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We construct a one-dimensional totally asymmetric simple exclusion process (TASEP) on a ring with two
segments having unequal hopping rates, coupled to particle nonconserving Langmuir kinetics (LK) characterized
by equal attachment and detachment rates. In the steady state, in the limit of competing LK and TASEP, the
model is always found in states of phase coexistence. We uncover a nonequilibrium phase transition between
a three-phase and a two-phase coexistence in the faster segment, controlled by the underlying inhomogeneity
configurations and LK. The model is always found to be half-filled on average in the steady state, regardless of
the hopping rates and the attachment-detachment rate.
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I. INTRODUCTION

Totally asymmetric simple exclusion process (TASEP) and
its variants with open boundaries in one dimension (1D)
serve as simple models of restricted 1D transport. These 1D
transports are observed in a variety of situations, e.g., motion in
nuclear pore complex of cells [1], motion of molecular motors
along microtubules [2], fluid flow in artificial crystalline
zeolites [3], and protein synthesis by messenger RNA (mRNA)
ribosome complex in cells [4]; see Refs. [5] for basic reviews
on asymmetric exclusion processes. The coupled dynamics
of TASEP and random attachment-detachment in the form of
Langmuir kinetics (LK) displays a rich behavior, including
coexistence of low- and high-density regions of particles and a
boundary condition independent phase, in the limit when LK
competes with TASEP [6]. Open TASEPs with defects, both
point and extended, have been studied; see, e.g., Refs. [7],
which investigated the effects of the defects on the steady-state
densities and currents. In addition, open TASEP with a single
point defect along with LK has been considered in Ref. [8],
which finds a variety of phases and phase coexistences as a
result of the competition between the defect and LK.

In recent studies involving asymmetric exclusion processes
on closed inhomogeneous rings, the total particle number
is held fixed by the dynamics, as expected in exclusion
processes; see, e.g., Refs. [9–11]. Nonconserving LK is
expected to modify the steady-state densities of pure TASEP
on a closed inhomogeneous ring. TASEP on a perfectly
homogeneous ring yields uniform steady-state densities, due
to the translational invariance of such a system. Evidently,
introduction of the particle nonconserving LK should still yield
uniform steady-state densities, again due to the translational
invariance of the system, although the actual value of the
uniform steady-state density should now depend upon LK.
Nonuniform or inhomogeneous steady states are expected
only with explicit breakdown of the translation invariance,
e.g., by means of quench disorder in the hopping rates
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at different sites. Studies on this model should be useful
in various contexts, ranging from vehicular and pedestrian
traffic to ribosome translocations along mRNA, apart from
theoretical interests. For example, consider pedestrian or
vehicular movement along a circular track with bottlenecks and
constrictions, where overtaking is prohibited and pedestrians
or vehicles can either leave and join the circular track (say,
through side roads) randomly [5], or, for instance, consider the
motion of ribosomes along closed mRNA loops with defects
where the ribosomes can attach or detach to the mRNA loop
stochastically [12].

In this article, we introduce a disordered TASEP on a ring
with LK, where the disorder is in the form of piecewise
discontinuous hopping rates across the two segments of the
ring. The unidirectional hopping of the particles across a
slow segment yields reduced particle current. Evidently, this
breaks the translational invariance. Hence, inhomogeneous
steady-state densities cannot be ruled out. In addition, we
allow random attachment-detachment of the particles or LK
at every site of the ring. Thus, the interplay of the quenched
disorder in the hopping rate with the consequent absence of
translation invariance and LK should determine the steady
states of the model. For simplicity we assume equal rates
for attachment and detachments. Our model is well-suited
to analyze a key question of significance, viz., whether the
steady-state density profiles and the average particle numbers
in the steady states can be controlled by the disorder and
(or) the LK. Recent studies of nonequilibrium steady states
in TASEP on a ring with quenched disordered hopping rates
without any LK revealed macroscopically inhomogeneous
steady-state densities in the form of a localized domain wall
(LDW) for moderate average particle densities in the system;
see, e.g., Refs. [9,13]. Our work provides insight about how
the steady states in the models in Refs. [9,13] are affected by
particle nonconservation and allows us to study competition
between bulk LK and asymmetric exclusion processes in ring
geometry. To our knowledge, this has not been studied before.
We generically find (i) nonuniform steady states and phase
coexistences, (ii) phase transition between different states of
phase coexistences, and (iii) the system is always half-filled
in the steady state for the whole relevant parameter range,
regardless of the detailed nature of the underlying steady-state
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density profiles. The rest of the article is organized as follows.
In Sec. II, we construct our model. Then we calculate the
steady-state density profiles for an extended defect in Sec. III A
and for a point defect in Sec. III B. In Sec. IV, we compare
the results for extended and point defects. Next, in Sec. V,
we discuss why the average density shows a fixed value for
any choice of the phase parameters. Finally, in Sec. VI we
summarize and conclude.

