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Stealthy potentials, a family of long-range isotropic pair potentials, produce infinitely degenerate disordered
ground states at high densities and crystalline ground states at low densities in d-dimensional Euclidean space
Rd . In the previous paper in this series, we numerically studied the entropically favored ground states in the
canonical ensemble in the zero-temperature limit across the first three Euclidean space dimensions. In this paper,
we investigate using both numerical and theoretical techniques metastable stacked-slider phases, which are part of
the ground-state manifold of stealthy potentials at densities in which crystal ground states are favored entropically.
Our numerical results enable us to devise analytical models of this phase in two, three, and higher dimensions.
Utilizing this model, we estimated the size of the feasible region in configuration space of the stacked-slider
phase, finding it to be smaller than that of crystal structures in the infinite-system-size limit, which is consistent
with our recent previous work. In two dimensions, we also determine exact expressions for the pair correlation
function and structure factor of the analytical model of stacked-slider phases and analyze the connectedness
of the ground-state manifold of stealthy potentials in this density regime. We demonstrate that stacked-slider
phases are distinguishable states of matter; they are nonperiodic, statistically anisotropic structures that possess
long-range orientational order but have zero shear modulus. We outline some possible future avenues of research
to elucidate our understanding of this unusual phase of matter.
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I. INTRODUCTION

A fundamental problem of statistical mechanics is the
determination of the phase diagram of interacting many-
particle systems. A substantial variety of pair interactions can
produce a dramatic diversity of macroscopic phases, including
crystals [1], quasicrystals [2–6], liquid crystals [7], hexatic
phases [8–11], disordered hyperuniform systems [12–18],
and liquids [19]. While crystals and liquids are the most
common condensed states of matter, there are other states
in between. For example, quasicrystals and liquid crystals
both have anisotropy and long-range orientational order, like
crystals, but lack long-range translational order, similar to
liquids. Other phases with features that lie between crystals
and liquids include disordered hyperuniform systems, which
are disordered but behave more like crystals in the way in
which they suppress long-range density fluctuations [12,17].

A family of long-range isotropic pair potentials, called
stealthy potentials, produces infinitely degenerate disordered
hyperuniform classical ground states at high densities in
d-dimensional Euclidean space Rd [14,18,20–24]. Stealthy
potentials are often specially constructed such that finding a
ground state is equivalent to constraining the structure factor
S(k) to be zero for all wave vectors k such that 0 < |k| � K ,
where K is some radial cutoff value. A dimensionless measure
of the relative fraction of constrained degrees of freedom
(proportional to Kd ) compared to the total number of degrees
of freedom, χ , controls the degree of order and degeneracy of
the ground states of these potentials.
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In the preceding paper [24], we numerically studied the en-
tropically favored ground states, i.e., configurations most likely
to appear in the canonical ensemble in the zero-temperature
limit, of stealthy potentials. We found that entropically favored
ground states are disordered for χ < 1/2 and crystalline for
χ > 1/2 up to a certain critical value [18].

The main focus of this paper is the investigation of stacked-
slider phases, which are metastable states that are part of
the ground-state manifold for some χ above 1/2, although
not entropically favored. Stacked-slider phases were first
discovered in two dimensions in Ref. [20] and were originally
called wavy crystals because they were observed to consist
of particle columns that display a meandering displacement
away from linearity. However, we will see that “stacked-slider
phases” for arbitrary dimensions is a more suitable name for
this phase and this designation will be used henceforth.

The authors of Ref. [20] easily distinguished stacked-slider
phases from crystal phases by a lack of periodicity in direct
space and a lack of Bragg peaks in its diffraction pattern.
Distinguishing stacked-slider phases and disordered phases, on
the other hand, was based on a different property. In disordered
phases, all k’s such that |k| > K have positive structure
factors. However, in stacked-slider phases, the structure factor
at some k’s such that |k| > K are implicitly constrained to
vanish identically [20], i.e., they are induced to be zero by
the constraints inside the radius K . The existence of implicit
constraints was used to distinguish stacked-slider phases from
disordered phases in Ref. [20].

There are still many outstanding questions concerning
stacked-slider phases. Can a theoretical model of stacked
phases in the thermodynamic limit be devised to elucidate
previous numerical studies? One disadvantage of numerical
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studies is that finite-size effects make it difficult to conclude
anything definitive about the large system limit. For example,
are stacked-slider phases isotropic or anisotropic in this limit?
Moreover, to what extent does the choice of the simulation
box shape affect the results? Were any important features of
stacked-slider phases overlooked by studying finite-precision
simulation results? Finally, because Ref. [20] studied two di-
mensions only, we do not know whether stacked-slider phases
exist in other dimensions. This paper provides additional
insights into these unanswered questions.

The rest of the paper is organized as follows. In Sec. II
we perform numerical studies with much higher precision
than previously. The numerical results enabled us to find an
analytical model of two-dimensional stacked-slider phases,
presented in Sec. III. We generalize this model to higher
dimensions in Sec. IV. We demonstrate that stacked-slider
phases are distinguishable states of matter; they are nonperi-
odic, statistically anisotropic structures that possess long-range
orientational order but have zero shear modulus. The model
also shows that implicit constraints exist. In Sec. V we use
this analytical model to show that stacked-slider phases are
not entropically favored in the zero-temperature limit of the
canonical ensemble. In Sec. VI we postulate that the transition
between stacked-slider phases and disordered phases occurs at
a slightly lower χ than that reported in Ref. [20] from energy
minimizations from high-temperature limit (Poisson) initial
configurations. In Sec. VII we make concluding remarks and
draw comparisons to other common phases of matter.

