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We revisit the Kuramoto model to explore the finite-size scaling (FSS) of the order parameter and its dynamic

fluctuations near the onset of the synchronization transition, paying particular attention to effects induced by
the randomness of the intrinsic frequencies of oscillators. For a population of size N, we study two ways of
sampling the intrinsic frequencies according to the same given unimodal distribution g(w). In the “random” case,
frequencies are generated independently in accordance with g(w), which gives rise to oscillator number fluctuation
within any given frequency interval. In the “regular” case, the N frequencies are generated in a deterministic
manner that minimizes the oscillator number fluctuations, leading to quasiuniformly spaced frequencies in the
population. We find that the two samplings yield substantially different finite-size properties with clearly distinct
scaling exponents. Moreover, the hyperscaling relation between the order parameter and its fluctuations is valid
in the regular case, but it is violated in the random case. In this last case, a self-consistent mean-field theory that
completely ignores dynamic fluctuations correctly predicts the FSS exponent of the order parameter but not its

critical amplitude.
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I. INTRODUCTION

We revisit the Kuramoto model [1] to investigate the phase
order parameter and its dynamic fluctuations near the onset of
the synchronization transition. In particular, we focus on their
critical finite-size scaling (FSS) behavior. Even though the
Kuramoto model and its extended versions have been widely
studied [2,3], some issues persist, particularly those regarding
the above points. In the few existing studies [4,5], the critical
properties near the transition point have only been partially
resolved, which prompted the present work.

FSS is particularly important for data analysis, since
real systems are always finite, and particularly so in many
experimental systems, biological or not [6]. Recently, the
FSS of the synchronization order parameter in the Kuramoto
model and several extended versions on complex networks
has been investigated. An unusual FSS exponent v = % has
been found [7-9]. This value was obtained in the classic
case, hereafter referred to as the random distribution, where
the individual frequencies of oscillators are sampled inde-
pendently according to a given unimodal distribution g(w).
In such a situation, oscillator frequencies can be arbitrarily
close to each other even in a finite population. Interestingly,
when the oscillator density fluctuation along the frequency
axis is suppressed in a population with regular distribution,
a very different FSS exponent ¥ = fT is obtained. Here we
present details of our numerical study that led to this previously
reported value [10,11].

Dynamic fluctuations of the order parameter in the Ku-
ramoto model are another long-standing problem [3,12]. In the
perturbation theory developed by Daido [4], it is claimed that
they scale differently when approaching the synchronization
threshold from above and from below, with the scaling
exponent y = % in the supercritical region and y’ = 1 in the
subcritical region. This result is quite surprising by itself, in
the sense that conventional scaling theory predicts identical
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scaling behavior on either side of the transition. Note that
Daido used the regular frequency distribution in numerical
investigations as well as in his perturbation theory [4].

In this paper, we report extensive numerical results on the
FSS of the order parameter and its dynamic fluctuation in
the random and regular realizations of the intrinsic frequency
distribution. The FSS exponent in the regular case is estimated
numerically as D ~ %, which is half the value of its random
counterpart. In contrast to Daido’s predictions, we find that
dynamic fluctuations scale with the same exponent y = y’ on
both sides of the transition. Interestingly, our data support y ~
y' = 1 for the random frequency distribution and y >~ y’ ~ %
for the regular case. Given the order-parameter exponent 8 =
%, the hyperscaling relation y = v — 28 is thus violated in the
random case, but it is obeyed in the regular case. We finally
briefly discuss the implications of our observations on the or-
dering process and dynamic response in the Kuramoto model.

The paper is organized as follows. In Sec. II, we introduce
the Kuramoto model and present the two types of frequency
realizations that we consider in this paper. In Sec. III, we
investigate the FSS of the order parameter and its dynamic
fluctuations with the random frequency distribution, and we
discuss the validity of the hyperscaling relation in the model.
In Sec. IV, we repeat the investigation and analysis with the
regular distribution. We summarize and discuss the results in
Sec. V. Appendix presents the mean-field approximation to
the FSS in the case of the random frequency distribution.

