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Systems of particles interacting with “stealthy” pair potentials have been shown to possess infinitely degenerate
disordered hyperuniform classical ground states with novel physical properties. Previous attempts to sample the
infinitely degenerate ground states used energy minimization techniques, introducing algorithmic dependence
that is artificial in nature. Recently, an ensemble theory of stealthy hyperuniform ground states was formulated
to predict the structure and thermodynamics that was shown to be in excellent agreement with corresponding
computer simulation results in the canonical ensemble (in the zero-temperature limit). In this paper, we provide
details and justifications of the simulation procedure, which involves performing molecular dynamics simulations
at sufficiently low temperatures and minimizing the energy of the snapshots for both the high-density disordered
regime, where the theory applies, as well as lower densities. We also use numerical simulations to extend our
study to the lower-density regime. We report results for the pair correlation functions, structure factors, and
Voronoi cell statistics. In the high-density regime, we verify the theoretical ansatz that stealthy disordered ground
states behave like “pseudo” disordered equilibrium hard-sphere systems in Fourier space. The pair statistics obey
certain exact integral conditions with very high accuracy. These results show that as the density decreases from
the high-density limit, the disordered ground states in the canonical ensemble are characterized by an increasing
degree of short-range order and eventually the system undergoes a phase transition to crystalline ground states.
In the crystalline regime (low densities), there exist aperiodic structures that are part of the ground-state manifold
but yet are not entropically favored. We also provide numerical evidence suggesting that different forms of
stealthy pair potentials produce the same ground-state ensemble in the zero-temperature limit. Our techniques
may be applied to sample the zero-temperature limit of the canonical ensemble of other potentials with highly
degenerate ground states.
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I. INTRODUCTION

There has been long-standing interest in the phase behavior
of many-particle systems in d-dimensional Euclidean spaces
Rd in which the particles interact with soft, bounded pair
potentials [1–12]. Considerable attention has been devoted
to the determination of the classical ground states (global
energy minima) of such interactions [3,6,11,12]. While typical
interactions lead to unique classical ground states, certain
special pair potentials are characterized by degenerate clas-
sical ground states—a phenomenon that has attracted recent
attention [12–22].

One family of such pair interactions are the “stealthy
potentials” because their ground states correspond to configu-
rations that completely suppress single scattering for a range of
wave numbers. The Fourier transforms of these potentials are
bounded and non-negative and have compact support [12], and
hence they have corresponding direct-space potentials that are
bounded and long ranged. Because of their special construction
in Fourier space, finding the ground states of stealthy potentials
is equivalent to constraining the structure factor to be zero for
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wave vectors k contained within the support of the Fourier
transformed potential [12], as will be summarized in Sec. II.
In the case when the constrained wave vectors lie in the
radial interval 0 < |k| � K , the stealthy ground states fall
within the class of hyperuniform states of matter [23] and
can be tuned to have varying degrees of disorder. Disordered
hyperuniform systems in general are of current interest because
they are characterized by an anomalously large suppression
of long-wavelength density fluctuations and can exist as
equilibrium or nonequilibrium states, either classically or
quantum mechanically [24–37]. Moreover, because disordered
hyperuniform states of matter have characteristics that lie
between a crystal and a liquid [12], they are endowed with
novel physical properties [18,19,38–46].

When a dimensionless parameter χ , inversely proportional
to the number density ρ and proportional to Kd (size of the
constrained region) is sufficiently small, the hyperuniform
ground states are infinitely degenerate and counterintuitively
disordered (i.e., isotropic without any Bragg peaks) [12].
However, when χ is large enough (ρ is sufficiently small),
there is a phase transition to a regime in which the ground
states are crystalline or highly ordered [13–15,19]. For each
spatial dimension d, there is a special value of χ , χ∗

max, at which
the ground state is unique [47]. The unique ground state is the
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dual (reciprocal lattice) of the densest Bravais lattice packing
in each dimension [12]. In two and higher dimensions, as soon
as χ drops below χ∗

max, the set of the ground states become
uncountably infinite and gradually includes progressively less
ordered structures [12]. Similarly to stealthy potentials, a
family of two-, three-, and four-body potentials that lead to
disordered ground states has also been defined in Fourier space
and studied [17,18,21].