II. NUMERICAL STUDY OF TWO-DIMENSIONAL
STACKED-SLIDER PHASES

In this section we numerically study the ground states of
a stealthy potential at a variety of χ ’s (or densities) in two
dimensions. We begin with the mathematical relations and
simulation procedure in Sec. II A and then present our results
in Sec. II B. These results will suggest an analytical model of
two-dimensional stacked-slider phases in Sec. III.

A. Mathematical relations and simulation procedure

As detailed in the preceding paper [24] and other refer-
ences [14,18,20–23], we simulate systems consisting of N

point particles, located at rN ≡ r1, r2, . . . ,rN , in a simulation
box in Rd under periodic boundary conditions. The number
density is ρ = N/vF , where vF is the volume of the simulation
box. The particles interact with a pairwise additive potential
v(r) such that its Fourier transform is

ṽ(k) =
{
V (|k|) if |k| � K

0 otherwise, (1)

where ṽ(k) = ∫
vF

v(r) exp(−ik · r)dr is the Fourier transform
of the pair potential v(r), V (k) is a positive function, and K is
a constant.

Under such potential, the total potential energy of the
system can be calculated in the Fourier space

�(rN ) = 1

2vF

∑
k

V (|k|)|ñ(k)|2 + �0, (2)

where the sum is over all reciprocal lattice vector k’s
of the simulation box such that 0 < |k| � K , ñ(k) =∑N

j=1 exp(−ik · rj ), and

�0 =
[
N (N − 1) − N

∑
k

ṽ(k)

]/
2vF (3)

is a constant independent of the particle positions rN . Thus,
the first term on the right-hand side of Eq. (2) is the only
configuration-dependent contribution to the potential energy

�∗(rN ) = 1

2vF

∑
0<|k|�K

V (k)|ñ(k)|2. (4)

Since V (k) > 0 and vF > 0, Eq. (4) shows that �∗(rN ) � 0.
Therefore, if configurations such that �∗(rN ) = 0 exist, then
they are the classical ground states of this potential. These
configurations are achieved by constraining ñ(k) to zero for
all 0 < |k| � K and are said to be stealthy up to K . Since ñ(k)
is related to the structure factor S(k) by S(k) = |ñ(k)|2/N
for every k �= 0, constraining ñ(k) to zero is equivalent to
constraining S(k) to zero. Let M be half the number of k
points in the summation of Eq. (2) [25]; the parameter

χ = M

d(N − 1)
(5)

determines the degree to which the ground states are con-
strained and therefore the degeneracy and disorder of the
ground states [20]. For a fixed K , the parameter χ is inversely
proportional to the density [18,22,24]. When χ � χ∗

max, where
χ∗

max is a dimension-dependent constant, all the constraints are
indeed satisfiable, thus �∗(rN ) of the classical ground states is
zero [18]. The χ values we study in this paper are always less
than χ∗

max.
In this section we choose N = 100, K = 1, and V (k) = 1.

The relatively small choice of N increases the precision of
the ground states we find. We will see that high precision is
important in extracting an analytical model from numerical
results. The constant K and the magnitude of V (k) simply set
the length scale and the energy scale. Although the function
form of V (k) could theoretically affect the probability of
sampling different parts of the ground-state manifold, it does
not affect the manifold itself [18,24]. As explained in Ref. [24],
we use a rhombic simulation box with a 60◦ interior angle to
alleviate finite-size effect.

The ground states reported in this section are produced by
the following steps.

(i) Start from a Poisson (i.e., ideal gas) initial configuration.
(ii) Minimize �∗(rN ) [in Eq. (4)] using the low-storage

BFGS algorithm [26–28].
(iii) Minimize �∗(rN ) using the MINOP algorithm [29].
(iv) If �∗(rN ) < 10−20, we successfully find a relatively-

high-precision ground state.
(v) Otherwise, what we find is either an imprecise ground

state or a local minimum of �∗(rN ). Therefore, we discard this
configuration.

As detailed in Ref. [24], the low-storage BFGS algorithm is
the fastest in minimizing �∗(rN ), while the MINOP algorithm
finds the most precise ground states. Therefore, we minimize
�∗(rN ) using these two algorithms consecutively to maximize
both efficiency and precision.
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TABLE I. The χ values, number of trials Nt , and number of
successes Ns for each simulation box side length L.