II. THE KURAMOTO MODEL

The Kuramoto model [1] consists in a finite population of
N globally coupled phase oscillators governed by

dg;

K N
L= ) sin@; =g, j=1....N. @D

k=1
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Here ¢; is the phase of the jth oscillator, and w; is its
intrinsic frequency. A given realization of the Kuramoto
model corresponds to a particular choice of the N intrinsic
frequencies {w;}. In this paper, we shall assume that the
number density of these frequencies on the real axis follows,
on average, the normal distribution g(w) = (1/v/2m)e~*"/2.
The coupling strength K is positive (K > 0).

Phase synchronization is conveniently described by the
complex order parameter defined as [1]

N
. 1 .
Z(t) = Aé'? = 5 § e, (2.2)
j=1

where a nonzero (positive) value of A in the asymptotic N —
oo limit implies the emergence of phase synchronization, and 6
is the phase of the global order parameter. With this definition,
Eq. (2.1) is rewritten as

¢j =wj—KAsin(¢j—0), (23)
where both A and 6 are dynamic variables defined by
Eq. (2.2). In the limit N — oo, the model exhibits a continu-
ous symmetry-breaking transition at K = K, = 2/[ng(0)] =
/8/m [1]. In this limit, the phase order parameter is strictly
zero on the subcritical side (K < K.), while on the supercrit-
ical side (K > K_.),

A~(K—K) with g=1. (2.4)
This result holds for any unimodal and symmetric g(w).

For a finite population of oscillators, A(t) exhibits both
dynamic and sample-to-sample fluctuations whose scaling
with N is the main focus of this work. The sample-to-
sample fluctuations arise from the randomly drawn oscillator
frequencies from the distribution g(w). Consequently, the
spacing between neighboring frequencies on the real axis
is Poissonian in any given realization. It turns out that this
quenched noise and the nonlinear dynamic fluctuations are
intimately related to each other in the sense that, when the
former is removed, a very different set of FSS exponents are
obtained. The two types of oscillator frequency distributions
are discussed in Secs. IIT and IV, respectively.

III. RANDOM FREQUENCY DISTRIBUTION

In this section, we consider the realizations (samples) of
frequency sets {w;} by randomly and independently drawing
frequencies from the Gaussian distribution g(w). We measure
the phase order parameter and its dynamic fluctuation for
each sample and average over many samples. In practice,
we numerically integrate Eq. (2.3), for system sizes up to
N = 12800, using Heun’s method [13] with a discrete time
step 8¢ = 0.01, up to a total of 2 x 10° time steps. We start
with random initial values of {¢;(0)} and average the data over
time after the first 103 steps to avoid any transient behavior,
and we also average over 10°-10° different samples of {w;}
and {¢;(0)}. At K = K., we perform numerical integration
for larger systems up to N = 204 800 with twice as many
realizations.
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A. Finite-size scaling of the order parameter
In analogy with equilibrium critical phenomena, we expect
the order parameter in the critical region to satisfy the FSS [14],

3.1)

where € = K — K, and the scaling function f(x) is a mono-
tonically increasing function with the following asymptotic
properties:

A(K,N)= NP f(eN/"),

x> 1,

x L -1 32)

xh,
fx) ~ {(_x),s—an’
The exponent v is known as the FSS exponent. For large N,
this scaling ansatz reproduces Eq. (2.4) on the supercritical
side, and it yields A ~ N /7 at the transition and A ~ N2
in the subcritical regime, respectively.

In the usual mean-field treatment of the Kuramoto model,
the entrained state is established by solving Eq. (2.3) at
a constant A and 6 (dynamic fluctuations are ignored):
Oscillators with |w;| < KA get into an entrained (locked)
state, reaching a fixed angle. On the other hand, the oscillators
with |w;| > KA perform periodic motion with modified
frequencies. With this, the self-consistent equation for A from
Eq. (2.2) can be written as

KA
A= / dw g(w)

KA

1 —(w/KA)? (3.3)
in the N — oo limit. Equation (3.3) has a nontrivial solution
(A >0)for K > K. =2/[mg(0)].