II. THE MODEL

We consider an exclusion process on a closed 1D inhomoge-
neous ring with N sites, together with nonconserving LK. The
quenched inhomogeneity is introduced via space-dependent
hopping rates. The parts with lower hopping rates can be
viewed as defects in the system. Specifically, our model
consists of two segments of generally unequal number of
sites. We call the parts channel I (CHI), with N1 sites (sites
i = 1,2, . . . ,M) and unit hopping rate, and channel II (CHII),
with N2 sites (sites i = M + 1,M + 2, . . . ,N) and hopping
rate p < 1, where M < N (see Fig. 1). We consider both the
cases of an extended and a point defect separately. The size
of an extended defect scales with the system size, such that
even in the thermodynamic limit, it covers a finite fraction of
the ring (i.e., finite N2/N in the limit N → ∞). In contrast,
the size of a point defect does not scale with the system size,
and hence, the size of a point defect relative to the system
size vanishes in the thermodynamic limit (i.e., N2/N → 0 for
N → ∞). Now consider an asymmetric exclusion process on
the ring: A particle can hop in the anticlockwise direction to
its neighboring site if and only if the site is empty. No two
particles can occupy the same site and neither can a particle
move backward even if there is a vacancy. Between CHI and
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FIG. 1. (Color online) Particles hop with rates 1 and p < 1 in
segments CHI (red) and CHII, respectively. ω = �/N (see text)
denotes both the evaporation and condensation rates; A and B are
the junctions where the two segments meet.

CHII, particle exchanges are defined at the junctions A and
B only (see Fig. 1), where dynamic rules are defined by the
originating site. In addition, the system executes LK, e.g., at
any site, a particle can either attach to a vacant site from the
surroundings or leave an occupied site at a rate ω.

With nIi and nIIi as the steady-state number densities at ith
sites of CHI and CHII, respectively, and Ntot the total number
of particles in the system (N1 = lN,N2 = (1 − l)N , l refers
to the fraction of sites having hopping rate unity),

[nI l + nII (1 − l)]N = Ntot, (1)

where nI = ∑
i nI i , nII = ∑

i nII i . Now define the mean-
number density for the total system n as

n = Ntot

N
= nI l + nII (1 − l). (2)

Due to LK, n is not a conserved quantity and cannot be used
to characterize the steady states in the model, unlike Ref. [9].
Rather, l, p, and ω parametrize the steady density profiles.
In order to ensure that the total flux of the particles due to
LK is comparable to the particle current due to the hopping
dynamics of TASEP (i.e., the total detachment-attachment
events of the particles due to LK should be comparable to
the number of crossings of the junctions A and B by the
particles in a given time interval), we introduce a scaling for
the evaporation and condensation rates and define the total
rate � = ωN and analyze the system for a given � ∼ O(1).
This ensures competition between LK and TASEP; see, e.g.,
Ref. [6]. Although there is no particle number conservation
either in Ref. [6] or here, it is important to emphasize one
important difference between the two that stems from the fact
that our model is closed. As a result, there is no injection or
extraction of particles at designated “entry” or “exit” sites,
unlike in open TASEP or the model in Ref. [6], where these
rates are the tuning parameters.

III. STEADY-STATE DENSITIES

We perform mean-field (MF) analysis of our model, sup-
plemented by its extensive Monte Carlo simulations (MCS).

A. MF analysis and MCS results for an extended defect

Before we discuss the details of the MF analysis of our
model, it is useful to recall the results from the model in
Ref. [6], where the steady-state densities of a TASEP with
open boundaries together with LK having equal attachment
and detachment rates, � are investigated. Depending upon the
entry (α) and exit (β) rates and �, the steady-state densities
can be low or high densities, or phase coexistences involving
three or two phases. By varying the above control parameters,
transitions between the different steady states are observed.
Motivated by these results and considering the junctions
between the two segments as the effective entry and exit points
of the segments, it is reasonable to expect similar behavior
including phase coexistences and transitions between them in
our model. Our detailed analysis as given below partly validate
these expectations; we show that our model displays phase
coexistences, but has no analogs of the low- and high-density
phases. We find that even in the case of a point defect where
there is effectively only one junction, these remain true.
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Our MF analysis is based on treating the model as a
combination of two TASEPs—CHI and CHII, joined at the
junctions A and B, respectively. Thus, junctions B and A
are effective entry and exit ends of CHI. This consideration
allows us to analyze the phases of the system in terms of
the known phases of the open boundary LK-TASEP [6]. For
convenience, we label the sites by a continuous variable x

in the thermodynamic limit, defined by x = i/N , 0 < x < 1.
In terms of the rescaled coordinate x, the lengths of CHI and
CHII are l and 1 − l, respectively. For an extended defect here,
l < 1. Without the LK dynamics, the steady-state densities of a
TASEP on an inhomogeneous ring may be obtained by means
of the conservation of the total particle number and the particle
current in the system [9–11]. In contrast, it is important to
note that in the present model, due to the nonconserving LK
dynamics, the particle current is conserved only locally, since
the probability of attachment or detachment at a particular
site vanishes as 1/N [6]. Similar to Ref. [6], the steady-state
densities, nI (x), nII (x), follow

(2nI − 1)

(
dnI

dx
− �

)
= 0, (3)

(2nII − 1)

(
dnII

dx
− �

)
= 0. (4)

These yield nI , nII = 1/2 and nI , nII = �x + CI/CII ,
where CI ,CII are the integration constants.