L χ Nt Ns

56 0.5303. . . 1000000 15615
57 0.5606. . . 199915 17127
58 0.5909. . . 200000 411
59 0.6060. . . 199965 8875
60 0.6363. . . 1000000 27788
62 0.6666. . . 1000000 76727
63 0.6818. . . 1000000 157501
64 0.7121. . . 200000 119563
65 0.7424. . . 1000000 165203
66 0.7575. . . 200000 80258
68 0.7878. . . 200000 2577
70 0.8787. . . 200000 0

These steps are performed Nt times for a variety of
simulation box side lengths (and therefore a variety of
χ ’s), listed in Table I [30]. As detailed in Ref. [20], for
a finite system, only certain values of χ are allowed. The
χ values in Table I contain all possible choices in the
range 0.5 < χ < χ∗

max, which covers the previously reported
stacked-slider phase regime in two dimensions 0.57 . . . � χ <

0.77 . . . [20,22]. Except for χ = 0.8787 . . ., where we could
not precisely identify ground states, we plot the real-space
configuration and reciprocal-space structure factor of at least
50 successful energy minimized results and visually inspect
them. We divide them into different categories based on their
appearances and then present representative configurations
below.

B. Results

Representative numerically obtained ground-state config-
urations and their structure factors (in logarithmic scales)
are presented in Figs. 1–3. For 0.5303 . . . � χ � 0.6060 . . .,
the ground-state manifold appears to contain a variety of
structures (see Fig. 1). Except for the first one, all real-space
configurations in Fig. 1 appear to be Bravais lattices. However,
their structure factors are not as simple as a collection of
Bragg peaks among a zero-intensity background, suggesting
that the real-space configurations are not perfect Bravais
lattices.

At χ = 0.6363 . . . and χ = 0.6666 . . . a type of relatively-
simple-looking configuration appears (see Fig. 2). The real-
space configurations appear to be comprised of straight lines
of particles with wavelike displacements relative to each other.
The structure factors, on the other hand, consist of straight lines
of nonzero values in a background of virtually zero (<10−20)
intensities.

For χ � 0.6818 . . ., the results are similar to that in Fig. 2,
but there exist so many constraints that the nonzero-value
lines in the structure factor have to be interrupted. The
interruptions grow in length as χ increases and eventually,
at χ = 0.7878 . . ., the only nonzero structure factors are
the Bragg peaks and the real-space configuration becomes
a Bravais lattice.

FIG. 1. (Color online) Four representative numerically obtained
ground-state configurations at χ = 0.5606 . . . (left) and their cor-
responding structure factors (right), where colors indicate intensity
values at reciprocal lattice points.

III. ANALYTICAL MODEL OF THE TWO-DIMENSIONAL
STACKED-SLIDER PHASE

In this section we look closer at the simulation results
that yield stacked-slider phases to see if an exact analytical

FIG. 2. (Color online) Numerically obtained ground-state con-
figuration at χ = 0.6363 . . . (left) and the corresponding structure
factor (right), where colors indicate intensity values at reciprocal
lattice points.
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FIG. 3. (Color online) Shown on the left are four representative
numerically obtained ground-state configurations at χ = 0.6818 . . .

(first row), χ = 0.7121 . . . (second row), χ = 0.7424 . . . (third row),
and χ = 0.7878 . . . (fourth row). On the right are their corresponding
structure factors, where colors indicate intensity values at reciprocal
lattice points.

construction can be extracted. We will see that understanding
the configuration shown in Fig. 2 is the key to understanding
other configurations. The real-space configuration in Fig. 2
seems to be made of straight horizontal lines that are displaced
relative to each other. Are the displacements of different
horizontal lines independent of each other or correlated
in some way? To answer this question, we numerically
constructed a configuration that is made of horizontal straight
lines of particles, just like the one shown in Fig. 2, but with
independent random displacements along each horizontal line.
The structure factor of the new configuration has exactly the
same support [the set of k’s such that S(k) �= 0] as the one
shown in Fig. 2. Thus, the new configuration is also a ground
state at this χ value. Therefore, the displacements of each line
do not need to be correlated in any way. This allows us to

x

y

a

b

...
 ..

.

... ...... ...

...
 ..

.

FIG. 4. (Color online) Schematic plot of the two-dimensional
stacked-slider phase model. Each horizontal line of particles [in-
dicated by large (blue) dots] form a one-dimensional integer lattice
with lattice spacing a. Then multiple horizontal integer lattices are
stacked vertically, with spacing b. Each horizontal line of particles
can be translated freely to slide with respect to each other.

find a two-dimensional stacked-slider phase model, depicted
in Fig. 4.

This analytical model allows the calculation of various
properties of the two-dimensional stacked-slider phases. One
can find the analytical pair correlation function and structure
factor of this model, assuming that the displacement of each
line is independent and uniformly distributed between 0 and
a. The pair correlation function g2(r) is defined such that
ρg2(r)dr is the conditional probability that a particle is found
in the volume element dr about r, given that there is a particle
at the origin. For the two-dimensional stacked-slider phase,
g2(r) can be found directly from the definition of this model:

g2(x,y) = b
∑
j �=0

δ(y − bj ) + abδ(y)
∑
j �=0

δ(x − aj ), (6)

where x and y are horizontal and vertical coordinates, both
summations are over all nonzero integers j , and δ denotes the
Dirac delta function. The structure factor S(k) can be found
by Fourier transforming g2(r) − 1:

S(k) = 1 + ρF [g2(r) − 1], (7)

where F [· · · ] denotes Fourier transform. Substituting (6)
into (7), one gets

S(k) = 2πδ(kx)

a

(
2π

b
III2π/b(ky) − 1

)

+ 2π

a
III2π/a(kx) − 4π2

ab
δ(kx)δ(ky), (8)

where kx and ky denote the horizontal and vertical components
of k, respectively, and IIIT (t) = ∑+∞

j=−∞ δ(t − jT ) is the Dirac
comb function. Both the pair correlation function (6) and the
structure factor (8) are anisotropic, since swapping x and y in
Eqs. (6) and (8) gives different expressions.