For a finite-size system, the right-hand side of Eq. (3.3) is
replaced with
1 —(w;j/KA),

A=WU(KA)= % > (34

Jilojl<KA

which contains a sample-dependent correction ¥ = W —
[W] o +/N,/N [8]. Here N; is the number of (entrained) os-
cillators in the frequency interval (—K A, K A), and [-] denotes
sample average. As was shown previously in Refs. [8,10] and
is explained in detail in Appendix, for K close to K., Eq. (3.4)
admits a scaling solution of the form (3.1) with the exponents

=41 and D=3 (3.3)

The scaling function f(x), however, has significant sample-
to-sample fluctuations.

The exponent value 8 = % is typical of various equilibrium
mean-field models described by the so-called ¢* theory.
However, the FSS exponent value of i = % is quite unusual and
implies much stronger fluctuations than that in ordinary models
with the conventional value ¥ = 2. This remarkable result
has been confirmed by extensive numerical simulations [7,8]
and the straightforward extension to the Kuramoto model on
various sparse random networks in [9,11,14].

B. Dynamic fluctuations
Now, we consider the dynamic (temporal) fluctuations of
the order parameter by measuring the quantity [15]

X(K,N) = N[{(A — (A)*)] = N[{AD)—(A)*],  (3.6)
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where (-) denotes the time average in the steady state of a given
sample and [-] denotes the sample average, respectively.

For K < K., we expect from simple power counting
that y ~ O(1), because A ~ N—:. For K > K., the order
parameter becomes O(1), but these O(1) terms cancel out each
other exactly and the next-order terms proportional to N -2
contribute. Again, x becomes O(1). However, at K = K,
strong critical FSS occurs since A ~ N7A/7 = N‘é, and one
can expect that x will diverge in the N — oo limit. Summing
up, the critical behavior of x near the transition may be
expressed, in the N — oo limit, as

€,
X (_6)_)/,5

€ >0,

€ <0, (3D

The two exponents y and y’ describe the divergence of x
in the supercritical (¢ > 0) and subcritical (¢ < 0) regions,
respectively.

For homogeneous systems, scaling in the critical region is
controlled by a single fixed point in the renormalization-group
(RG) sense, and hence y = y’. The corresponding FSS takes
the form

x(e,N) = N"""h(eN""), (3.8)

irrespective of the side of the transition, and the scaling
function 4(x) has the limiting behavior

const, x =0,
h(x) ~ {x77, x> 1, (3.9)
(—x)7, x<K-1.

In this context, the Kuramoto model is somewhat special
in that each oscillator has its own intrinsic frequency and the
effect of the mean field is different on different oscillators.
Therefore, the usual RG argument with only a few relevant
variables may not apply, and one should entertain the possibil-
ity that y # y’. In such a situation, the FSS exponent v should
also be different on the two sides of the transition, so that the
ratio relation y /b = y'/V’ is satisfied, in order to maintain
the continuity of x at € = 0. Indeed, through perturbative
calculation, Daido [4] obtained y = % and y' = 1.

We have carried out extensive numerical simulations to
obtain accurate estimates of y and y’ as well as other FSS
exponents. Figure 1 shows numerical data for x versus € for
various system sizes N. As expected, finite-size effects become
huge near the transition point. We observe two important
features of the finite-size effects: First, the peak position
at K = K« is always on the subcritical side (¢ < 0) and
approaches the bulk critical point (¢ = 0) as N increases.
Second, the peak height xm,x grows rapidly with N. By
analyzing the data for the peak position and height, we estimate
y’ and ¥’ in the subcritical side, using the conventional FSS
ansatz

Kmax ~ N7 §Kmax ~ N~V (3.10)

with 6 Kipax = | Kmax — K¢|. As shown in Figs. 2(a) and 2(b),
both quantities exhibit power-law scaling with the exponent
values

y' /v =0.40(1), 1/v" = 0.33(8). (3.11)
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FIG. 1. (Color online) Dynamic fluctuation x against € = K —
K. for various system size N, with K. = 4/8/7. The data have been
obtained from the average over 100—1000 samples with different sets
of {w;} and initial phases {¢;(0)}. Statistical errors are represented
by symbol sizes.
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FIG. 2. (Color online) (a) Behavior of . is shown as a function
of N in a log-log plot. The straight line obtained through the least-
squares fitting method displays xmax ~ N%%°. (b) The behavior of
K ax (=|Kmax — K¢|) is shown as a function of N in a log-log plot.
The straight line obtained through the least-squares fitting method
displays § Ko ~ N 7033,
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FIG. 3. (Color online) Ceritical increase of x at K. (=+/8/m) is
plotted as a function of N in a log-log plot. The slope of the straight
line is 0.39. Statistical errors are represented by symbol sizes.