Apply now the current conservation locally at A and B.
Ignoring possible boundary layers, this yields

nI (1 − nI ) = pnII (1 − nII ) (5)

separately, very close to x = 0 and x = l. Since p < 1
necessarily, Eq. (5) yields nI �= 1/2. Thus, either nI > nII or
nI < nII very close to the junctions A and B. It is known that
with � = 0, nII = 1/2 is a solution for moderate n, with nI (x)
being in the form of a localized domain wall (LDW) [9,11].
Finite � is expected to modify these solutions. Nonetheless,
since nII = 1/2 is a solution of the steady-state Eq. (4),
nII = 1/2 remains a valid steady-state solution for nonzero �.
Whether or not there are other solutions for nII is discussed
later. With nII = 1/2, we obtain nI (x) at x = 0,l by Eq. (5).

Application of Eq. (5) yields

nI = 1 ± √
1 − p

2
, (6)

at x = 0,l, which serve as boundary conditions on nI (x).
It is useful to compare CHI with an open TASEP. We
identify effective entry (αe) and exit (βe) rates: αe = βe =
(1 − √

1 − p)/2 � 1/2. Considering the fact that the hopping
rate p of CHII is less than that in CHI (unit value), on
physical grounds, we expect particles to accumulate be-
hind junction A in CHI only. In other words, we expect
nI (x = l) � nI (x = 0). These considerations allow us to set
the boundary conditions nI (x = 0) = [1 − √

1 − p]/2 and
nI (x = l) = [1 + √

1 − p]/2. Hence, from Eq. (3) we arrive
at the three following solutions for nI (x), namely

nIα(x) = �x + 1 − √
1 − p

2
, (7)

nIβ(x) = �(x − l) + 1 + √
1 − p

2
, (8)
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FIG. 2. (Color online) Steady-state density profiles showing
three-phase coexistence in CHI for l = 0.5, N = 2000. The left and
right solutions meet at n(x) = 1/2 in the bulk. Square points represent
MCS results for p = 0.8, � = 1.5; while the deep and shaded
lines show the corresponding MFT equations for n1α and n1β . The
circular points represent MCS studies for p = 0.55, � = 1.5. Clearly,
the length of the MC region varies depending on the parameters,
p and �.

and

nIb = 1
2 , (9)

where nIα(x) and nIβ(x) are the linear density profiles
satisfying the boundary conditions at the entrance (B) and
exit (A) ends of CHI and nIb represents the MC region. Notice
that the solution nIb = 1/2 cannot be extended to the junctions
A and B, else Eq. (5) will be violated.

Given the physical expectation that nI (x) should not
decrease with x, we identify two values of x, viz., xα and
xβ , where the linear solutions meet with the third solution.
Depending on these values of xα and xβ , we will see that the
system is found in various phases, which are parametrized by
p and �. Using nIα(xα) = nIβ(xβ) = 1

2 , we get xα =
√

1−p

2�

and xβ = l −
√

1−p

2�
= l − xα . Thus, we find

xβ − xα = l −
√

1 − p

�
. (10)

Hence, there are three distinct possibilities, namely xα = xβ ,
xα < xβ , and xα > xβ , depending on which the system will be
found in different phases. We now analyze each of the cases
in detail.

(1) Consider xα < xβ . Here we observe a three-phase
coexistence. Near x = 0, we see a low-density (LD) phase
having density nIx < 1/2, rising with a positive slope up to
x = xα . For xα < x < xβ , there is a maximal current (MC)
phase with nIx = 1/2 and the current JIx = 1/4, and while
xβ < x < l, we see a high-density (HD) phase with nIx > 1/2.
This is accompanied by an MC phase in CHII. Representative
plot of comparisons of MFT and MC results are shown in
Fig. 2.

(2) When xα = xβ , the maximal current region separating
the two linear solutions vanishes and the density profile
becomes an inclined straight line, matching continuously the
densities of the LD and HD phases; see Fig. 3.

022121-3



BANERJEE, CHANDRA, AND BASU PHYSICAL REVIEW E 92, 022121 (2015)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

D
en

si
ty

x

p=0.32 (MCS)
p=0.36 (MCS)
p=0.36 (MFT)

FIG. 3. (Color online) Straight-line density profile for the ex-
tended defect (xα = xβ, l = 0.5, N = 2000) in CHI. The dotted
black line represents the MFT denisty profile equation for � =
1.6, p = 0.36, and the triangular points shows the corresponding
MCS result. The square points correspond to the MCS density profile
for � = 1.6, p = 0.32.