Due to the complexity of the problem, almost all previous
investigations of the ground states employed computer simu-
lations. Such numerical studies were carried out in one, two,
and three dimensions [13,14,17–19]. The ground states were
sampled by minimization of potential energy at fixed densities
starting from random initial conditions in a d-dimensional
cubic simulation box under periodic boundary conditions. A
few optimization techniques were employed to find the global
energy minima with very high precision [14,17].

Generally, a numerically obtained ground-state configu-
ration depends on the number of particles N within the
fundamental cell, initial particle configuration, shape of
the fundamental cell, and particular optimization technique
used [12]. Adding to the complexity of the problem is that
the disordered ground states are highly degenerate with a
configurational dimensionality that depends on the density,
and there are an infinite number of distinct ways to sam-
ple this complex ground-state manifold, each with its own
probability measure. These nontrivial aspects had made the
task of formulating a statistical-mechanical theory of stealthy
degenerate ground states a daunting one. Recently, we have
formulated such an ensemble theory that yields analytical
predictions of the structural characteristics and other properties
of stealthy degenerate ground states [12]. A number of exact
results for the thermodynamic and structural properties of these
ground states were derived that applied to general ensembles.
We then specialized our results to the canonical ensemble
(in the zero-temperature limit) by exploiting an ansatz that
stealthy disordered ground states (for sufficiently small χ )
behave remarkably like “pseudo” disordered equilibrium hard-
sphere systems in Fourier space. Our theoretical predictions
for the pair correlation function g2(r) and structure factor
S(k) of these entropically favored disordered ground states
were shown to be in agreement with corresponding computer
simulations across the first three space dimensions. We also
made predictions for the corresponding excited states for
sufficiently small temperatures that were in agreement with
simulations.

Because the focus of that previous investigation was the
development of ensemble theories, few simulation details were
presented about how the canonical ensemble was sampled
to produce stealthy disordered ground states. One aim of
the present paper is to provide a comprehensive description
of the numerical procedure that we used to produce the
simulation results in Ref. [12]. Moreover, here we also extend
those results by applying the simulation procedure to study
numerically the ground states in the canonical ensemble for
all allowable values of χ and thus investigate the entire phase
diagram for the entropically favored states across the first
three space dimensions. In the second paper of this series,
we will study the exotic aperiodic “wavy phases” identified
in previous numerical work [14] (or “stacked-slider phases,”

as called in the sequel to this paper [48]), a special part of
the ground-state manifold. An analytical model will enable an
even more detailed study of this phase.

As a justification of sampling the canonical ensemble
instead of minimizing energy, we also demonstrate here
how a variety of different optimization techniques affect the
ground states that are sampled, which was not previously
investigated [14,17,18]. This investigation reveals that the pair
statistics of the ground-state configurations indeed generally
depend on the algorithm. Moreover, we show here that the
energy minimization results depend on the initial conditions
as well. We also provide the reason why the simulations in
Ref. [12] and this paper employ noncubic, possibly deforming,
simulation boxes for d � 2. Because almost all previous
numerical simulations were performed using some specific
form of stealthy potentials, we show here that different forms of
stealthy potentials produce identical pair correlation functions,
suggesting that the specific choice of the potential form does
not affect the ensemble being sampled.

Among our major findings, we show that energy mini-
mizations starting from random initial conditions may lead
to clustering of particles, the degree of which depends on
the algorithm for a finite range of χ below 1/2 across the
first three space dimensions. When minimizing the energy
starting from configurations equilibrated at some temperature
TE , the ground-state configurations discovered depend on TE .
However, the algorithm dependence diminishes in the TE → 0
limit. We also demonstrate that the pair statistics [g2(r) and
S(k)] in this limit do not depend on the particular form of the
stealthy potential. The similarity between the structure factor
in this limit and the pair correlation function of an equilibrium
hard-sphere system in direct space [12] is valid for χ up to
some dimension-dependent values between 0.25 and 0.33 in
the first three space dimensions. Beyond this range of χ , the
hard-sphere analogy in Fourier space undergoes modification.
As χ increases further (to the value of about 0.4 in two
dimensions, for example), the first peak in the structure factor
diminishes while second peak in the structure factor grows and
engulfs the first peak. Our simulated pair statistics obey certain
exact integral conditions in Ref. [12] with very high accuracy,
indicating the high fidelity of the numerical results. In the
infinite-system-size limit, at χ = 0.5, the entropically favored
ground states undergo a transition from disordered states to
crystalline states. Depending on the dimension, this phase
transition can occur when aperiodic structures still are part
of the ground state manifold, demonstrating that crystalline
(ordered) structures can have a higher entropy than disordered
structures.