1e+06

Even though our estimate of 1/9’ is rather weak due to
huge statistical uncertainties in locating K.x, it includes our
analytic value of 1/ = % within the error bar. Taking a simple
ratio of the above exponent values, we estimate ' = 1.2(3).
If we take 1/9" = 2, then ' = 1.00(3).

We also measure the value of x at the bulk critical point
K = K.. As K, is located to the right of the peak position
Kimax(N) for all N in this case, the FSS behavior at K. may be
regarded as a continuation of the scaling on the supercritical
side. Again, the FSS ansatz leads to

Xe = x(e =0,N)~ N7, (3.12)

Figure 3 shows that the numerical data agree almost perfectly
with the FSS ansatz with

/5 =0.392). (3.13)

This result confirms the ratio relation y /9 = y’/¥’, but it does
not provide estimates for y and ¥ separately.

To estimate y and y’ directly from off-critical data in
Eq. (3.7), we examine the local slopes of yx against |€|
in double-logarithmic plots for very large N. The effective
exponent Y. is defined as

dlny
dlnle|’

Yefi(€) = (3.14)
and the critical exponents are obtained from their asymp-
totic values as y = lim¢_, o+ Yerr(€) and ' = lim,_ o~ Yetr(€).
Figure 4 shows the inverse of the effective exponent ye}fl as
a function of €. We find that ye;fl approaches y'~! linearly as
€ goes to zero from below in the subcritical region, with its
asymptotic value y’ = 1.01(3). This is consistent with our
previous numerical estimates and also with the theoretical
prediction of ¥’ = 1 by Daido [4]. Note that y’ = 1 has also
been obtained in a systematic 1/N expansion [5], where the
random frequency distribution is a prerequisite.

On the supercritical side, y,;; varies in a nonlinear fashion
far from the transition, but it approaches y~! linearly near
small € with the asymptotic value y = 0.98(5). This suggests
strongly that y = ' = 1, and it definitely excludes Daido’s
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FIG. 4. (Color online) Numerical data for the inverse of the
effective exponent ye;fl are plotted against € for N = 12800. Two
dotted lines represent the fitting lines, indicating y = 0.98 and
y’ ~ 1.01.

value y = }1. With y = 1, our numerical estimate in Eq. (3.13)

leadstov = V' = %

Summing up all these results, we conclude that our
numerical data strongly support simple scaling exponents:

1 - -/

ﬂ - 2’ V=V = 2’
However, a proper analytic treatment for the dynamic fluc-
tuations in the supercritical side is lacking, and further
investigations are thus needed. One should note that the
dynamic fluctuations of the order parameter are not nec-
essarily proportional to the susceptibility (response of the
order parameter to an infinitesimal external field) in general
nonequilibrium steady states due to probable violation of the
fluctuation-dissipation theorem. It is almost trivial to derive
the susceptibility exponents in the Kuramoto model, which
turn out to be yss = Ve, = 1 [16]. Yet this accordance with
the dynamic fluctuation exponents in Eq. (3.15) may be merely
coincidental.

and y=y =1 (3.15)

C. Hyperscaling relation

In the equilibrium critical phenomenon, the equation
Yy = v— 2/3 >

with D = dv, is usually referred to as a hyperscaling relation.
Here d is the dimension of the system and v is the correlation
length exponent. Equation (3.16) follows from a simple
power counting of Eq. (3.6) at the transition. The left-hand
side of Eq. (3.6) is x. ~ N"/?, while the right-hand side
is proportional to N'=2#/7 if the leading-order terms do not
exactly cancel each other out.