(3) As xα > xβ , we can no more find the MC region
and instead find a density discontinuity. Solutions from the
left and right meet at a point xw in the bulk of CHI in
the form of a localized domain wall (LDW), where the
left and right currents, i.e., Jα(xw) and Jβ(xw), are equal.
We can arrive at an expression for xw using the the local
current conservations. Here, Jα(xw) = nIα(xw)[1 − nIα(xw)].
Similarly, Jβ(xw) = nIβ(xw)[1 − nIβ(xw)]. The equality of
Jα(xw) and Jβ(xw) gives us the condition

nIα(xw) + nIβ(xw) = 1, (11)

since nIα(xw) �= nIβ(xw). Using Eq. (11), xw = l/2. Thus,
the LDW is always at the midpoint of CHI, unlike in
Refs. [10,11]. The fact that xw = l/2 may be understood
from the symmetrical structures of nIα(x) and nIβ(x). Notice
that 1/2 − nIα(x = 0) = nIβ(x = l) − 1/2. Since, the upward
slope of nIα(x) is same as the downward slope of nIβ(x), which
is �, equality of the currents Jα(xw) = Jβ(xw) ensures that
xw = l/2. Thus, xw is independent of the values of � and p.
This is to be contrasted with Ref. [6], where � is known to
affect the location of the LDW there. The height of the LDW
is

�he = nIβ(xw) − nIα(xw) =
√

1 − p − �l, (12)

which depends upon l, p, and �. In our MCS studies we have
generally chosen l = 1/2 without any loss of generality. Since
l = 1/2, the domain wall in CHI will always be located at
xw = 1/4, irrespective of the values of p and �. See Fig. 4
for a representative plot. The overall average density n may be
found from (neglecting the boundary layers)

n =
∫ l

0
nI (x)dx +

∫ 1

l

nII (x)dx. (13)

Substituting the MF forms of nI (x) and nII (x), it is clear that
n = 1/2, regardless of whether CHI is in its two- or three-phase
coexistence state. Our MCS results agree with the MF results
to a good extent.
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FIG. 4. (Color online) Formation of an LDW in CHI for xα > xβ

with l = 0.5, N = 2000. Two different data sets have been plotted for
p and �. Points represent MCS results. The lines represent the follow-
ing (all MFT equations): broken rectangles (n1β, � = 0.2, p = 0.2),
broken square (n1α, � = 0.2, p = 0.2), solid (n1β, � = 0.8, p =
0.2), gapped (n1α,� = 0.8, p = 0.2). As expected, the location of
the domain wall remains fixed (continuous line at x = 0.25 represents
the MFT DW).

We now discuss why the system cannot be found in any
other combination of the phases of an open TASEP. First of all,
there is no possibility of only an MC phase in CHI. This follows
from the fact that if nI = 1/2, Eq. (5) would be violated at the
boundaries. In order to have an LDW in CHII, particles should
pile up behind CHI, which is physically unexpected since CHI
has a higher hopping rate. Further, we argue that with an MC
phase in CHII, CHI cannot be found in a pure LD phase. For
CHI to be in such a phase, xα = 1/2. But it is also necessary
that xβ has to be greater than xα; otherwise, CHI will show an
LDW. But the maximum possible value for xβ is 1/2. Now,
xα = xβ = 1/2 implies p = 1, for which the system becomes
homogeneous. Since we necessarily have p < 1 in our model,
a pure LD phase for CHI with an MC phase in CHII is ruled
out. Due to the particle-hole symmetry, we rule out a pure HD
phase for CHI with CHII in its MC phase. Last, both CHI and
CHII cannot be in their LD phases. This may be understood as
follows. The general solutions for Eqs. (3) and (4) are either
inclined lines of the form �x + CI,II (CI,II being constants)
or flat (1/2). For LD phases, CI,II are to be determined by the
density values at the entry sides of CHI and CHII, respectively.
Let us assume nI (x = 0) = nIl and nII (x = l) = nII l . With
these known values, nI (x = l) and nII (x = 1), respectively,
in CHI and CHII can be determined. Say these values are nIr

and nIIr for the respective channels. Clearly, nIr > nIl and
nIIr > nII l . But nIr is connected to nII l at junction A by

nIr (1 − nIr ) = pnII l(1 − nII l), (14)

and nIIr and nIl are connected at junction B by

pnIIr (1 − nIIr ) = nIl(1 − nIl). (15)

Clearly, both Eqs. (14) and (15) cannot be satisfied, simultane-
ously. Hence, this rules out the LD-LD phase for the system.
Similar arguments rule out simultaneous HD phases in both
channels.
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FIG. 5. (Color online) The phase diagram for l = 0.5. The
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4 separates regions of two-phase and three-phase
coexistences.