The rest of the paper is organized as follows: In Sec. II,
we briefly summarize the numerical collective-coordinate
procedure and other details of the simulation that we employ
in the present paper with justifications. In Sec. III, we
study the dependence of the results on a variety of energy
minimization algorithms, initial conditions, and the forms of
the stealthy potentials. In Sec. IV, we provide pair correlation
function, structure factor, Voronoi cell-volume distribution,
and configuration snapshots of the stealthy hyperuniform
ground states obtained from the canonical ensemble in the
zero-temperature limit. We provide concluding remarks and
discussion in Sec. V, including suggestions for sampling the
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canonical ensemble in the zero-temperature limit of other
potentials with degenerate disordered ground states.

II. MATHEMATICAL RELATIONS AND
SIMULATION PROCEDURE

As detailed in Sec. II of Ref. [12], we simulate point
processes in periodic fundamental cells (i.e., simulation boxes)
with a pairwise additive potential v(r) such that its Fourier
transform exists. Under nearest image convention, the total
potential energy can be calculated by summing over all pairs
of particles:

�(rN ) =
∑
i<j

v(rij ), (1)

where N is the number of particles, rN ≡ r1,r2, . . . ,rN is
the locations of the particles in d-dimensional Euclidean
space, and rij = ri − rj . Instead of summing over all pairwise
contributions in the real space, the potential energy can also
be represented in Fourier space:

�(rN ) = 1

2vF

[∑
k

ṽ(k)|ñ(k)|2 − N
∑

k

ṽ(k)

]
, (2)

where vF is the volume of the fundamental cell, ṽ(k) =∫
vF

v(r) exp(−ik · r)dr is the Fourier transform of the pair po-

tential, ñ(k) = ∑N
j=1 exp(−ik · rj ) is the complex collective

density variable [with ñ(k = 0) = N ], and both summations
are over all reciprocal lattice vector k’s appropriate to the
fundamental cell. For every k �= 0, ñ(k) is related to the
structure factor, S(k), via

S(k) = |ñ(k)|2
N

. (3)

Given a ṽ(k), the corresponding real-space pair potential is

v(r) = 1

vF

∑
k

ṽ(k) exp(ik · r). (4)

In a finite-sized system, the real-space pair potential has the
same periodicity as the fundamental cell. Therefore, in the
infinite-volume limit, the cell periodicity disappears.

A family of “stealthy” potentials, which completely sup-
press single scattering for all wave vectors within a specific
cutoff in their ground states, are defined as [13,14,17–20]:

ṽ(k) =
{
V (k), if |k| � K ,

0, otherwise,
(5)

where V (k) is a positive isotropic function and K is a constant.
In this paper we always take K = 1, which sets the length
scale. We will also use V (k) = 1 unless otherwise specified.
In the infinite-system-size limit, the isotropic ṽ(k) correspond
to an isotropic real-space pair potential v(r) [12]. However,
for finite systems, the corresponding v(r) is anisotropic. In
Appendix A, we compare the infinite-system-size limit v(r)
with the finite-size v(r)’s in different-shaped simulation boxes
and select the simulation box shape to be used in this paper
based on which v(r) is closest to the infinite-size-limit v(r).

From Eqs. (2) and (5), one can see that a configuration is
a stealthy ground state if ñ(k) = 0 for all k points such that

0 < |k| � K . Therefore, finding a ground state of a stealthy
potential is equivalent to constraining ñ(k) = 0 for all of those
k points. However, in a simulation, one does not need to check
all of the constraints. As detailed in Ref. [12], if there are
(2M + 1) k points within the constrained radius, only M of
them are independent and needed to be constrained to zero.
Equation (2) can be simplified as [49]:

�(rN ) = 1

vF

∑
k

ṽ(k)|ñ(k)|2 + �0, (6)

where the sum is over all independent constraints, and

�0 =
[
N (N − 1) − 2N

∑
k

ṽ(k)

]/
(2vF ) (7)

is a constant independent of the particle positions rN . We now
introduce a parameter

χ = M

d(N − 1)
, (8)

which determines the degree to which the ground states are
constrained and therefore the degeneracy and disorder of the
ground states [14]. Note that the constraints depend on K and
the fundamental cell but are independent of the specific shape
of ṽ(k) as long as ṽ(k) > 0 for all 0 < |k| � K . Therefore,
changing ṽ(k) does not change the set of the ground states.
However, there is no proof that changing ṽ(k) does not change
the relative sampling weights of the ground states.