It is obvious that our result Eq. (3.15) does not satisfy
this relation. Violating the hyperscaling relation is only
possible when the leading-order terms in [(AZ)] and [(A)?]
cancel out exactly, and the subleading-order terms show up,
yielding y = 1 instead of % A plausible conjecture for leading
and subleading terms for the large-N expansion of the two

(3.16)
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FIG. 5. (Color online) (a) Critical decay of [(A2)] and [(A)?]
at K. (=4/8/m) is plotted against N in a log-log plot. These two
data are so close to each other that it is not possible to discern two
data in this plot. The straight line is the fitting line of 1.14N040,
(b) N3[(A?)] and N3[(A)?] vs N~5. These data are expected to
show straight lines. The least-squares fitting yields two straight lines
with the same intercept. Lines between data are only guides to the
eye.

quantities is then

[(AY)] = N2/ (c +dN5),
] ] (3.17)
[(A)] = N/ +eNT5),

with ¢ = ¢’. Indeed, our numerical data show in Fig. 5 that
¢~ c =1.1402),d = 0.10(4), and e = —0.04(4). Then, the
dynamic fluctuation y at the transition scales as

Xe = (d — e)N'"2/"=5 ~ NV/7, (3.18)

yielding

y=p-28—-41=1 (3.19)

The cancellation of the leading order (¢ = ¢’) in Eq. (3.17)
would be expected if dynamic fluctuations only produce
subleading order corrections to the solution of the mean-
field equation (3.4) at the transition. Interestingly, as we
show in Appendix, the mean-field approximation yields
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[(A%)] = [(A)?*] ~ 0.93N_%, which is smaller in amplitude
as compared to the numerically determined value ¢ = 1.14.
Therefore, it appears that dynamic fluctuations renormalize
the strength of the quenched noise 6 ¥, but they do not change
its scaling with N.

It is interesting to compare the violation of hyperscaling
in the Kuramoto model to known cases in equilibrium phase
transitions. One well-known such case is the incompatibility
between the correlation length exponent v = % at the Gaussian
fixed point and the mean-field exponents 8 = % and y =
1 above the critical dimension d. =4 [17]. Violation of
hyperscaling is also reported in the three-dimensional random-
field Ising model, whose ordering transition is controlled by
a zero-temperature fixed point [18-21]. In both cases, the
energy associated with the symmetry-breaking field is much
stronger than the thermal energy on large length scales, hence
the order parameter fluctuations, as measured by the exponent
y, become less than what is predicted by the hyperscaling
relation. In this sense, the weaker dynamic fluctuations of the
order parameter in the Kuramoto model may be interpreted
in a similar way, despite the fact that we are now in a
nonequilibrium situation.

IV. REGULAR FREQUENCY DISTRIBUTION

In this section, we consider the “regular” frequency set
{w;} with minimal disorder among frequencies. This set can
be generated following a deterministic procedure given by

j—05 /‘“/
= gw)dw,
N —oo

“.1)

with j = 1,...,N and g(w) = (1/+/27)e~"/2. The generated
frequencies are quasiuniformly spaced in accordance with
g(w) in the population. As this set is uniquely determined
for each N, sample disorder may result from initial conditions
only. Note that the regular frequency distribution is considered
in numerical attempts by Daido [4].

Similar to the case of the random distribution, we numeri-
cally integrate Eq. (2.3) for system sizesup to N = 12 800 with
a discrete time step 8¢ = 0.01, up to a total of 107 time steps.
We start with random initial values of {¢;(0)} and average
the data over the latter half of the time steps, and we also
average over 20-100 different samples of {¢;(0)}. At K = K,
we perform numerical integration for larger systems up to
N = 25600 with 10-100 samples.

A. Finite-size scaling of the order parameter

We measure the order parameter and its square during
numerical integrations and average over time in the steady
state, and then we average over samples with different initial
values for the phase variables. These averages are denoted
by [(A)] and [(A?)], respectively. Figure 6 shows their size
dependence at the transition (¢ = 0), exhibiting the nice power
laws

[(A)] ~ N7 and

(A%~ NTOED 4.2)
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FIG. 6. (Color online) Critical decay of the order parameter [(A)]
and [(A2)] at K. (=+/8/7) is plotted as a function of N in a log-log
plot, which are represented by (red) open boxes and (blue) open
circles, respectively. The slopes of two straight lines are —0.39 and
—0.78, respectively.