A topological property this model can predict is the
connectedness of the ground-state manifold, i.e., whether or
not a ground state can be continuously deformed to another
ground state without crossing any energy barrier. Each stacked-
slider configuration is obviously continuously connected to a
rectangular lattice by the sliding motion of different lines.
However, there are many permutations of the rectangular
lattice. Are these permutations connected to each other through
vertical and horizontal sliding motions? In the Appendix we
show that for a finite-size rectangular lattice consisting of N
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particles, all permutations are connected if and only if N is
even.

Having found an analytical model of the ground states in
this χ range, we move on to lower and higher χ ranges. The
lower χ simulation results appear to be more complex. The
first configuration in Fig. 1 appears to be similar to our existing
analytical model, except that the nonzero-value regions in the
structure factor are not strictly lines: The highest-intensity
lines [S(k) ∼ 100] are surrounded by lower-intensity regions
[S(k) ∼ 10−10], which are surrounded by even lower-intensity
regions [S(k) ∼ 10−20]. The structure factor in the lower-
intensity regions are very small, but are still much larger than
the machine precision. (We use double-precision numbers,
which have around 16 significant digits, to calculate ñ(k).
Therefore, the machine precision of S(k) = |ñ(k)|2/N should
be on the order of (10−16)2/N = 10−34.) So a natural question
arises: Are the lower-intensity regions real or are they an
artifact of finite-precision simulations?

To answer this question, we chose a k point right next
to the highest-intensity line and plotted the structure factor
at this k point versus the potential energy during the energy
minimization (see Fig. 5). As �∗ goes to zero, the structure
factor at this k point also goes to zero. Thus, we believe the
lower-intensity regions are the result of numerical imprecision.
If one could carry out an infinite-precision simulation and
drive this configuration to a true ground state, the structure
factors in the lower-intensity regions should go to zero and
the configuration would become consistent with our analytical
model.

Having understood the first configuration in Fig. 1, let us
move on to other configurations in that figure. The second
and third configurations appear to be intermediate configu-
rations between the first one and the fourth one. The fourth
configuration looks like a Bravais lattice, except that the
Bragg peaks are smeared out. Again, to find out whether this
broadening of the Bragg peaks is real or artificial, we plotted
the structure factor at a k point near a Bragg peak versus the
potential energy in Fig. 6. We find again that the structure
factor at this k point goes to zero as �∗ goes to zero. Thus,
the smearing out of the Bragg peaks is also due to numerical
imprecision. If one could carry out an infinite-precision energy
minimization on this configuration, one should get a Bravais
lattice.

So far we have demonstrated that the numerically obtained
ground states follow a simple model at χ = 0.6363 . . . and
χ = 0.6666 . . .. We have also demonstrated that while the
numerically obtained ground states for 0.5303 . . . � χ <

0.6363 . . . appear to be richer, they are actually exactly the
same as either the model or a Bravais lattice if we could
perform infinite-precision simulations. However, as we move
to higher χ ’s, the ground states start to lose degrees of
freedom. As shown in Fig. 3, at χ = 0.6818 . . ., the high-
intensity lines in the structure factor develop zero-intensity
interruptions. In our stacked-slider phase model, if each line
of particles could move independently, then the high-intensity
lines in the structure factor would have no interruptions. Thus,
these interruptions indicate constraints in the displacements
of each line of particles. At χ = 0.7121 . . ., the lines are
interrupted even further, indicating even more constraints
in the displacements of each line. At χ = 0.7424 . . ., the

(a)

(b)

(c)

1x10-24 1x10-18 1x10-12 1x10-6 1
Φ*

1x10-8

0.0001

1
S(
k)

FIG. 5. (Color online) (a) A numerically obtained ground state at
χ = 0.5606 . . .. (b) The corresponding structure factor. A specific k
point is indicated by a black square and an arrow. (c) The structure
factor at this particular k point is plotted against total energy �∗

during the optimization, showing S(k) → 0 as �∗ → 0.

structure becomes a two-particle-basis crystal. Eventually, at
χ = 0.7878 . . ., the structure becomes a Bravais lattice.

Starting from χ = 0.6818 . . ., the stacked-slider phase
become more constrained as χ increases. To study how
constrained this phase is at different χ values, we calculate
the number of zero eigenvalues ne of the Hessian matrix of
the potential energy. This number is equal to the number of
independent ways to deform the structure such that the energy
scales more slowly than quadratic, which is an upper bound of
the dimensionality of the ground-state configuration space nc

[i.e., the number of independent ways to deform the structure
such that the �∗(rN ) remains zero]. For χ < 0.6818 . . ., our
model predicts nc = 11 (since there are two translational
degrees of freedom and nine independent ways to slide the
ten lines of particles relative to each other) and our calculation
also find ne = 11. At χ = 0.6818 . . ., 0.7121 . . ., 0.7424 . . .,
and 0.7878 . . ., our calculations find ne = 9, 5, 3, and 2,
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(a)

(b)
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Φ*
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0.0001
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FIG. 6. (Color online) (a) A numerically obtained ground state at
χ = 0.5606 . . .. (b) The corresponding structure factor. A specific k
point is indicated by a black square and an arrow. (c) The structure
factor at this particular k point is plotted against total energy �∗

during the optimization, showing S(k) → 0 as �∗ → 0.

respectively. This calculation suggests that as χ increases, nc

gradually decreases. Eventually, nc = 2, indicating that there
is no way to deform the structure other than trivial translations.