In this paper we study various systems with different χ ’s
and N ’s. One numerical complication is that these numbers
cannot be chosen arbitrarily, since M = χd(N − 1) must be
an integer consistent with the specific shape of the simulation
box. (For example, a list of the allowed M values for a two-
dimensional square box is given in Table II of Ref. [14].) This
constraint is especially hard to meet when simulating multiple
systems at the same χ value across dimensions. In fact, both χ

and N in Table I (see Appendix C) had to be chosen carefully
to meet this constraint.

Taking the gradient of Eq. (6) yields the forces on particles:

Fj = −�j�(rN ) = 2

vF

∑
k

k ṽ(k) Im[ñ(k) exp(ik · rj )],

(9)

where the sum is also over all independent constraints. This
equation enables us to perform both energy minimizations
and molecular dynamics (MD) simulations. In an energy
minimization, a derivative-based algorithm is used. The first
term on the right side of Eq. (6) is provided to the algorithm as
the objective function and the negative of the force in Eq. (9)
is provided as the derivative. In order to minimize energy,
we have tried different algorithms including the MINOP
algorithm [50], the steepest descent algorithm allowing
large steps [51], the low-storage BFGS (L-BFGS) algorithm
[52–54], the Polak-Ribiere conjugate gradient algo-
rithm [51,55], and our “local gradient descent” algorithm de-
scribed in Appendix B. When χ < 0.5, the objective function
always ends up being very close to zero (the minimum). The
maximum ending objective function for different algorithms
varies from as high as 10−7 for a conjugate gradient algorithm
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to 10−17 for the local gradient descent and steepest descent
algorithms to 10−20 for the L-BFGS algorithm and to as low
as 10−25 for the MINOP algorithm. From our practical point of
view, all of these algorithms are precise enough, since an error
of 10−7 or lower is indiscernible from any results presented
below. Because the L-BFGS algorithm is the fastest, we will
use it unless otherwise specified.

The energy minimizations, if started from random initial
configurations, will sample an algorithm-dependent, nonequi-
librium ensemble. To sample the canonical ensemble at a
given equilibrium temperature TE we use MD simulations.
One important parameter in MD simulations is the integration
time step. Since the optimal choice of the time step depends
on the temperature, and the latter varies across several orders
of magnitude in this paper, we desire a systematic way to
determine the optimal time step. Starting from an energy-
minimized configuration and a very small time step (0.01 in
dimensionless units), we repeat the following steps 104 times
to equilibrate the system and find a suitable time step:

(i) Assign a random velocity from Boltzmann distribution
at TE to each particle.

(ii) Calculate the total (kinetic and potential) energy of the
system E1.

(iii) Evolve the system 1500 time steps using the velocity
Verlet algorithm [56].

(iv) Calculate the total energy of the system E2.
(v) If | ln E1

E2
| > 1 × 10−5, then the time step is too large

and errors will build up quickly. Therefore, we decrease the
time step by 5%. On the other hand, if | ln E1

E2
| < 4 × 10−6,

there is still some room to increase the time step. Since
increasing the time step increases the efficiency of MD
simulations, we increase the time step by 5%.

After the system is equilibrated and the time step is chosen,
we perform constant temperature MD simulations with particle
velocity resetting [57]. A randomly chosen particle is assigned
a random velocity, drawn from Maxwell-Boltzmann distribu-
tion, every 100 steps. We take a sample configuration every
3000 time steps until we have sampled 20 000 configurations
unless otherwise specified. This amounts to an implementation
of the generation of configurations in the canonical ensemble.

