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Normalizing the causality between time series
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Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality
in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be
normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional
phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the
marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real
financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business
Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which
has almost faded into oblivion, about “Seven Dwarfs” competing with a giant for the mainframe computer market.

DOI: 10.1103/PhysRevE.92.022126

I. INTRODUCTION

Information flow, or information transfer as it may be
referred to in the literature, has long been recognized as
the logically sound measure of causality between dynamical
events [1]. It possesses the needed asymmetry or directional-
ism for a cause-effect relation and, moreover, provides a quan-
titative characterization of the otherwise statistical test, e.g.,
the Granger causality test [2]. For this reason, the past decades
have seen a surge of interest in this arena of research. Measures
of information flow proposed thus far include, for example,
time-delayed mutual information [3], transfer entropy [4],
momentary information transfer [6], and causation entropy [7],
among which transfer entropy has been proved to be equivalent
to Granger causality up to a factor of 2 for linear systems [5].

Recently, it has been shown that the notion of information
flow actually can be put on a rigorous footing within the
framework of dynamical systems. The rate of information
flowing from one component to another can be derived from
first principles, and the expected property of causality turns
out to be a proved theorem [10].

In the case where only a pair of time series, rather than
the system, is given, in principle the information flow can be
estimated. Particularly, under the assumption of a linear model
with additive noise, the maximum likelihood estimate (MLE)
of the information flow in (4) turns out to be very tight in
form, involving only the common statistics, namely, sample
covariances [11]. Take two series X; and X», for example.
The MLE of the rate of information flowing from X, to X; is
shown to be

Ci1Ci2Coa1 — CHLCL a1
CHCn — CiiChy

where C;; is the sample covariance between X; and X,
and C;q4; is that between X; and X;, X; being the dif-
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ference approximation of dX;/dt using the Euler forward
scheme [11]. Ideally, when T,_,; = 0, X is not the cause of
X1, and vice versa. It is easy to see that, if Cjp =0, then
Tr—.1 = 0, but when 7>_,; = 0, C;, does not need to vanish.
That is, contrapositively, causation implies correlation, but
correlation does not imply causation. (Throughout the text
“causation” and “causality” are used synonymously.) In an
explicitly quantitative way, this resolves the long-standing
debate over causation versus correlation.

The magnitude of an information flow may differ from
case to case. It needs to be normalized, just as covariance
does, in order to have its importance assessed. In the extreme
cases where no causality exists, though theoretically the
corresponding information flow rates should be 0, in reality
their estimators from time series generally do not precisely
vanish. One then cannot tell whether the causality indeed exists
by the absolute magnitude.

A simple example may help illustrate the issue better. Con-
sider the series generated from two autoregressive processes,

Xin+1)=014+05X(n)+aX,(n)+e(n+1), (2a)

Xon+1) =0.7+ BX1(n) + 0.6X5(n) + ex(n + 1), (2b)

where the errors e; ~ N(0,1) and e, ~ N(0,1) are indepen-
dent. Generate a pair of series with 80 000 values each’',
and perform the causality analysis. We list in Table I the

'Here the series are generated with MATLAB version 6.5.0.180913a
(R13) for Windows XP version 5.1. Note that because of the
pseudorandom number generator, which may not be as satisfactory
as we had thought, the series thus generated may yield different
information flow rates, although the mean is expected to converge to
the same value if an ensemble of series is examined (thanks are due
to Dionissios Hristopulos and Adolf Stips for pointing this out). The
same data-generating problem exists with the touchstone stochastic
differential equation in the previous publication [11]. A correctly
generated series should yield a correct stationary covariance matrix,
which can be computed accurately by solving a deterministic system.
For easy reference, the data we used in [11] can be downloaded from
http://www.ncoads.org/datasets/PRE2014.dat.gz.
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TABLE 1. Rates of information flow for the series generated
with (2) and their respective confidence intervals at a 90% significance
level. Units are 10™* nats per iteration.

Case o B Thi Ty

I 0.5 0 1481 + 15 -2+ 15

1I 0 0 —0.137 £ 0.219 0.128 + 0.219
II1 0.01 0.01 1.648 + 0.692 1.123 4+ 0.639

information flow rates and their respective confidence intervals
at a 90% significance level. (The results may differ slightly for
different series due to the pseudorandom number generation.)