IV. GENERALIZED STACKED-SLIDER PHASE MODEL

We now generalize the two-dimensional stacked-slider
phase model to higher dimensions. To begin with, we present
and prove the following theorem.

Stealthy stacking theorem. Let dP and dQ be positive
integers. Let W be (dP + dQ)-dimensional Euclidean space.
Let WP be a dP -dimensional subspace of W and WQ be
the dQ-dimensional orthogonal complement space of WP .
Let P be a point pattern in WP with density ρP . For each
point a ∈ P , let Q(a) be a point pattern in WQ with some
density ρQ independent of a. If P is stealthy up to certain
reciprocal-space cutoff KP and all Q(a)’s are stealthy up to
certain reciprocal-space cutoff KQ in their subspace, then the

point pattern in W ,

{a + b|a ∈ P,b ∈ Q(a)}, (9)

is a stealthy point pattern up to K = min(KP ,KQ).
Proof. The collective density variable of the point pattern

in Eq. (9) is

ñ(k) =
∑
a∈P

∑
b∈Q(a)

exp[−ik · (a + b)]. (10)

Since WP and WQ are two orthogonal complementary sub-
spaces of W , we can divide vector k into two parts k =
kP + kQ, where kP ∈ WP and kQ ∈ WQ. Therefore,

ñ(k) =
∑
a∈P

∑
b∈Q(a)

exp[−i(kP + kQ) · (a + b)]

=
∑
a∈P

exp(ikP · a)
∑

b∈Q(a)

exp(−ikQ · b). (11)

For any k such that 0 < |k| � K , |kQ| � |k| � K � KQ. If
kQ �= 0, then the stealthiness of point patterns Q(a) gives∑

b∈Q(a)

exp(−ikQ · b) = 0 (12)

and therefore ñ(k) = 0. On the other hand, if kQ = 0, then
kP = k and Eq. (11) becomes

ñ(k) = NQ(a)

∑
a∈P

exp(−ik · a), (13)

where NQ(a) is the number of particles in pattern Q(a), which is
independent of a because all the Q(a)’s have the same density.
Since 0 < |k| � K � KP , the stealthiness of point pattern P

gives

ñ(k) = 0. (14)

To summarize, for any k such that 0 < |k| � K , whether or not
kQ = 0, ñ(k) is always zero. Therefore, the point pattern (9)
is stealthy up to K .

The parameter χ of this point pattern can be calculated
using Eq. (35) of Ref. [18]. Our calculation yields

χ = v1(dP + dQ; K)

2(dP + dQ)(2π )dP +dQρP ρQ

, (15)

where v1(d; r) is the volume of a d-dimensional hypersphere
of radius r . In the case KP = KQ, using Eq. (35) of Ref. [18],
Eq. (15) can be simplified to

χ = 2v1(dP + dQ; 1)

v1(dP ; 1)v1(dQ; 1)

dP dQ

dP + dQ

χP χQ. (16)

The aforemetioned theorem allows us to construct stacked-
slider configurations in higher dimensions. To construct a
stacked-slider configuration in d � 2, choose two lower
dimensions dP and dQ such that dP + dQ = d. Choose a dP -
dimensional stealthy configuration P and replace each particle
a in P with a dQ-dimensional stealthy configuration Q(a) and
the resulting d-dimensional configuration is a stacked-slider
one. The resulting configuration is often anisotropic, since
dP dimensions are treated separately from the remaining
dQ dimensions. See Fig. 7 for an illustration of a three-
dimensional stacked-slider configuration with dP = 1 and
dQ = 2.
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rP

rQ

FIG. 7. (Color online) Schematic plot of the stacked-slider phase
model. The large black dots form an integer lattice (point pattern P ).
By replacing each black dot with a two-dimensional stealthy point
pattern (indicated by small blue dots) of the same density [point
patterns Q(a)], the overall three-dimensional point pattern consisting
of all the small blue dots is stealthy. The two vectors rP and rQ are
in subspaces WP and WQ, respectively. Note that since some Q(a)’s
are two-dimensional stacked-slider configurations, this configuration
allows both interlayer and intralayer sliding motions, as detailed in
Sec. III.

Certain three-dimensional crystal structures can allow
sliding deformations while remaining stealthy at relatively
large (greater than 0.5) χ . As Fig. 8 shows, the simple cubic
lattice allows the sliding motion of each two-dimensional
square-lattice layer and the sliding motion of each line of
particles inside every layer for χ up to 0.6981 . . .. Barlow
packings [31], including the face-centered-cubic packing and
the hexagonal close packing, also allow the sliding motion of
each triangular-lattice layer of particles for χ up to 0.7600 . . ..