The above MD procedure works well for χ < 0.5. How-
ever, two new features arise when it is applied to χ � 0.5
in all dimensions. First, the potential energy surface develops
local minima and energy barriers that can trap the system if
TE is too small. We address this problem by using simulated
annealing, employing a thermodynamic cooling schedule [58]
which starts at T = 2 × 10−3 and ends at 10−6. Note that, by
adopting a cooling schedule, we concede that we may only
take one sample at the end of each MD trajectory, whereas a
fixed-temperature MD trajectory produces multiple samples.

The second new feature is that the entropically favored
ground states are crystalline for χ � 0.5. Unlike disordered
structures, a crystalline structure has long-range order and
may not “fit” in simulation boxes with certain shapes. To
overcome the second problem, we simulate an isothermal-
isobaric ensemble with a deformable simulation box. Every
20 MD time steps, 10 Monte Carlo trial moves to deform the
simulation box are attempted. The pressure is calculated from
Eq. (41) of Ref. [12].

We employed the Wang-Landau Monte Carlo [59] to
attempt to determine the entropically favored ground states
for χ > 0.5 in two and three dimensions. The Wang-Landau
Monte Carlo is used to calculate the microcanonical entropy
S(�) as a function of the potential energy �. We limit our
simulations to the energy range 3 × 10−10 < � − �0 < 10−9

(in dimensionless units), where �0 is the ground-state energy,
by rejecting any trial move that violates this energy tolerance.
This energy range is evenly divided into 1000 bins. Starting
from a perfect crystal structure in a simulation box shaped
like a fundamental cell, small perturbations are introduced
so the energy is within the range. After that, 60 stages of
Monte Carlo simulations are performed, each stage containing
3 × 107 trial moves. The “modification factor” in Ref. [59] is
f = exp[5/(n + 10)], where n is the number of stages.

III. DEPENDENCE ON ENERGY MINIMIZATION
ALGORITHM, MD TEMPERATURE, AND ṽ(k)

In this section, we present numerical simulation results
demonstrating that:

(a) Energy minimizations starting from Poisson initial
configurations using different algorithms can yield ground
states with different pair correlation functions.

(b) Energy minimizations starting from MD snapshots at
different temperatures can yield ground states with different
pair correlation functions.

(c) For configurations obtained by minimizing energy
starting from MD snapshots at sufficiently small temperature,
pair correlation functions do not depend on the minimization
algorithm and the form of the stealthy potential.

These results motivate the reason why we ultimately study
and report results in Sec. IV in the canonical ensemble in the
zero-temperature limit. For concreteness and visual clarity,
we present results here in two dimensions. However, we have
verified that all of the conclusions here also apply to one and
three dimensions.

We performed energy minimizations starting from Poisson
initial configurations (i.e., TE → ∞ state at fixed density)

FIG. 1. (Color online) Pair correlation function as obtained from
different optimization algorithms (as described in the legend) starting
from Poisson initial configurations in two dimensions at χ = 0.2.
Each curve is averaged over 20 000 configurations of 136 particles
each. The left inset zooms in near the origin, showing the differences
between the five algorithms more clearly. The right inset uses a
semilogarithmic scale to show g2(r) ∝ log(r) near the origin.
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FIG. 2. (Color online) As in Fig. 1, except that χ = 0.4 and each
curve is averaged over 20 000 configurations of 151 particles each.
The inset zooms in near the first well, showing the differences between
the five algorithms more clearly.

using each of the five numerical algorithms mentioned in
Sec. II at χ = 0.2 and χ = 0.4. The results are shown in Figs. 1
and 2. At χ = 0.2, the pair correlation functions produced by
the MINOP algorithm and the L-BFGS algorithm are almost
identical. However, the pair correlation function produced
by the conjugate gradient algorithm noticeably differs. The
steepest descent algorithm and our local gradient descent
algorithm produce a significantly different pair correlation
function with a much weaker peak at r = 0. The pair
correlation functions produced by some algorithms appear
to have g2(r) ∝ log(r) divergence near the origin. Since this

FIG. 3. (Color online) Pair correlation function produced by L-
BFGS algorithm starting from snapshots of MD at different equili-
bration temperatures TE , (a) χ = 0.2 and (b) χ = 0.4. Each curve
is averaged over 20 000 configurations of 136 particles each or 151
particles each.