For case 1, |To—1/Ti—2| > 740, one may then conclude
that this is a one-way causality from X, to X, as is indeed
true. For case II, however, one actually cannot say much from
the numbers. Though small, they tell no more than that the
information flows in both directions are of equal importance.
Of course, one may argue that the statistical significance test
says it: at a 90% level these flow rates are not significantly
different from 0. However, such a test just tells how precise
the estimate is with the available data; it depends, for example,
on the length of the series, which is irrelevant to the parameter
to be estimated. In other words, an insignificant estimated
rate may appear significant if more data are included. To see
this more clearly, look at case III. Obviously, the information
flows, albeit existent, make only tiny contributions to their
respective series, as the coupling coefficients are over an order
smaller; in classical perturbation analysis, they can be dropped
to the first-order approximation. The computed information
flows are significantly different from O at a 90% level: from
one viewpoint, this testifies to the success of the formalism.
However, the small numbers cannot tell how important they
are, since, with a slowly varying series, even the dominant
flow rate could be very low. On the other hand, if we cut the
series by half and pick the first 40 000 points for analysis,
then the results will be 7,_,; = 0.653 & 0.751 and T\, =
1.240 % 0.690 (in 10~* nats/iteration). So T»_, 1 is insignificant
while Tj_,, is significant. (Again, these small numbers may
fluctuate due to the pseudorandom number generator.) Can
one thus conclude that there is a one-way causality? or Can
one thus assert that this shortened series yields a more reliable
estimation? Surely this is absurd. The problem here is that we
do need a normalized flow to evaluate its importance relative
to other factors. In this study, we present a way to arrive at such
a flow, and apply it to the analysis of several realistic financial
time series.

II. INFORMATION FLOW NORMALIZATION

The normalization is not as simple as it seems to be. A
natural normalizer that comes to mind, at the hint of correlation
coefficient, might be the information of a series transferred
from itself. A snag is, however, that this quantity may turn out
to be 0, just as that in the Hénon map, a benchmark problem
we have examined before (see the references in [9]). Another
snag is that the above 7>_, and 7T|_,, usually do not share the
same normalizer as that in a correlation analysis based on the
Cauchy-Schwarz inequality. That is, two information flows of
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equal magnitude may be of different relative importance in
their respective series.

To arrive at a logically and physically sound normalizer, we
need to get to the basics and analyze how an information flow
within a system is derived. Consider a two-dimensional (2D)
stochastic system

dX =F(X,t)dt + B(X,1)dW, 3)

where F = (F;,F>)T is the vector of drift coefficients (dif-
ferentiable vector field), B = (;;) the matrix of stochastic
perturbation coefficients, and W a 2D standard Wiener process.
Letg;; = Y, bixbx and p; be the marginal probability density
function of x;. Itis proved [10] that the time rate of information
flowing from X, to X is

1 0F 1 192
T =—E(— 101 + g~ 8112,01 , (4)
P1 Bxl 2 P1 3)61

where E signifies the operator mathematical expectation. This
measure of information flow is asymmetric between the two
parties, and particularly, if the process underlying X; does not
depend on X, then the resulting information flow from X, to
X vanishes, i.e., X, is not causal to X ;. This is the so-called
property of causality, a fact rigorously proven rather than just
verified in applications.

When T,_,; is nonzero, it may take positive or negative
values. Ideally, a positive 7>, | means that X, causes X to be
more uncertain, while a negative 7,_,| reduces the entropy of
X . For more details, the reader is referred to Ref. [11].

By Ref. [10], the rate of change of the marginal entropy of

X] is
dH, d log py 1 92 log p;
— =—F| F ——-F — . 5
7 ( 1 S E\8n e (5)

It is actually a result of two mutually exclusive mechanisms:
the first is the information flow 7,_,; as shown in (4); the
second is the complement, i.e., the rate of entropy increase

without taking into account the effect of X,. Denoting the
dHl}

latter —=, it has been proven in [10] that
dH oF 1 3%logp
B o E( ) - e s
dt 0x 2 0x]
1 (128°
——E(— 8112,01>_ 6)
2 P1 axl