1. The phase diagram

We now discuss the phase diagram spanned in the �-p
space. Consider the case when xα = xβ . Using Eq. (10),√

1 − p = �l, (16)

which gives the phase boundary

p = 1 − [�l]2. (17)

Thus, when xα < xβ , we have p > 1 − [�l1]2 and the system
shows three-phase coexistence of LD (nI < 1/2), MC (nI =
1/2), and HD (nI > 1/2) regions in CHI. For p < 1 − [�l]2,
we get an LDW in CHI. For both three-phase and two-phase
coexistences in CHI, CHII will be in its MC phase. The phase
diagram is shown in Fig. 5.

The width W of the MC region (numerically equal to xβ −
xα > 0) in the three-phase coexistence, can be identified as the
order parameter for the phase transition between a three-phase
coexistence and a two-phase coexistence. When the system
is in three-phase coexistence, W > 0, where as it is zero in
the two-phase coexistence. For a fixed value of p, as � is
increased, the system makes a transition from a two-phase
coexistence state to a three-phase coexistence state following
Eq. (17). Accordingly, W increases from 0 to l as � is increased
for a fixed p. At the transition, W = 0. We now find how W

approaches zero as p → pc or � → �c in the three-phase
coexistence; pc,�c are located at the phase boundary given
by Eq. (17). Writing p = pc + δp,� = �c + δ� for small
δp > 0, δ� > 0, we have

W = l −
√

1−pc

�c

[1−δp/2−δ�] =
√

1 − pc

�c

(δp/2 + δ�),

(18)
to the linear order in δp,δ�. Evidently, W vanishes smoothly
as δp and δ�, indicating the second-order nature of the
phase transition. Thus, considering either p or � as the
control parameter (for fixed � or p, respectively), and drawing
analogy with equilibrium second-order phase transitions [14],
we extract an “effective” order parameter exponent of value
unity. This is to be contrasted with the MF order parameter

exponent of value 1/2 in equilibrium critical phenomena. This
difference is not surprising, considering that the present model
is inherently out of equilibrium.

B. Density profiles for a point defect

Consider now the extreme limit with l → 1, i.e., with a
point defect. In this limit, the system has only one site where
the hopping rate p is less than 1, while for all other sites,
the hopping rate is unity. Thus, the MF analysis above by
considering the system to be a combination of two TASEP
channels joined at two ends no longer works because CHII
(as defined for an extended defect) now contains just one site
and has a vanishing length relative to the whole system for
N → ∞. Instead, the system is just one TASEP, say CHI,
with a density nI (x), 0 < x < 1 and two of its ends joined at
one site having a hopping rate p < 1.

Let the defect be present at x = 0 (which is same as x = 1).
We assume that the particles are hopping anticlockwise as
before. On physical grounds we expect piling up of particles
(if at all) should occur behind the blockage site at x = 0.

Now assume a macroscopically nonuniform steady-state
density profile, such that there is a pile up of particles behind
the defect at x = 0 and hence a jump in the density at x = 0.
Let ρI and ρII be the densities just to the left and right
of x = 0, respectively: nI (1 − ε) = ρI , nI (ε) = ρII ,ε → 0.
Using current conservation at x = 0, we write

ρI (1 − ρI ) = pρI (1 − ρII ) = ρII (1 − ρII ). (19)

This yields solutions for ρI and ρII , viz., ρI = 1
1+p

and ρII =
p

1+p
. Density nI (x) satisfies the equation

(2nI − 1)

(
dnI

dx
− �

)
= 0, (20)

yielding solutions

nI (x) = 1/2,�x + C. (21)

The constant of integration C is to be fixed by using either of
the boundary conditions ρI or ρII . These evidently yield two
values of C, say CR and CL, respectively, giving CL = p

1+p

and CR = 1
1+p

− �. Therefore, the two solutions of nI (x) are

nL(x) = �x + p

p + 1
,

(22)
nR(x) = �(x − 1) + 1

p + 1
,

along with the uniform solution nb = 1/2. Similar to an
extended defect, we can compare CHI in case of point defect
with an open TASEP and extract effective entry and exit rates:
αp = βp = p/(p + 1) < 1/2, where αp and βp are entry and
exit rates, respectively.

Since nL(x) and nR(x) depend linearly upon x, in general
they should meet with the uniform solution, i.e., nb = 1/2 at
two points, say, xL and xR . The quantitative analysis follows
the same logic as above for an extended defect. Accordingly,
the values of xL and xR will determine whether the system is
in its three-phase coexistence state or a two-phase coexistence

022121-5



BANERJEE, CHANDRA, AND BASU PHYSICAL REVIEW E 92, 022121 (2015)

state. We find

xL =
(

1/2 − p

p + 1

)
1

�
, (23)

xR =
(

1/2 + � − 1

1 + p

)
1

�
. (24)

The system will thus be in three-phase coexistence when
xL < xR and we will have two inclined lines meeting the third
solution in the bulk at xL and xR , respectively. The extent of
the MC phase (bulk solution) is given by

xR − xL = 1 −
(

1 − p

1 + p

)
�. (25)