FIG. 4. (Color online) Pair correlation function produced by the
five different algorithms starting from snapshots of MD at equilibra-
tion temperature TE = 2 × 10−6 at χ = 0.2. Each curve is averaged
over 20 000 configurations of 136 particles each.

divergence means particles have a tendency to form clusters,
we call it a “clustering effect.” At χ = 0.4, the clustering
effect disappears, but the pair statistics produced by different
algorithms still differ. The fact that different optimization
algorithms produce different pair statistics means that they
sample the ground-state manifold with different weights. In
other words, different optimization algorithms are sampling
different ground-state ensembles.

In order to avoid the complexity caused by the details
of various optimization algorithms, we turn our interest to
the canonical ensemble in the T → 0 limit. To sample this
ensemble, we perform MD simulations at sufficiently small
temperature TE , periodically take “snapshots,” and then use
a minimization algorithm to bring each snapshot to a ground
state. To determine a “sufficiently small” TE , we calculated the
pair correlation functions at various TE’s and present them in
Fig. 3. The energy minimization result starting from TE → ∞
initial configurations clearly display the “clustering effect” at
χ = 0.2. When TE goes to zero, the “clustering effect” also
diminishes. At χ = 0.4, particles develop hard cores [g2(0) =
0], therefore there is no clustering even if TE is large or infinite.
However, the peak height of g2(r) becomes dependent on TE at
this χ value. For both χ values, the pair correlation functions
of the two lowest TE’s are almost identical, verifying that the
TE → 0 limit exists. These results show that TE = 2 × 10−6

FIG. 5. (Color online) Pair correlation function produced by
different potentials starting from snapshots of MD at sufficiently
low temperature at χ = 0.2. Each curve is averaged over 20 000
configurations of 136 particles each.
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(a)

(b)

FIG. 6. (Color online) Representative one-dimensional entropically favored stealthy ground states at (a) χ = 0.1 and (b) χ = 0.4.

is sufficiently small in two dimensions. Similarly, we have
found that TE = 2 × 10−4 and TE = 1 × 10−6 are sufficiently
small in one and three dimensions, respectively. These tem-
peratures are used in generating all of the results presented in
Sec. IV A.

The energy minimization result starting from Poisson
initial configurations differs for different algorithms, but the
canonical ensemble in the T → 0 limit should not depend on
any particular algorithm. After finding that TE = 2 × 10−6 is
sufficiently small, we confirm the disappearing of algorithmic
dependence by calculating the pair correlation function pro-
duced by different energy minimization algorithms starting
from MD snapshots at TE = 2 × 10−6. Figure 4 shows the
results. The curves for all algorithms almost coincide.

Last, the function V (k) in Eq. (5) can have different forms.
This paper mainly use V (k) = 1 but we also want to know if
the results obtained using this form are equivalent to those
generated using other positive isotropic forms of V (k) as
well. In principle, stealthy potentials of any form should
have the same set of ground-state configurations, but the form
of the stealthy potential could theoretically affect the curva-
ture of the potential energy surface near each ground-state
configurations and thus also affect their relative weights.
Figure 5 shows the pair correlation function produced by
different V (k)’s. The pair correlation functions for V (k) = 1
and V (k) = (1 − k)2 at TE = 2 × 10−6 are almost identical.
For V (k) = (1 − k)6, we initially tried TE = 2 × 10−6 but
found that the “clustering effect” is still noticeable. We further
lowered the temperature to TE = 2 × 10−10 to completely
suppress the “clustering effect” to produce a pair correlation
function identical to that of V (k) = 1 and V (k) = (1 − k)2

potentials. This result suggests that the functional form of V (k)
does not produce noticeable differences in the ground-state
ensembles in the T → 0 limit of the canonical ensemble.

IV. CANONICAL ENSEMBLE IN THE T → 0 LIMIT

We will show here that the entropically favored ground
states in the canonical ensemble in the T → 0 limit for the first
three space dimensions differ markedly below and above χ =
0.5. For χ < 0.5, the entropically favored ground states are
disordered while for χ � 0.5 the entropically favored ground

(a) (b)

FIG. 7. (Color online) Representative two-dimensional entropi-
cally favored stealthy ground states at (a) χ = 0.1 and (b) χ = 0.4.

states are crystalline. Therefore, we will characterize them
differently. For χ < 0.5, we will report the pair correlation
function, structure factor, and Voronoi cell statistics. For
sufficiently small χ , we will show that the simulation results
agree well with theory [12]. For χ � 0.5, we will report the
crystal structures. The numbers of particles in all of the systems
reported in this section are collected in Appendix C.