Equation (16) can be used to calculate the maximum χ val-
ues of the stacked-slider phase χss

max, assuming unconstrained
sliding motions, in each space dimension d. To do this one
can try all possible combinations of positive integers dP and

FIG. 8. (Color online) Three-dimensional stacked-slider config-
uration stealthy up to χ = 0.6981 . . .. This configuration is obtained
by sliding each vertical plane of particles relative to each other and
then sliding each vertical line in each plane relative to each other
starting from the simple cubic lattice.

TABLE II. Comparison of the maximum χ value of stacked-slider
phases predicted by the generalized model χss

max and the maximum χ

value of Bravais lattices χ∗
max in two, three, and four dimensions.

d χss
max χ∗

max χss
max/χ

∗
max

2 π/4 π/
√

12 0.8660. . .

3 4π

9
√

3
2
√

2π

9 0.8712. . .

4
√

2π2

16
π2

8 0.7071. . .

dQ such that dP + dQ = d and let χP and χQ equal χ∗
max

in dP and dQ dimensions, respectively. Our calculations for
2 � d � 4 are summarized in Table II. There is no obvious
trend in these low dimensions. However, as d increases, the
factor 2v1(dP +dQ;1)

v1(dP ;1)v1(dQ;1)
dP dQ

dP +dQ
in Eq. (16) decreases for any dP and

dQ. Thus, χss
max should become arbitrarily small in sufficiently

high dimensions.
Similar to two-dimensional stacked-slider configurations,

the higher-dimensional ones also have implicit constraints [i.e.,
k vectors such that |k| > K and S(k) = 0]. As seen in Eq. (11),
S(k) = |ñ(k)|2/N = 0 as long as 0 < |kQ| � K . One can thus
choose arbitrarily large kP such that |k| = |kP + kQ| > K .

V. FEASIBLE REGION OF THE CONFIGURATION SPACE

Although stacked-slider configurations are part of the
ground-state manifold of stealthy potentials, we will show
in this section that they are not entropically favored, as
indicated in Ref. [18]. Entropically favored ground states are
the configurations that most likely appear in the canonical
ensemble in the zero-temperature limit [18]. In this limit, as
a good approximation, the system can only visit part of the
configuration space where �∗(rN ) [in Eq. (4)] is less than
ε > 0, where ε tends to zero as the temperature tends to zero.
This part of the configuration space is therefore called the
feasible region. If the feasible region corresponding to one set
of the ground states is much smaller than the entire feasible
region in the configuration space, this set will almost never
appear in the canonical ensemble, i.e., they are not entropically
favored.

In the infinite-system-size limit, the feasible region of
any stacked-slider configuration is much smaller than that of
any crystal if both the stacked-slider configuration and the
crystal are ground states. This is because as N → ∞, the
configurational dimension nc [i.e., the number of independent
ways to deform the structure such that the �∗(rN ) remains
zero] of stacked-slider phases scales more slowly than the
number of particles N . For example, for a two-dimensional
stacked-slider configuration in which each row of particles can
slide independently, nc scales as

√
N . As discussed in Sec. III,

the number of zero eigenvalues of the Hessian matrix of the
potential energy ne is equal to nc. Since a nonzero eigenvalue
of the Hessian matrix corresponds to a quadratic scaling in
one direction, in the dN-dimensional configuration space,
�∗(rN ) has quadratic scaling in dN − nc directions. In these
directions, as ε → 0, the width of the feasible region scales as√

ε. In the remaining nc directions, the width of the feasible
region is much larger, since these directions correspond to
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FIG. 9. (Color online) Fraction of zero eigenvalues of the Hes-
sian matrix of the potential energy f = ne

dN
for triangular lattices of

various numbers of particles N at χ = 0.6.

translations of different rows of particles, which keeps �∗(rN )
zero. If we let the widths of the feasible region in these
directions be L, then the total volume of the feasible region of
the stacked-sliding phase is approximately

Vs ≈ Lncε(dN−nc)/2 ≈ L
√

Nε(dN−√
N)/2. (17)

In the case of a crystalline structure, ne scales as N when
N → ∞. This can be seen in Fig. 9, where we plot f = ne/dN

versus N for triangular lattices at χ = 0.6. This figure shows
that f tends to some constant as N grows, which means ne

scales as N . Since a zero eigenvalue of the Hessian matrix
of �∗(rN ) implies a slower-than-quadratic scaling in some
direction, the width of the feasible region in these ne directions
scales larger than

√
ε as ε → 0. Let the widths of the feasible

region in these ne directions be εx , where 0 < x < 1/2 is some
exponent. The width of the feasible region in the remaining
dN − ne directions scales as

√
ε. The total volume of the

feasible region of a crystal is approximately

Vc ≈ ε(dN−ne)/2εnex ≈ εdN(1−f )/2εdNf x. (18)

The ratio of Vs and Vc is approximately

Vs

Vc

≈ L
√

Nε[dNf (1−2x)−√
N ]/2. (19)

Since x < 1/2, as N → ∞ and ε → 0, Vs

Vc
→ 0. Therefore,

the feasible region of the stacked-slider phase is much smaller
than that of the crystal. Since there are always crystalline
structures competing with the stacked-slider phase, the latter
is never entropically favored.