The right-hand side has three terms. The first term is precisely
the time rate of change of H; due to X itself in the absence
of stochasticity. This is the starting point which we showed
in 2005 [8] in establishing the rigorous formalism and proved
later (cf. [9]). Hence through a careful analysis, the increase
in the marginal entropy H; is decomposed into three parts,

dH} oF
dt 0xy
d Hoise 1 3% 1o 01 1 1 82311/)1
L <g11—%>_‘E<_ 2 ) ®)
dr 2 dx? 2 \p1 0xj

and 7>_, in (4), which correspond to, respectively, the phase-
space expansion along the X direction, the stochastic effect,
and the information flowing from X»; Fig. 1 shows a schematic.
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FIG. 1. Schematic of the marginal entropy evolutions and infor-
mation flows in the system of (X, X>).

Note that this decomposition does not appear explicitly in the
marginal entropy evolution equation, (5), as the two stochastic
terms cancel out.

The normalization is now made easy. Let

dH} dH™
dt dt

Obviously it is no less than 75—, | in magnitude and cannot be 0

unless X; does not change, a situation that is excluded in time

series analysis. We may therefore pick Z,_, | as the normalizer
and define

Zr1 = Trosa| + ‘

)

Tt =T1/ 2o, (10

This way if 1,1 = 1, the variation of H; is 100% due to the
information flow from X,; if 7,_,| is approximately 0, X, is
not the cause. Therefore, 7,_,; assesses the importance of the
influence of X, on X relative to other processes.

It should be pointed out that the above normalizer applies
to 75—, only. For T;_,,, it is

dH; ‘dﬂgoise

Ziy = |Tiao| +

9

dt dt

which may be quite different in value. This, from another
viewpoint, reflects the asymmetry between 7,_,; and 7;_,;.

III. ESTIMATION

As in Ref. [11], consider a linear version of the stochastic
differential equation, (3),

dX = (f + AX)dt + BdW, (11)

where f is a constant vector, and A = (a;;) and B = (b;;) are
constant matrices. Initially if X obeys a normal distribution,
then it is normally distributed forever. Let the mean and co-
variance matrix be g and £ = (o;;). They evolve according to

dp
T _t1 A, 12
i +Anp (12)
dx
- = AY + AT + BBT. (13)
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So Eqgs. (7) and (8) can be explicitly evaluated:
dH}
dt

= E(an) =an, (14)

and

dHp 1 (g M)JE(LM)
di 27\ a2 27\ ox?

1 1 3%g11p1
)| == dxidx
< G”)} 2/R2p2|1 o2 1dx;

I g1 1/ 3281101 (/ )
= - — = X2|x1)dxy )dxq,
2on 2 ox? R/02|1( 2lx1)dxs |dx

since neither g;; nor p; depends on x,. But fR pondxy =1,
and p; is compactly supported, so the whole second term on
the right-hand side then vanishes. Hence

dHlnoise _ 1&
dt _2011.

Equations (14) and (15), together with the information
flow from X, to X; as we have obtained before [8,11],
Try = g—ljalg, form the three constituents that account for
the evolution of the marginal entropy of X.

An observation about %H{“Oise = g11/(2o11), where g1 =
b?, + b3,, is that it is always positive. That is, noises always
contribute to an increase in the marginal entropy of X,
conforming to common sense. In financial economics, this
reflects the volatility of, say, a stock. On the other hand, for a
stationary series, the left-hand side of Eq. (13) tends to be 0,
and the balance on the right-hand side requires that 2o, ~ g1;.
So this quantity is also related to the noise-to-signal ratio.

The above results need to be estimated if what we are
given is just a pair of time series. That is, what we know is a
single realization of some unknown system, which, if known,
can produce infinitely many realizations. The problem now
becomes estimating (14) and (15) with the available statistics
of the given time series.

We use maximum likelihood estimation to achieve the goal.
The procedure follows precisely thatin [11], to which we refer
the reader for details. Suppose that the series are sampled at
regular instants with a time step size At, and let N be the
sample size. Further assume that b;; = 0 (hence g;; = bfl).
We have shown thatthe MLEs are [11]a;; = p, ap, = q, fl =

X_l — pX,| — qX, (overbar signifies sample mean), with

|
|
I
ty

Il

|

| —

!
1

pay

15)

_ CnCia — CinCha

, 16
detC (16)
_ —CnCia + CiiCra 17
- detC ’

where C; ; is the sample covariance between X; and X,
and C;4; the sample covariance between X; and X; ~
{W}. (Usually k =1 should be used to ensure
accuracy, but in some cases of deterministic chaos, where the
sampling is at the highest resolution, one needs to choose
k =2.) The MLE of g;; can be obtained by computing
gu = At[Xy — (fi + an X1 + anXo)>.

