at the percolation
critical point, so that it has a series expansion here. These
analytic functions will be used as a basis for fitting the
numerical data. The three scaling functions that are being
expanded depend on the same scaling variables, but they
are, in general, distinct functions. Hence, when expanded, the
expansion coefficients ai , bi , ei , fi , gi , hi (i = 1,2, . . .) will,
in general, be different. Therefore, we use different symbols
to denote them.

C. Fitting at the critical points

The fitting functions in Eqs. (14) and (15) describe how the
quantities P∞ and χp depend on the expansion coefficients.
So it is necessary to deduce the value of P∞ and χp. At the

percolation point pc, Eqs. (14) and (15) reduce to

P∞ = Lyh−d (e0 + f1L
y1 + f2L

y2 + · · · ), (16a)

χp = L2yh−2d (g0 + h1L
y1 + h2L

y2 + · · · ), (16b)

which will be used to determine the exponent yh.
To see more readily the importance of the corrections

to scaling, we divide out the leading dependence on L in
Eqs. (16a) and (16b) just using the first two terms. Fitting data
according to

Ld−yhP∞ = e0 + f1L
y1 , (17a)

L2d−2yhχp = g0 + h1L
y1 (17b)

will help see clearly the corrections to the scaling terms.

IV. RESULTS

First, we do a Monte Carlo simulation of the SRC model
on the square lattice with the above algorithm. We find the
algorithm has a small critical slowing-down phenomena with
q � 4 and consequently we sample between every two Monte
Carlo steps. As the system enters into equilibrium states, we
take 108 samples to calculate each quantity for the system
sizes 4 � L � 64, and we take 107 samples for the system
sizes 128 � L � 256 [35].

To obtain the critical point pc, and the exponent yt , we
perform a finite-size scaling analysis of the wrapping proba-
bility Re for various system sizes near the critical occupation
probability pc. At the critical point pc, we calculate the
percolating cluster density P∞ and the magnetic susceptibility
per site χp to obtain the exponent yh. We also study the cases
for larger values of q, such as q = 10, and find an interesting
first-order phase transition.

A. Theoretical and numerical exponents yt and yh for q = 1.5–4

The theoretical values of the exponents yt and yh can
be obtained by the Coulomb gas method [36] or conformal
invariance [37], and they are given by

√
q = −2 cos(πg), (18a)

yt = 3 − 3

2g
, (18b)

yh = 1 + g

2
+ 3

8g
, (18c)

where the coupling constant g of the Coulomb gas is in the
range 1/2 � g � 1. According to the above equations, the
theoretical values of the both exponents will be shown in the
following section.

The numerical results by Monte Carlo method are listed
in Table I. For q = 1.5, 2, 2.5, 3, 3.5, and 4, the percolation
threshold pc, the wrapping probability Re, the thermal expo-
nent yt , and the fractal dimension of the percolating cluster yh

are obtained in the same way, which will be discussed in detail
in the next subsections. We find that for the range q = 1.5–3,
the numerical results yh and yt are very consistent with the
theoretical values. For q = 3.5 and 4, the precision of the
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TABLE I. Numerical results (N ) for the percolation threshold
pc, the wrapping probability Re, the thermal exponent yt , and the
fractal dimension yh from χp . Theoretical predictions (T ) are included
where available by the Coulomb gas method [36] or conformal
invariance [37]. The estimated errors in the last decimal place are
shown between parentheses.

q pc Re yt yh ← χp

1.5 N 0.726 525(2) 0.5822(3) 0.884(4) 1.8833(4)
T – – 0.887 1.8832

2 N 0.805 000(1) 0.6270(1) 1.000(5) 1.8750(5)
T – – 1.000 1.8750

2.5 N 0.854 411(2) 0.6637(3) 1.101(7) 1.8698(4)
T – – 1.102 1.8697

3 N 0.887 435(1) 0.6955(2) 1.196(5) 1.8664(7)
T – – 1.200 1.8667

3.5 N 0.910 600(2) 0.7242(8) 1.311(8) 1.867(1)
T – – 1.305 1.866

4 N 0.927 476(1) 0.750(1) 1.44(7) 1.88(1)
T – – 1.50 1.88

critical point and the exponents are lower than the case with
other values of q, due to the logarithmic correction [38–40].

B. q = 1.5, detailed analysis

As shown in Fig. 2(a), we calculate the wrapping probability
Re as a function of site occupation probability p at q = 1.5 for
lattices with different sizes L = 4, 8, 16, 32, 64, 128, and 256.
In the limit p → 0, no sites are occupied and hence no clusters
exist and Re = 0. In the limit p → 1, all sites are occupied and
a wrapping cluster forms and Re = 1.

In the region of the critical points, i.e., 0.7260 < p <

0.7270, the data looks nearly linear as shown in Fig. 2(b).
Using the Levenberg-Marquardt least-squares method [41] and
Eq. (13), we find that the critical percolation probability is at
pc = 0.726 525(2). Correspondingly, the thermal exponent is
yt = 0.884(4), which is consistent with the theoretical result
yt = 0.887.