Following the FSS theory in Egs. (3.1) and (3.2), we estimate
the decay exponent as

B/v = 0.39(2).

Given the value 8 = %, we obtain ¥ ~ %.

As a consistency check, we investigate the FSS relation
in Eq. (3.1) for € #£ 0. We plot ANP/" versus eN'/" for
various system sizes N in Fig. 7. (For a moment, we drop
the average brackets as A = [(A)] for convenience). The data
show a perfect collapse with the choice of b = %. We also
considered the regular Lorentzian distribution given by g(w) =
Yo/ [T (@? + y,2)] with the half-width y,,, where the oscillator
frequency is chosenas w; = y,, tan[j7/N — (N + 1) /(2N)]

5

for j = 1,...,N.Wefind asimilar behavior again with v ~ 3.

(4.3)

B. Dynamic fluctuations

In this subsection, we present numerical data for the
dynamic fluctuations x in Fig. 8. Compared to the random
distribution case, x is very much reduced in magnitude and

10
© .
NZ 1r '«/ ’ ]
< (e momomoeE N=200 o
400
800 =
1600 e
o | | | 3200
5 -10 -5 5 10 15

0
e NS

FIG. 7. (Color online) Scaling plot of the order parameter A for

various system sizes N for the regular distribution. We use g/ = %

5—3
and v = 3.
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FIG. 8. (Color online) Dynamic fluctuation x is plotted as a
function of € (=K — K,) for various system sizes N for the regular
distribution, where K, = +/8/m. The solid (red) line represents a
fitting line for data with the largest system size.

peaks only in a much narrower region around the transition.
The small amplitude makes it difficult to determine the
peak height and position accurately. However, with the exact
information of K. = /8/7w, it is numerically feasible to
investigate the critical increase of x. at the transition as a
function of N. The data shown in Fig. 9 fit well to a power law

Xe ~ N7 with /b =0.22(2). (4.4)
Using b = %, we find y = 0.27(3), which is close to %. This
value is consistent with Daido’s theoretical result of y = }1
[4].

We also estimate y and y’ directly from off-critical data by
examining the effective exponents y,¢ for large N. Figure 10
shows (4y.e)~! versus €. Following a similar procedure as
in the random case, we find y = 0.24(2) and y’ = 0.25(1).
We also fit the off-critical data directly in Fig. 8, which agree
very well with x ~ |e|~02°. All the numerical results strongly

10

0.22N%%% —

Xeo
-
.

0.1 1 1 1
100 1000 10000

N

FIG. 9. (Color online) Critical increase of x. at K. (=+/8/m) is
plotted as a function of N in a log-log plot for the regular distribution.
The slope of the straight line is 0.22.

100000
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FIG. 10. (Color online) 1/(4yeg) vs € for N = 6400. Two dotted
lines represent the fitting lines, indicating y ~ 0.24 and y’ ~ 0.25.

suggest scaling exponent values as
1
:B = 2

Our results are clearly different from Daido’s numerical
suggestions of ¥~ 5 and V'~ 2 and also his theoretical
prediction of ¥’ = 1 on the subcritical side, which cannot be
accounted for by adopting a slightly different definition of x
by Daido [15].

and y=y =1 4.5)

C. Hyperscaling relation

The hyperscaling relation, y = ¥ — 2, is seen to hold in
the regular case. Furthermore, there is no detectable “disorder
fluctuation” arising from different initial phase values, leading
to [(A)F ~ [{A)?].

V. SUMMARY

In this paper, we revisited the well-known Kuramoto model
and investigated the FSS of the order parameter and its dy-
namic fluctuations near the onset of synchronization transition.
We find that critical scaling behavior depends crucially on the
presence of disorder among intrinsic frequencies of oscillators.
In the random case with disorder, it is shown analytically and
numerically that the FSS exponent b = % and the dynamic
fluctuation exponent y & 1, in both the supercritical and the
subcritical region. In the regular case without disorder, we find
VA % and y ~ i. In both cases, the exponent ¥ is different
from its conventional value ¥ = 2 in usual mean-field theory
of homogeneous systems with global coupling.