On the other hand, the population covariance matrix X
can be rather accurately estimated by the sample covariance
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matrix C. So (14) and (15) become, after some algebraic
manipulation,

dH}
=, 18
7 p (18)
dHP™ AL o 0 4P Coy— 2C
di _2C11 dl,dl1 — P Ci1tTq L2 PLail
—2qCa12+2pqC»). (19)
As in Ref. [11] with 5,1, here ‘2% and 22" (and Z,.,,

in the following) should bear a hat, since they are the
corresponding estimators. We abuse the notation a little bit
to avoid notational complexity; from now on they should
be understood as their respective estimators. With these the
normalizer is

dH}
dt

dHlnoise
dt

and hence we have the relative information flow from X, to
X 1+

Zyy = |Th| + , (20)

"

1 = T2—>1/ZZ—>1~ (21)

717 can be obtained simply by swapping the indices in 7 and
Z and their respective expressions.

IV. THE AUTOREGRESSIVE EXAMPLE REVISITED

We return to the autoregressive process exemplified in
the beginning. When o =0, 8 = 0, the computed relative
information flow rates are

1 = —0.0016%, Tl—2 = 0.0018%.

Clearly both are negligible in comparison to the contributions
from the other processes in their respective series. For the case
o = f = 0.01, where one may encounter difficulty due to the
ambiguous small numbers, the computed relative information
flow rates are

sl = 0018%, T2 = 0.015%.

Again, they are essentially negligible, just as one would expect.

It should be pointed out that the relative information flow,
say, .|, makes sense only with respect to X, since the
comparison is within the series itself. Now consider the
following situation: for a two-way causal system with absolute
information flows 7,_,; and T}_,, of equal importance, their
relative importance within their respective series could be quite
different. For example,

Xi(n+ 1) = —0.5X,(n) + 0.9X>(n) + 2e,(n + 1),

Xo(n+1)=—-02X1(n) +0.5X,(n) + ex(n + 1),

e1 and e, being the same as before. Initialize them with random
values between [0,1] and generate 80 000 data points (on the
same platform as before). The computed information flow rates
(in nats per iteration), |75—, | = 0.13 and |T;_,,| = 0.12, are
almost the same. The relative information flows, however, are
quite different: |1, 1| = 6.7% and |11-7| = 13%.

Generally speaking, the above imbalance is a rule, not an
exception, reflecting the asymmetry of information flow. One
may reasonably imagine that, in some extreme situation, a flow
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might be dominant while its counterpart is negligible within
their respective series, although the two are of the same order
in absolute value.

V. APPLICATION

We now demonstrate a real-world application with several
financial time series. Here it is not our intention to conduct
financial economics research or study market dynamics from
an econophysical point of view; our purpose is to demonstrate
a brief application of the aforementioned formalism for time
series analysis. Nonetheless, this topic is indeed of interest
to both physicists and economists in the field of macroscopic
econophysics; see, for example, [12].

We pick nine stocks in the United States and download
their daily prices from YAHOO! FINANCE. These stocks
are MSFT (Microsoft Corporation), AAPL (Apple Inc.), IBM
(International Business Machines Corporation), INTC (Intel
Corporation), GE (General Electric Company), WMT (Wal-
Mart Stores Inc.), XOM (Exxon Mobil Corporation), CVS
(CVS Health Corporation), and F (Ford Motor Corporation).
Among these are high-tech companies (MSFT, AAPL, IBM,
INTC), retail trade companies [e.g., drugstore chains (CVS)
and discount stores (WMT)], the automotive industry (F),
the oil and gas industry (XOM), and the multinational
conglomerate corporation GE, which operates through the
segments of energy, technology infrastructure, capital finance,
etc. Here by “daily” we mean on a trading-day basis,
excluding, say, holidays and weekends. Since stock prices
are generally nonstationary, we check the series of daily
return, i.e., R(t) = [P(t + At) — P(t)]/P(t), or log-return,
r(t) =In P(t + At) — In P(t), where P(t) are the adjusted
closing prices in the YAHOO! spreadsheet, and At is 1 trading
day. Following most people we use the series of log-returns
r for our purpose. In fact, the return and log-return series are
approximately equivalent, particularly in the high-frequency
regime, as indicated in [13]. Since the most recent stock,
MSFT, started on March 13, 1986, all the series are chosen
from that date through December 26, 2014, when this study
commenced. This amounts to 7260 data points, hence 7259
points for the log-return series.