A. χ < 0.5 region

Representative entropically favored stealthy ground states
in the first three space dimensions at χ = 0.1 and χ = 0.4
are shown in Figs. 6–8. As χ increases from 0.1 to 0.4, the
stealthiness increases, accompanied with a visually perceptible
increase in short-range order. This trend in short-range order
is consistent with previous studies [14,17,18].

We have calculated the pair correlation functions and the
structure factors for various χ values. Results for 0.05 �
χ � 0.33 are shown in Figs. 9 and 10. The χ < 0.2 results
are in excellent agreement with the “pseudo-hard-sphere
ansatz,” which states that the structure factor behaves like
pseudoequilibrium hard-sphere systems in Fourier space [12].
However, the theory gradually becomes invalid as χ increases.

The pair correlation functions of the entropically favored
stealthy ground states are shown in Fig. 10. When χ � 0.2,
since the structure factor is similar to the pair correlation func-
tion of the hard-sphere system, inversely the pair correlation
function is also similar to the structure factor of the hard-sphere
system. As χ grows larger, the pseudo-hard-sphere ansatz
gradually deviates from the simulation result.

We have checked that these pair statistics are consistent
with four theoretical integral conditions of the pair statistics
in the infinite-volume limit [12]. The first three conditions are
Eqs. (58), (59), and (63) of Ref. [12], which are

∫
Rd

P (r)dr = 0, (10)∫
Rd

P (r)v(r)dr = 0, (11)

FIG. 8. (Color online) Representative three-dimensional entrop-
ically favored stealthy ground states at (a) χ = 0.1 and (b) χ = 0.4.
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FIG. 9. (Color online) Structure factors for 1 � d � 3 for 0.05 � χ � 0.33 from simulations and theory [12]. The smaller χ simulation
results are also compared with the theoretical results in the infinite-volume limit [12]. For χ � 0.1, the theoretical and simulation curves
are almost indistinguishable, and the structure factor is almost independent of the space dimension. However, simulated S(k) in different
dimensions become very different at larger χ . Theoretical results for χ � 0.25 are not presented because they are not valid in this regime.

and

g2(0) = 1 − 2dχ + 2d2χ

∫ ∞

K

kd−1Q̃(k)dk, (12)

where P (r) is the inverse Fourier transform of �(k − 1)Q̃(k),
�(x) is the Heaviside step function, and Q̃(k) = S(k) − 1.

The fourth condition is that the pressure calculated from
the “virial equation” [12] has to be either nonconvergent
or convergent to the pressure calculated from the energy
route [12]. All pair statistics in Figs. 9 and 10 were generated
using the step-function potential [the V (k) = 1 case of Eq. (5)],
but this potential does not lead to a convergent virial pressure.
However, as we have shown earlier, the stealthy ground states
that we generated here are also the ground states of other
stealthy functional forms ṽ(k). In one dimension, to test our
simulation procedure, we used the potential form V (k) =
(1 − k) to calculate the pressure from both the virial equation
(Eq. (43) of Ref. [12]) and the energy equation (Eq. (41) of

Ref. [12]). The pressure from the virial equation converges
and agrees with the exact pressure from the energy equation,
thus confirming the accuracy of our numerical results. These
checks involve integrals of g2(r) and S(k) that are only slowly
converging. Therefore, passing them demonstrates that our
results have very high precision.

For smaller χ values, the maximum of the structure factor
is at the constraint cutoff k = K+. However, for higher χ

values, the maximum of S(k) is no longer at k = 1+. To probe
this transition we have calculated the structure factor in two
dimensions for 0.33 � χ � 0.46. The results are shown in
Fig. 11. As χ increases, the peak at k = 1+ gradually decreases
its height, while the subsequent peak gradually grows and
engulfs the first peak.

Besides pair statistics, other widely used characterization
of point patterns include certain statistics of the Voronoi
cells [14,60–62]. A Voronoi cell is the region consisting of
all of the points closer to a specific particle than to any other.