Similarly, for xL > xR , the system will be found in its two-
phase coexistence state and the two inclined solutions will
meet in the bulk in the form of an LDW. The location of the
LDW, x

p
w may be calculated similarly as that for an extended

defect, yielding x
p
w = 1

2 . The height of the LDW is density
difference between nIL(x) and nIR(x) at x = 1/2, which is
given by

�hp = nR(xp) − nL(xp) = 1 − p

1 + p
− �. (26)

Thus, with both an extended and a point defect, the location
of the LDW is at the middle of CHI. Again, as for an
extended defect, this is a consequence of the symmetry in
the forms of nL(x) and nR(x). For xL = xR , the extent of the
MC phase vanishes and one obtains a straight line smoothly
connecting the densities nL and nR . Our MFT results here
are complemented by extensive MCS studies. Plots of nI (x)
versus x for various p and � in the steady states are shown
in Figs. 6–8. As for an extended defect, we find the steady
-state average density n = 1/2 in the steady state by using the
MF form of nI (x) as given in Eq. (22), again in agreement
with the corresponding MCS results. Last, there are no pure
LD, HD, and MC phases in CHI for reasons very similar to
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FIG. 6. (Color online) Density plot for xL > xR . � = 0.2, p =
0.2. The square points and the triangular points show MCS results for
N = 1000 and N = 2000, respectively. The black line corresponds
to the position of DW according to MFT. The gapped and solid lines
represent nR and nL MFT equations, respectively. It can be seen that
the DW becomes sharper on increasing the system size.
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FIG. 7. (Color online) Straight-line profile for the point defect
(xL = xR, N = 1000). Even though qualitatively MFT and MCS
agree, minor quantitative disagreements between the two for the point
defect case can be seen. The dotted black line represents the MFT
density-profile equation for � = 0.6, p = 0.25 and the green line
shows the corresponding MCS result. The red points correspond to
the MCS density profile for � = 0.6, p = 0.22.

the reasons for nonexistence of those phases in CHI with an
extended defect, as discussed above.

C. Phase diagram for a point defect

To construct the phase diagram in the �-p plane, we
identify the threshold line for crossover from three-phase to
two-phase coexistence. The crossover line is obtained by the
condition xL = xR . This yields

p = 1 − �

1 + �
. (27)

The phase boundary is shown in Fig. 9. Following our analysis
above for an extended defect, we consider the width of
the MC phase, Wp = xR − xL > 0, as the order parameter
for the phase transition between the three- and two-phase
coexistences; Wp is zero in the two-phase coexistence. Again
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FIG. 8. (Color online) Density plot for three-phase coexistence
for the point defect. � = 0.9, p = 0.2, N = 1000. The gapped and
solid lines represent MFT equations while the square points are
obtained from MCS.
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FIG. 9. (Color online) The phase diagram for a point defect.
The curve p = (1 − �)/(1 + �) separates regions of two-phase and
three-phase coexistences.

as above, Wp depends linearly on δpp and δ�p, where p =
pcp + δpp,� = �cp − δ�p; �cp and pcp satisfy Eq. (27).
Clearly, Wp vanishes smoothly as δpp and δ�p, indicating
the second-order nature of the phase transition. Again, the
corresponding order parameter exponent is unity, same as that
for an extended defect.

IV. COMPARISON BETWEEN THE DENSITY PROFILES
WITH EXTENDED AND POINT DEFECTS

We find that with both extended and point defects, the
system can be either in three-phase or two-phase coexistence.
As a result, the phase diagram Eqs. (5) and (9), respectively,
for extended and point defects have similar structures. How-
ever, the precise phase boundaries in the two cases differ
significantly quantitatively. Similar differences are observed
in plots of density profiles with both extended and point
defects; for plots of density versus x, see Figs. 10 and 11 for
point defects and Fig. 12 for extended defect. The difference
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FIG. 10. (Color online) Plot of the density profile for a point
defect displaying the mismatch between MFT and MCS predictions
(� = 0.2, p = 0.4, N = 1000). The black line at x = 0.5 corre-
sponds to the MFT LDW. Gapped and solid straight lines refer to
MF equations for nR(x) and nL(x), respectively. Square points show
MCS results.