Using Eq. (1), we compute the information flows between
the nine stocks and form a matrix of flow rates; see Table II.
The flow direction is represented by the matrix indices; more
specifically, it is from the row index to the column index. For
example, listed at location (2,4) is T>—4, i.€., TaapL—INTC, the
flow rate from Apple to Intel, while (4,2) stores the rate of
the reverse flow, Tintc— aapL. Also listed in the table are the
respective confidence intervals at the 90% level.

In Table I1, most of the information flow rates are significant
at the 90% level, as highlighted. Their values vary from 4
to 22 (units, 1073 nats/day; same below). The maximum is
| TremM—xom |, and second to it are | Twwmr—cvs| and | Tevs—GEl-

Look at the table row by row (companies as drives). Perhaps
the most conspicuous feature is that the whole CVS row is
significant. Next to it is XOM, with only three insignificant
entries. That is, CVS is found to be causal to all other stocks,
though the causality magnitudes have yet to be assessed (see
below). This does make sense. As a chain of convenience
stores, CVS connects most of the general consumers and
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TABLE II. Rates of absolute information flow among the nine chosen stocks (in 1073 nats per trading day). For each entry the direction
is from the row index to the column index of the matrix. Also listed are the standard errors at a 90% significance level (significant flows are

highlighted).

MSFT AAPL IBM INTC GE WMT XOM CVS F
MSFT / 5+7 —34+38 —12+11 1£8 —-1+6 —12+6 10+4 3£5
AAPL —2+7 / —11+£7 —2+9 —7+6 —4£5 —11+4 4+£3 —2+4
IBM 0£8 547 / -9+9 —8+9 —11+6 —22+7 6+4 1£6
INTC 16 +11 10£+9 —7+£9 / 0+8 —2+6 —12+£5 11+4 3£6
GE 2+8 —3+6 —13+£9 —16£8 / —10£9 —6+9 14£6 6+9
WMT 10+6 7+5 446 —5+6 6+£9 / 0£6 21£7 9+£5
XOM —10+6 —3+4 —14+7 —13+£5 —15+9 —17+6 / 4£5 1£6
CVS —9+4 —5%£3 —12+4 —11+4 —21+6 —17+7 —17£5 / —7+4
F 0£5 0+4 0+6 —10+6 6£9 —13£5 1£6 6+4 /

commodities and hence the corresponding industries. For
XOM, it is causal because oil or gas is definitely one of
the most fundamental components of the American economy.
Another interesting observation is that | T wwmt| > |Tr—cvs|-
This is easy to understand, as we rely on our motor vehicles
to shop at Wal-Mart, while CVS stores could be right in the
neighborhood.

The above significant absolute information flows, large or
small, still need to assessed regarding their respective relative
importance before any conclusion of causality is reached.
Using Eq. (21), we compute the relative information flow rates
(as a percentage) and list them in Table III. For clarity, those
greather than or equal to 1% are highlighted. In contrast to
Table II, we see only a few information flows that account
for more than 1% of their respective fluctuations. This echoes
what we introduced in the beginning: though significant, some
information flows may be negligible in their own marginal
entropy balances.

It should be noted that the causal relations generally change
with time. If the series are long enough, we may look at
how these information flows may vary from period to period.
Pick the pair (IBM, GE) as an example. For the duration
(March 1986 through present) considered above, Tgg— 1M =
—13 £ 9, while Tigym-.gE is not significant. Neither tge—18m
nor Tigm-_sGe reaches 1%. Since at the YAHOO! site both GE
and IBM can be dated back to January 2, 1962, we can extend
the time series a lot, up to 13 338 data points.

TABLE III. As Table II, but for relative information flow (as a
percentage).