In the fitting procedure, the chi-square

χ2 =
∑
Li

[
Re(p,Li) − Rfit

e (p,Li)

σ 2
i

]2

(19)
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FIG. 2. (Color online) Wrapping probability Re versus site-
occupation probability p at q = 1.5 in the ranges (a) 0.2 < p < 1
and (b) 0.7260 < p < 0.7270, with different sizes L = 4, 8, 16, 32,

64, 128, and 256. The critical point is pc = 0.726 525(2) and Re =
0.5822(3). The error bars are smaller than the symbols. The lines in
the right figure are plotted to guide the reader.
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FIG. 3. (Color online) L2d−2yhχp and Ld−yhP∞ versus Ly1 of
the SRC model for q = 1.5 on the square lattice with L =
32, 64, 128, 256, and 512. The exponent is fixed being y1 = −1. The
two solid lines represent fits to the data points according to Eqs. (17a)
and (17b). The fitted exponent yh are 1.8836(4) and 1.8833(4) from
Ld−yhP∞ and L2d−2yhχp , respectively. The dashed lines are plotted
to guide the reader.

is performed [42,43] by summing over the sizes L =
16, 32, 64, 128, 256. The order of magnitude of chi-square
is 10. The ratio of chi-square to degree of freedom of fit
χ2/d.o.f. is 1.04, which was thought to be a moderately good
fit. σi is the error of Re measured by the Monte Carlo method.
Rfit

e represents the fitting function of Re in Eq. (13). The
results with L = 4, 8 are dropped and the higher terms in
the expansion are also dropped, i.e., ai = 0, i = 3, 4, . . . and
bi = 0, i = 2, 3, . . ..

Figure 3 displays the plot L2d−2yhχp and Ld−yhP∞ versus
Ly1 at the percolation point. The plot symbols for systems
with sizes L = 32–512 sit in the fitted lines very well, as
expected. For small systems with sizes L = 4, 8, 16, the plot
symbols deviate from the fitted line. Obviously, the correction-
to-scaling of Ld−yhP∞ is similar to that of L2d−2yhχp [32]. In
the real fitting procedure, we neglected the data with sizes
L = 4–16 and the order of magnitude of the residual equals to
10−9, which means the results are still reliable.

The leading correction-to-scaling exponent [44] is known to
be y1 ≈ −1. A least-squares criterion was used to fit the data
with y1 being fixed at −1. By fitting the data of Ld−yhP∞,
the exponent is fitted and found to be yh = 1.8836(4).
However, by the fitting of L2d−2yhχp, the exponent becomes
yh = 1.8833(4), which is consistent with the result from P∞.
The slopes f1 = 0.035(7) and h1 = −0.020(2) for both fitted
lines and the first expansion coefficients e0 = 0.5580(5) and
g0 = 0.5297(2) are also obtained.

For larger systems, the correction terms in Eqs. (17a)
and (17b) are far less than the first terms e0 and g0 at the
critical points and, therefore, the power law P∞/χp ∝ Ld−yh

can be obtained by neglecting the correction terms. In fact,
scaling theory for percolation (e.g., see Refs. [3,4,45]) predicts
that phase transitions exhibit scaling properties or “power
laws.” Moreover, power laws like Newton’s gravitational law
or Coulomb’s law or even Lotka’s law for publication rates [46]
are ubiquitous and it is reassuring to recover a power law here
as well.
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FIG. 4. (Color online) The signature of the first-order phase
transition for the SRC model at q = 10 on a 16 × 16 square lattice.
Histogram of energy per site E (a) and the percolating cluster density
P∞ (c) at the critical point pc = 0.987. Hysteresis loops of the both
quantities E (b) and P∞ (d) around the critical point pc.

C. q = 10, a first-order phase transition

Figure 4(a) shows a histogram of the energy per site E at
the critical point pc = 0.987, in which the double distribution
is a typical signature of the first-order phase transition from
the nonpercolation phase to the percolation. We obtain the
histogram in such a way. First, we initialize a configuration
by assigning each site with an occupied or an empty state, a
probability of 1/2. After the system enters into an equilibrium
state, we measure the energy per site E. We repeat the above
steps until the shape of the histogram converges.

To confirm the first-order of the percolation transition,
Fig. 4(b) shows the hysteresis loop around the critical point
region, i.e., 0.975 < p < 1. The hysteresis loops have been
observed both in classical [47] and quantum systems [48–51].
To form a closed hysteresis loop, we start at p = 0.975. Then
we increase the occupation probability p and sample the
energy per site E. In the simulation, we use the configuration
of the previously completed simulation for a given value of
“p,” as the (new) initial configuration of the simulation of

another value of “p.” The energy per site E of the system does
not jump to a higher value immediately until p exceeds over a
short distance of the transition point pc. After p reaches 1, we
decrease p in the same way with regards to the initialization
of configurations. A closed hysteresis loop forms when p

becomes smaller than pc. We repeat similar steps for the P∞
and the results are shown in Figs. 4(c) and 4(d).

V. CONCLUSION

In conclusion, we have proposed a new statistical model,
which can be considered as a SRC model with an additional
cluster weight in the partition function with respect to the
traditional site percolation model.