In the random case, disorder in the oscillator frequencies
broadens the critical region and drives order parameter
fluctuations in a sample-dependent manner. The hyperscaling
relation that describes the interplay between static (i.e., aver-
aged) and dynamic order parameter fluctuations is violated.
Interestingly, a modified mean-field theory that completely
ignores dynamic fluctuations yields correct critical FSS of the
order parameter, although the amplitude is renormalized by
dynamic fluctuations. This is one of the main findings in this
work. In comparison, numerically determined exponents y and
v in the regular case satisfy the hyperscaling relation. Further

PHYSICAL REVIEW E 92, 022122 (2015)

work is required to explain the particular values observed in
our study.
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APPENDIX: FINITE-SIZE SCALING IN THE
MEAN-FIELD APPROXIMATION

In this Appendix, we consider in some detail the solution to
the self-consistent mean-field equation (3.4). For this purpose,
it is convenient to introduce a function

V1T —=u? u <1,
Y(u) = {0, > 1 (A1)
In terms of v, we have
1 N
U(KA) = NZW(a)j/KA). (A2)

Jj=1

Since each term in the sum is a monotonically increasing
function of z = K A, independent of the sign of w;, the sum
is also a monotonically increasing function of z. In terms of z,
Eq. (3.4) can be rewritten as

K'z=W(2). (A3)

When K is sufficiently small, only the trivial solution z = 0 is
obtained. The nontrivial solution is obtained only for K > K,
where K. depends on the specific choice of the frequencies
{w;}.

jWe now consider the statistical properties of the solution to
Eq. (A3) when the frequencies {w;} are drawn independently
from a given distribution g(w). In this case, ¥; = ¥(w;/z) are
also independent random variables whose distribution can be
obtained from g(w). The quantity W as defined by Eq. (A2) is
simply the average of the random variables y;, j =1, ...,N.
Its mean value is given by []. Let W = W — [v]. Its variance
is given by

21 _ 112
(V)] = % (A4)
The variance of i can be easily computed from g(w):
z 2
[V - WP = f do g(w)[l - (g) ]
z » 292
—[/ dw g(w) 1—(—) ]
. \ b4
=30 (5 <0>)2 ? (AS
—38( 2=\ 38 Al SR )

Invoking the central limit theorem, we conclude that the
distribution of W tends to a Gaussian at large N, with mean
and variance as stated above.
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For small z,
z w 2
[w=/ﬂmgm1—(ﬁ
_; z
b4 T, 3
= Eg(O)z + Bg Oz +---. (A6)
Equation (A3) can now be written in the form
7
z
K_lzZKC_lZ—CZ3+d(N) n, (A7)

where K ' =mg(0)/2, ¢=-7g"(0)/16 >0, and d =
[4g(0)/3]%. Here n = 8\11/[8\112]% is a Gaussian random
variable with zero mean and unit variance.

Solution to Eq. (A7) can be cast in the scaling form (3.1)

with =1 and p=32. Specifically, let z = K.N5 f,

2 2
Eq. (A7) becomes

xf—cK3f3+(i>2fén=0, (A8)
3n

where x = N é(K — K.:)/K is the scaled distance to the
transition point.

We now consider a solutionto Eq. (A8)at K = K.orx = 0.
Simple algebra yields
2
Ans, n>0, (A9)

ﬂ®={Q oy

PHYSICAL REVIEW E 92, 022122 (2015)

wion

Here A = (8/371)%0’%1(0_ . The nth moment of f(0) at the
transition is given by (n > 0),

1 [ .
[fn(o)] = a )l / dn e " /2Anr]2n/5
)2 JO
An o0
= o) f dt e (21)"52
7T)2 JOo

_ n/S Anl"(n N 1)
_27'[% 5 2/

In the special case g(w) = e""z/z/\/ 2w, A = (8n/3)%. The
first four moments are then given by

1 /1675
fO)] = — <—>
272 3

(A10)

7
—> =0.643454. ..,

=

10

=0.930853...,

(

(%)
(1) e rasea...

()
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