MSFT AAPL IBM INTC GE WMT XOM CVS F

MSFT / 03 -02 -08 00 00 =07 06 02
AAPL -0.1 /  -07 -01 -05 -0.2 -0.7 02 -0.1
IBM 00 03 / -06 -05 -0.7 —-13 04 0.1
INTC 1.0 07 —-04 / 00 -0.1 -0.7 0.7 02

GE 01 -02 -08 10 / —-06 —-03 09 04
wMT 06 04 02 -03 04 / 00 13 06
XOM -06 -02 -09 -09 -10 —-1.1 / 03 0.1
cvs -06 -03 -08 -07 -13 —-1.1 —-1.1 / 05
F 00 00 00 -06 04 —-08 0.0 04

Computation of information flows with the whole series
(13 338 points) results in Tgvm_Ge = 1.6%, TGE—IBM =
—0.5% and in Tigpm—ge = 27 £ 6) x 10_3, Tee—mm = (7 £
6) x 1073 nats/day, both being significant at the 90% level.
This is very different from what is shown in Tables II and III,
with the causal structure changed from a weak two-way
causality to a stronger and more or less one-way causality.
Since in the above, only data for the most recent 30 years
are used, we expect that in the early years this causal structure
could be much enhanced. Choosing the first 7000 points ( from
January 1962 through November 1989), the computed relative
information flow rates are

TGe—18M = —0.2%;
Tge—mBM = 3 £8,

TBM—GE = 3.1%,
TIiem—GE = 54 £ 8,

(recall that the units for 7 are 103 nats/day). Narrow the
period down further, to 2250-3250 (corresponding to the
period 1971-1975); then

TGE—1M = —0.99%;

Tge—mBM = 14 £ 21,

TIBM—GE = J.7%,
Tism—ce = 101 £ 21,

attaining a maximum of Tjgm_,Gg, in contrast to the insignif-
icant flow in Table II. Obviously, during this period, the
causality can be approximately viewed as one-way, i.e., from
IBM to GE. And the relative flow is more than 5%, much larger
than the values in Table III.

The above remarkable causal structure for that particular
period actually can trace its roots back to the history of GE [14].
There was such a period in the 1960s when “Seven Dwarfs”
(Burroughs, Sperry Rand, Control Data, Honeywell, General
Electric, RCA, and NCR) competed with IBM, the giant, for
computer business, particularly, to build mainframes. In 1965,
GE had only a 3.7% market share of the industry, though it
was then dubbed the “King of the Dwarfs,” while IBM had a
65.3% share. Historically GE was once the largest computer
user besides the U.S. Federal Government; it got into computer
manufacturing to avoid dependency on others. And, indeed,
throughout the 60s, the causalities between GE and IBM are
not significant. Then why, as the 70s began, did the information
flow from IBM to GE suddenly increase to its highest level? It
turned out that GE sold its computer division to Honeywell in
1970; in the following years (starting from 1971), GE relied a
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great deal on IBM products. Clearly, the GE computer history
does substantiate the existence of a causation between GE and
IBM and, to be more precise, an essentially one-way causation
from IBM to GE. In an era when this has almost been forgotten
(one cannot even find it at GE’s Web site), and GE may have
left the impression that it never built any computers, let alone
a series of mainframes, this finding, which is solely based on
the causality analysis of a couple of time series, is indeed
remarkable.

VI. CONCLUDING REMARKS

To assess the importance of a flow of information from
one time series, say X, to another, say X;. it needs to be
normalized. Getting down to the fundamentals, we were able
to distinguish three types of mechanisms that contribute to the
evolution of the marginal entropy of the recipient X ,—namely,
the phase-space expansion in the X direction, the information
flow from X,, and the contribution from noise—and hence
proposed an approach to normalization. The resulting scheme
is described by Egs. (16)—(21).

It should be noted that a relative information flow is for
comparison purposes within its own series. The two reverse
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flows between two series can only be compared in terms
of absolute value, since they belong to different series. It is
quite normal that two identical information flows may differ
significantly in relative importance with respect to their own
series, as demonstrated in our examples, reflecting the property
of flow asymmetry. In some extreme situation, a pair of equal
flows may have one dominant but another negligible in their
respective entropy balances. In this sense, absolute and relative
information flows usually need to be examined simultaneously
in realistic applications.
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