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0  0.2  0.4  0.6  0.8  1

D
en

si
ty

x

N=1000
N=2000
N=3000

MFT

FIG. 11. (Color online) Mismatch between MFT and MCS pre-
dictions for the density profile with a point defect [� = 0.2, p = 0.6,
N = 1000 (square), 2000 (circle), 3000 (triangle)]. While the MFT
solutions, shown by the continuous black lines (with LDW at x = 0.5)
for the given values of � and p display a two-phase coexistence,
MCS data points for all the three values of N display a three-phase
coexistence. This disagreement is also visible in Fig. 9, where the
MCS and MFT phase boundaries differ substantially for small �.

between MFT and MCS results is markedly visible in Fig. 11,
i.e., for sufficiently small �. Figure 9 shows that for a certain
range of values of the phase parameters p and �, MFT and
MCS yield contrasting results. For example, density profiles
for a point defect (p = 0.6,� = 0.2) are shown in Fig. 11.
These chosen values of p and � are such that they lie in
the region of the phase space where MFT and MCS phase
boundaries do not overlap (see Fig. 9). These disagreements
are clearly visible in Fig. 11. While the thick continuous
lines (with LDW at x = 0.5) in Fig. 11 correspond to MFT
solutions for the two-phase coexistence with p = 0.6,� = 0.2
[see Eqs. (22)], the MCS studies, on the other hand, show
three-phase coexistence for the same p and � (data points in
Fig. 11). The MCS results for N = 1000, 2000, 3000 show
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FIG. 12. (Color online) Density profile for the system with an
extended defect (� = 0.2, p = 0.4, N = 2000) showing strong
agreement between MCS and MFT predictions. The black vertical
line corresponds to the MFT LDW. Thin gapped [n1α(x)] and thick
broken [n1β (x)] lines refer to the MF equations. The square points
show the MCS results.
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no systematic system size dependencies and overlap with each
other. Notice that the relative quantitative inaccuracies of MFT
in a closed ring TASEP with a point defect without any LK,
in comparison with a closed TASEP with extended defects
(again without LK), have been known; see, e.g., Refs. [10] and
[11] for studies on closed TASEPS with point and extended
defects, respectively. It is, perhaps, not a surprise that for small
�, some of theses mismatches are observed in our model as
well.

These differences may be understood in terms of the
differences in the steady-state currents across the defects in
the two cases. In case of an extended defect, the current in the
neighborhood of the junctions A and B is Je = p/4, where as it
is Jp = p/(1 + p)2 very close to a point defect. Thus, Je < Jp

generically, since p < 1. Now, the existence of a three-phase
coexistence requires the currents rising from low values (Je or
Jp, as the case may be) to 1/4. The corresponding densities in
CHI also vary linearly with slope � from low or high values
near the extended or point defects to reach 1/2 at the meeting
points with the MC part of the three-phase coexistence, i.e.,
at xα and xβ for an extended defect and xL and xR for a
point defect. Since Je < Jp generically, the corresponding
values of nI (x) near a point defect is closer to 1/2 than
they are near the junctions A and B with an extended defect:
nIα(x = 0) < nL(x = 0) and nIβ(x = l) > nR(x = 1) for a
given p. Now, for a given �, the slope of the spatially varying
solutions for nI (x) are same (�) for both extended and point
defects. The densities nIα(x), nIβ (x) (for an extended defect)
and nL(x), nR(x) (for a point defect) must reach 1/2 in the bulk
for the MC phase to exist. Hence, with an extended defect for a
given p higher values of � are required for the system to reach
the threshold of existence for the MC part of the three-phase
coexistence. This explains the quantitative differences in the
phase boundaries in the phase diagram Eqs. (5) and (9).

Notice that for the phase boundary corresponding to an
extended defect (Fig. 5), the level of quantitative agreement
between the MFT and MCS results for small-� is much
stronger than in the phase diagram (Fig. 9) for a point defect.
Similarly, density profiles for a point defect show much
larger discrepancy between the MCS and the MFT results,
in comparison with the same for an extended defect; see
Figs. 10 and 11 for a point defect, which clearly display the
quantitative disagreement between MCS and MFT results.
In fact, this disagreement is revealed vividly in Fig. 11,
where the density profile obtained from MCS describes a
three-phase coexistence, where as MFT predicts a two-phase
coexistence. In contrast, the density profile for CHI with an
extended defect as obtained from MCS match very well with
the corresponding MFT prediction; see Fig. 12. These features
may be qualitatively understood as follows. In the small-�
limit, the effects of particle nonconservation is small, particle
number is weakly conserved, and hence the correlation effects
due to (weak) conservation of particle number should be
substantial, rendering MFT quantitatively inaccurate. For an
extended defect with 0 < l < 1, the total particle number in
CHI should fluctuate within a range l/2 ± (1 − l)/2, assuming
l > 1 − l and the averaging occupation number to be 1/2
in CHI and CHII (borne out by our MCS and MFT). Thus,
even in the small-� limit, particle number fluctuations in CHI
is expected to be still substantial with an extended defect,

weakening the correlation effects. This explains the good
agreement between the MFT and MCS for extended defects. In
contrast, for a point defect the total particle number fluctuations
in CHI should vanish in the small-� limit, since l → 1 or CHII
has a vanishingly small size. Hence, the correlation effects
should be large, causing larger discrepancies between the MCS
and MFT results for a point defect in the small-� limit. For
larger �, LK ensures lack of any correlation effect regardless
of a point or an extended defect, leading to good agreements
between MFT and MCS results for both of them.