VI. RELATIVE STABILITY OF STACKED-SLIDER PHASES

We have shown that the feasible region of stacked-slider
phases is always smaller than that of crystal phases and
thus concluded that stacked-slider phases are never equi-
librium phases at T = 0. This conclusion is confirmed by
low-temperature molecular dynamics simulations reported in
Ref. [24], which found disordered structures for χ < 1/2
and crystalline structures for χ > 1/2. However, this simple
conclusion cannot explain or predict energy minimization
results from high-temperature initial configurations that were
used previously [20], where a transition from disordered

phases to metastable stacked-slider phases was observed as
χ increases, characterized by the change of the support
of S(k). In two dimensions, Ref. [20] reported that this
transition is at χ = 0.57 . . ., but high-fidelity simulations,
reported in Sec. II, produced stacked-slider configurations
at χ = 0.5305 . . ., suggesting that the transition is earlier
than 0.5305 . . .. Another observation on the disordered region
supports our result: Section V of Ref. [22] reported that the
fraction of normal modes with vanishing frequency f in
disordered phases is exactly 1 − 2χ for χ < 1/2. However,
this exact relation cannot be true for the χ > 1/2 region,
since f is non-negative. This suggests that there exists a sharp
transition at χ = 1/2, which is likely the phase transition to
the stacked-slider phase. Although Ref. [22] only reported
the relation f = 1 − 2χ in two dimensions, it explained this
relation by simple counting arguments involving the number of
constraints versus the number of degrees of freedom and hence
this relation should apply in any dimension. Therefore, for any
d, as long as stacked-slider phases exist for some χ above
1/2, there should be a nonequilibrium phase transition from
disordered phases to stacked-slider phases at the threshold
χ = 1/2.

It is noteworthy that one dimension is an exception
of the above discussion. Previously, the existence of
implicit constraints [k’s such that |k| > K and S(k) = 0]
was often used to distinguish stacked-slider phases from
disordered phases [20,22]. Therefore, one-dimensional
stealthy ground states in the range 1/3 < χ < 1/2, proven
to have implicit constraints [32], were considered to be
stacked-slider phases [22]. However, this study suggests
that one-dimensional stealthy ground states in this range
are not a typical stacked-slider phase. First, our model only
predicts stacked-slider phases if the space dimension d is
a sum of two positive integers d = dP + dQ. This requires
that d � 2. Second, the χ range of the one-dimensional
stealthy ground states with implicit constraints is also very
different from that of the higher-dimensional stacked-slider
phases. We also found that one-dimensional stealthy ground
states in this χ range satisfy the relation f = 1 − 2χ and
can be obtained from energy minimizations starting from
random initial configurations with 100% success rate; both
are characteristics of disordered phases [22].

VII. CONCLUSIONS AND DISCUSSION

In this paper we studied using numerical and theoretical
techniques stacked-slider phases, which are metastable states
that are part of the ground-state manifold of stealthy potentials
at densities in which crystal ground states are favored en-
tropically in the canonical ensemble in the zero-temperature
limit [18,24]. The numerical results suggested analytical mod-
els of this phase in two, three, and higher dimensions. Utilizing
this model, we estimated the size of the feasible region of the
stacked-slider phase, finding it to be smaller than that of crystal
structures in the infinite-system-size limit, which is consistent
with our recent previous work [18,24]. In two dimensions,
we also determined exact expressions for the pair correlation
function and structure factor of the analytical model of stacked-
slider phases and analyzed the connectedness of the ground-
state manifold of stealthy potentials in this density regime.
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TABLE III. Comparison of the properties of some common states of matter. Here crystals and quasicrystals signify perfect crystals and
perfect quasicrystals, respectively, without any defects (e.g., phonons and phasons). The checks and crosses indicate whether or not different
phases have the attributes listed in the first column.

Disordered
ground states

of stealthy Liquid
Quasicrystals Stacked-slider potentials crystals Liquids

Property Crystals [1] [2–6] phases [14,18,20–22] [7] [19]

periodicity
√

✗ ✗ ✗ ✗ ✗

positive shear modulus
√ √

✗ ✗ ✗ ✗

hyperuniformity
√ √ √ √

✗ ✗

anisotropy
√ √ √

✗
√

✗

long-range orientational order
√ √ √

✗
√

✗

Our analytical constructions demonstrate that stacked-
slider phases are nonperiodic, statistically anisotropic struc-
tures that possess long-range orientational order but have
zero shear modulus. Since stacked-slider phases are part
of the ground-state manifold of stealthy potentials, they
are also hyperuniform. Therefore, stacked-slider phases are
distinguishable states of matter that are uniquely different
from some common states of matter listed in Table III. Note
that distinctions between the attributes indicated in the table
may be subtly different. For example, crystals, quasicrystals,
and stacked-slider phases all have long-range orientational
order, but with different symmetries. While crystals can
only have twofold, threefold, fourfold, or sixfold rotational
symmetries, quasicrystals have prohibited crystallographic
rotational symmetries. Stacked-slider phases generally do not
have any rotational symmetry, but the fact that they can be con-
structed by stacking lower-dimensional stealthy configurations
in a higher-dimensional space makes the stacking directions
different from the sliding directions, giving them their unique
orientational order.