We have also designed a color-assigned cluster updating
Monte Carlo simulation algorithm suffering little from the
boring critical slowing-down phenomena.

Both of the BRC and SRC percolation models have the
same universality by simulations of the SRC model on the
square lattice and behaviors of the quantities Re, P∞, χp, yt ,
and yh.

At the critical phase transition point, the case of q = 1.5,
the correction-to-scaling of P∞ is close to that of χp. The
fitted exponent yh from P∞ has the same precision with that
from χp. For q = 4, the estimation of exponents yt and yh is
less precise due to the log-correction. For q = 10, the obvious
first-order transition is observed.

Our results can be considered as a first study of the
counterpart for the BRC percolation model and are helpful for
the understanding of the percolation of traditional statistical
models.

ACKNOWLEDGMENTS

W. Zhang thanks T. C. Scott for helping him prepare this
manuscript. W. Zhang is supported by the NSFC under Grants
No. 11305113 and No. 11204204 and Youth Foundation of
Taiyuan University of Technology Grant No. 1205-04020102.
C. Ding is supported by the NSFC under Grant No. 11205005
and Anhui Provincial Natural Science Foundation under
Grants No. 1508085QA05 and No. 1408085MA19. T. C. Scott
is supported in China by Project No. GDW201400042 for the
high-end foreign experts project.

[1] S. R. Broadbent and J. M. Hammersley, Percolation processes.
I. Crystals and mazes, Proc. Camb. Phil. Soc. 53, 629 (1957).

[2] J. M. Hammersley, in Percolation Structure and Processes,
edited by G. Deutscher, R. Zallen, and J. Adler (Adam Hilger,
Bristol, 1983).

[3] G. Grimmett, Percolation (Springer-Verlag, Berlin/Heidelberg,
1989).

[4] D. Stauffer and A. Aharony, Introduction to Percolation Theory
(Taylor & Francis, Philadelphia, 1994).

[5] A. Hunt and R. Ewing, Percolation Theory for Flow in Porous
Media (Springer-Verlag, Berlin/Heidelberg, 2009).

[6] M. E. J. Newman, Spread of epidemic disease on networks,
Phys. Rev. E 66, 016128 (2002).

[7] R. L. Chu, J. Lu, and S. Q. Shen, Quantum percolation in
quantum spin Hall antidot systems, Europhys. Lett. 100, 17013
(2012).

[8] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Resilience
of the Internet to Random Breakdowns, Phys. Rev. Lett. 85,
4626 (2000).

[9] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J.
Watts, Network Robustness and Fragility: Percolation on
Random Graphs, Phys. Rev. Lett. 85, 5468 (2000).

022127-5

http://dx.doi.org/10.1017/S0305004100032680
http://dx.doi.org/10.1017/S0305004100032680
http://dx.doi.org/10.1017/S0305004100032680
http://dx.doi.org/10.1017/S0305004100032680
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1209/0295-5075/100/17013
http://dx.doi.org/10.1209/0295-5075/100/17013
http://dx.doi.org/10.1209/0295-5075/100/17013
http://dx.doi.org/10.1209/0295-5075/100/17013
http://dx.doi.org/10.1103/PhysRevLett.85.4626
http://dx.doi.org/10.1103/PhysRevLett.85.4626
http://dx.doi.org/10.1103/PhysRevLett.85.4626
http://dx.doi.org/10.1103/PhysRevLett.85.4626
http://dx.doi.org/10.1103/PhysRevLett.85.5468
http://dx.doi.org/10.1103/PhysRevLett.85.5468
http://dx.doi.org/10.1103/PhysRevLett.85.5468
http://dx.doi.org/10.1103/PhysRevLett.85.5468


WANG, ZHANG, AND DING PHYSICAL REVIEW E 92, 022127 (2015)

[10] P. Bak, K. Chen, and C. Tang, A forest-fire model and
some thoughts on turbulence, Phys. Lett. A 147, 297 (1990);
C. L. Henley, Statics of a “self-organized” percolation model,
Phys. Rev. Lett. 71, 2741 (1993).

[11] I. Vardi, Prime Percolation, Experiment. Math. 7, 275 (1998).
[12] M. E. J. Newman and R. M. Ziff, Efficient Monte Carlo

Algorithm and High-Precision Results for Percolation, Phys.
Rev. Lett. 85, 4104 (2000); Y. J. Deng and H. W. J. Blöte,
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dynamics for the random-cluster model, Phys. Rev. E 80, 036707
(2009).

[24] M. E. J. Newman and R. M. Ziff, Fast Monte Carlo algorithm
for site or bond percolation, Phys. Rev. E 64, 016706 (2001).
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A. D. Sokal, Cluster Simulations of Loop Models on Two-
Dimensional Lattices, Phys. Rev. Lett. 98, 120601 (2007).

[31] J. P. Hovi and A. Aharony, Scaling and universality in the
spanning probability for percolation, Phys. Rev. E 53, 235
(1996).

[32] C. X. Ding, Y. J. Deng, W. A. Guo, and H. W. J. Blöte,
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