V. WHY n = 1/2 FOR ALL p AND �?

As we have shown above, for both point and extended
defects, the system is half-filled in the steady state, i.e., the
global average density n = 1/2 for all � and p, disregarding
the possible boundary layers (which have vanishing thickness
in the thermodynamic limit). This result may be easily obtained
by using the MF form of nI (x) [and also of nII (x) in
case of an extended defect] as given above for point and
extended defects; our MCS results also validate this to a
good accuracy. That n = 1/2 generically in our model may be
understood physically as follows. Notice that if we set p = 1
(homogeneous limit), the model is translationally invariant
and the average steady-state density at every site is 1/2. Thus,
there are equal number of particles and holes on average. A
shift of n from 1/2 would indicate either more particles or
more holes in the system in the steady state. However, even
when inhomogeneity is introduced (p < 1), there is nothing
that favors either particles or holes, since the inhomogeneity
that acts as an inhibitor for the particle current also acts as
an inhibitor for the holes equally. Thus, it is expected to have
equal number of particles and holes on average, i.e., n = 1/2
even with p < 1. Notice that this argument does not preclude
any local excess of particles or holes, since the particles and the
holes move in the opposite directions, and hence the presence
of a defect should lead to excess particles on one side and
excess holes (equivalently deficit particles) on the other side
of it. This holds for any �, including � → 0, and rules out
a pure LD or a pure HD phase. This is in contrast with
coupled TASEP and LK with open boundaries [6], where
the boundary conditions explicitly favor more particles or
holes, and consequently make pure LD or HD phases possible;
in the limit of small-�, the boundary conditions dominate
and the density profiles smoothly crossover to those of pure
open TASEP. In contrast, in the present model, the density
profiles do not smoothly crossover to those for a closed TASEP
(with uniform density) for any small-�. Instead, however, for
� → 0, the LDW height Eqs. (12) and (26), respectively, for
extended and point defects with LK smoothly reduce to the
results of Refs. [9] and [13], respectively, with n = 1/2.

VI. SUMMARY AND OUTLOOK

In this article, we have constructed an asymmetric exclusion
process on an inhomogeneous ring with LK. Our MFT and
MCS results reveal that in the limit when TASEP along the
ring competes with LK, the model displays inhomogeneous
steady-state density profiles and phase transitions between
different states of coexistence, parametrized by the scaled LK
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rate � and hopping rate p < 1 at the defect site(s). The model
always has a mean density n = 1/2 for all � and p; as a result
there are no pure LD or HD phases, in contrast to LK-TASEP
with open boundaries. Our model may be extended in various
ways. For instance, we may consider unequal attachment (ωA)
and detachment ωD rates (ωA/ωD = K �= 1). In this case, by
using the arguments above, n = K/(1 + K), see Ref. [6], and
can be more or less than 1/2. Thus, far more complex phase
behavior, including spatially varying LD or HD phases, should
follow [6]. Details will be discussed elsewhere. Additionally,
one may introduce multiple defect segments or point defects.
However, unlike Refs. [10,11], no delocalized domain walls
(DDW) are expected even when various defect segments or
point defects have same hopping rates. This is because DDWs
in Refs. [10,11] are essentially consequences of the strict
particle number conservations in the models there, the latter
being absent in the presence of LK. Our results very amply
emphasize the relevance of the ring or closed geometry of
the system in the presence of LK. The simplicity of our
model limits direct applications of our results to practical or
experimental situations. Nonetheless, our results in the context
of traffic along a circular track with constrictions or ribosome
translocations along mRNA loops with defects, together with
random attachments or detachments, generally show that the
steady-state densities should be generically inhomogeneous
regardless of the details of the defects. We hope experiments
on ribosomes using ribosome profiling techniques [15] and
numerical simulations of more detailed traffic models should
qualitatively validate our results.

A few technical comments are in order. First of all, notice
that our MFT analysis is equivalent to considering CHI

as an open TASEP with self-consistently obtained injection
(αe/αp) and extraction (βe/βp) rates, with αe = βe � 1/2
and αp = βp � 1/2, as obtained above. Given this analogy
with an open TASEP, we can now compare our results with
that of Ref. [6], which has investigated an open TASEP with
LK. With the conditions on αe,p and βe,p, our results should
correspond to the α = β � 1/2 line in the phase diagrams
of Ref. [6], where α and β are the injection and extraction
rates in Ref. [6]. Now notice that in Ref. [6] along the line
α = β � 1/2 only two-phase and three-phase coexistences are
possible, in agreement with our results here. Furthermore, as in
Ref. [6], two-phase coexistence is found for small α,β, which
in our model means small p, where as for large p, three-phase
coexistence is found. Our MFT is based on analyzing the bulk
density profile, neglecting the boundary layers. An alternative
powerful theoretical approach to TASEP-like models with
open boundaries have been formulated that makes use of
the boundary layer itself, instead of the bulk [16]. It will be
interesting to extend these ideas to TASEP on a closed ring
with LK.
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