Our understanding of stacked-slider phases is only in its
infancy with many open questions. For example, what is the na-
ture of the associated excited states? Can stacked-slider phases
emerge from particles interacting with other potentials not
necessarily as ground states? Can such phases be entropically
favored in some ensemble and with what other phases would it
coexist? This is just a partial list of possible of future avenues of
research in our understanding of this unusual phase of matter.
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APPENDIX: CONNECTEDNESS OF PERMUTATIONS
OF 2D STACKED-SLIDER PHASE

As discussed in Sec. III, each two-dimensional stacked-
slider configuration is connected to a permutation of the
rectangular lattice. Therefore, a natural question is whether

or not these permutations of the rectangular lattice are also
connected through sliding motions. If all permutations of the
rectangular lattice are connected, then the entire stacked-slider
phase ground-state manifold is connected. We will show that,
for a rectangular lattice consisting of A rows and B columns of
particles, if each row and each column can slide individually,
then all permutations of the rectangular lattice are connected if
and only if AB is even. We will number all the particles from
1 to AB. Each permutation will be represented by an A × B

matrix. Three different sliding motions will be frequently used
in this section. They are as follows: Move the top row of
particles to the right by one particle spacing, denoted by

→⇒;
move the leftmost column of particles upward by one particle

spacing, denoted by
↑⇒; and move the leftmost column of

particles downward by one particle spacing, denoted by
↓⇒.

As an example of this notation, for A = B = 2, permuta-
tions (1 2

3 4) and (2 1
3 4) are connected because

(
1 2
3 4

)
→⇒

(
2 1
3 4

)
. (A1)

Similarly, permutations (1 2
3 4) and (3 2

1 4) are connected
because (

1 2
3 4

)
↓⇒

(
3 2
1 4

)
. (A2)

So far we have demonstrated that it is possible to swap the
two adjacent particles in the first row [by Eq. (A1)] or the
two adjacent particles in the first column [by Eq. (A2)] for
A = B = 2. Since the system has translational symmetry, one
can swap any two adjacent particles. The swapping of any
two nonadjacent particles can be done by a series of adjacent-
particle swapping. For example, to swap nonadjacent particles
1 and 4 in (1 2

3 4), one can swap particles 1 and 2, then swap
particles 1 and 4, and then swap particles 2 and 4. Finally, since
we can swap any two particles, we can connect one permutation
to any other permutation by swapping each particle with the
particle in its new place. Therefore, all permutations of 2 × 2
rectangular lattices are connected by row-sliding and column-
sliding movements.
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Next we show that one can swap two adjacent particles for A = 3 and B = 4. To swap the first two particles in the first row,
one can perform the following sliding operations:⎛

⎝1 2 3 4
5 6 7 8
9 10 11 12

⎞
⎠ →⇒

⎛
⎝4 1 2 3

5 6 7 8
9 10 11 12

⎞
⎠ ↑⇒

⎛
⎝5 1 2 3

9 6 7 8
4 10 11 12

⎞
⎠ →⇒

⎛
⎝3 5 1 2

9 6 7 8
4 10 11 12

⎞
⎠

↓⇒
⎛
⎝4 5 1 2

3 6 7 8
9 10 11 12

⎞
⎠ →⇒

⎛
⎝2 4 5 1

3 6 7 8
9 10 11 12

⎞
⎠ ↑⇒

⎛
⎝3 4 5 1

9 6 7 8
2 10 11 12

⎞
⎠ →⇒

⎛
⎝1 3 4 5

9 6 7 8
2 10 11 12

⎞
⎠

→⇒
⎛
⎝5 1 3 4

9 6 7 8
2 10 11 12

⎞
⎠ ↓⇒

⎛
⎝2 1 3 4

5 6 7 8
9 10 11 12

⎞
⎠. (A3)

To swap the first two particles in the first column, one can perform the following sliding operations starting from the third-to-last
configuration in Eq. (A3): ⎛

⎝1 3 4 5
9 6 7 8
2 10 11 12

⎞
⎠ ↓⇒

⎛
⎝2 3 4 5

1 6 7 8
9 10 11 12

⎞
⎠ →⇒

⎛
⎝5 2 3 4

1 6 7 8
9 10 11 12

⎞
⎠. (A4)

Equations (A3) and (A4) shows the steps to swap the first two particles in the first row, or the first two particles in the first
column, for A = 3 and B = 4. This can be generalized to any A > 3 and any even B > 4. The generalization to A > 3 is more
obvious because the same steps can be directly applied to any A and achieve the same goal. The generalization to larger even
B is less obvious. For this case, one needs to repeat the first four operations in Eq. (A3) (B/2 − 1) times and then perform the
rest of the steps in Eqs. (A3) or (A4). Since it is possible to swap any two adjacent particles for any A and any even B, from
the same argument as the A = B = 2 case, all permutations of particles for any A and any even B are also connected. Similarly,
all permutations of particles for any even A and any B are also connected because a 90◦ rotation turns it to the even B case.
Therefore, all permutations are connected as long as AB is even.

When AB is odd, not all permutations are connected. This is because none of the sliding operations change the parity of the
permutation. Thus, two permutations with different parity cannot be connected with any combinations of sliding operations.
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