FIG. 10. (Color online) Pair correlation functions for 1 � d � 3 for 0.05 � χ � 0.33 from simulations and theory [12]. The smaller χ

simulation results are also compared with the theoretical results in the infinite-volume limit [12]. For χ � 0.1, the theoretical and simulation
curves are almost indistinguishable. Theoretical results for χ � 0.25 are not presented because they are not valid in this regime.
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FIG. 11. (Color online) Structure factor and pair correlation
function for d = 2 for 0.33 � χ � 0.46, as obtained from
simulations.

We have computed the Voronoi tessellation of the entropically
favored stealthy ground states using the dD Convex Hulls and
Delaunay Triangulations package [63] of the Computational
Geometry Algorithms Library [64]. Since the number density
of the stealthy ground states depends on the dimension and χ ,
we rescaled each configuration to unity density for comparison
of the Voronoi cell volumes. The probability distribution
function p(vc) of the Voronoi cell volumes (where vc is the
volume of a Voronoi cell) are shown in Fig. 12. In the same
dimension, as χ increases, the distribution of Voronoi cell vol-
umes narrows. This is expected because the system becomes
more ordered as χ increases. For the same χ , the distribution
also narrows as the dimension increases, consistent with
theoretical results that at fixed χ , the nearest-neighbor distance
distribution narrows as dimension increases [12]. In Fig. 12,
we additionally show the Voronoi cell-volume distribution of
saturated random sequential addition (RSA) [65–67] packings,
the sphere packings generated by randomly and sequentially
placing spheres into a large volume subject to the nonoverlap
constraint until no additional spheres can be placed. Saturated
RSA packings are neither stealthy nor hyperuniform [65,66].
However, the Voronoi cell-volume distributions of saturated
RSA packings look similar to that of the entropically fa-
vored stealthy ground states. This is not unexpected because
Voronoi cell statistics are local characteristics, and hence
are not sensitive to the stealthiness, which is a large-scale
property.

One interesting phenomenon is that as χ increases and
approaches 1/2, systems that are not sufficiently large can
become crystalline. In Fig. 13, we show two snapshots of
MD simulations at χ = 0.48. The smaller configuration is

FIG. 12. (Color online) Voronoi cell-volume distribution for 1 �
d � 3 for 0.05 � χ � 0.25. For the same dimension, the Voronoi
cell-volume distribution becomes narrower when χ increases. For the
same χ , the Voronoi cell-volume distribution also becomes narrower
when dimension increases. We also present Voronoi cell-volume
distributions of RSA packings at saturation here.

crystalline. However, systems that are 4 times larger remain
disordered at the same χ and temperature. Therefore, this
strongly indicates that crystallization is a finite-size effect for
χ tending to 1/2 from below.

B. χ � 0.5 region

As explained in Sec. II, we perform MD-based simulated
annealing with Monte Carlo moves of the simulation box
for χ > 0.5, since this method works better with rough
potential energy surface and can mitigate the finite-size effect.
We performed this simulation at χ = 0.55, χ = 0.73, and
χ = 0.81 in two dimensions. The results are shown in Fig. 14.
The resulting configuration is always triangular lattice. Even
though the ground-state manifold in this χ regime contains
aperiodic “wavy” phases discovered previously [14] [but

022119-8



GROUND STATES OF STEALTHY HYPERUNIFORM . . . PHYSICAL REVIEW E 92, 022119 (2015)

(a)

(b)

FIG. 13. (Color online) (a) Low-temperature MD snapshot of a
126-particle system at χ = 0.48; the ground-state configuration is
crystalline. (b) MD snapshot of a 504-particle system at the same
TE and χ ; the system does not crystallize and is indeed disordered
without any Bragg peaks.

which are called “stacked-slider” phases in the sequel to this
paper [48], since they are aperiodic configurations with a
high degree of order in which rows (in two dimensions) or
planes (in three dimensions) of particles can slide past each
other] as well as crystals other than the triangular lattice, the
entropically favored ground state is always a triangular lattice.
This means that the triangular lattice has a higher entropy than
stacked-slider phases, although the latter appear to be more
disordered [68].

Although we will show analytically that crystals are
more entropically favored than stacked-slider phases in the
upcoming paper of this series, we still need simulation results
to determine which crystal structure has the highest entropy.
The results of MD-based simulated annealing with Monte
Carlo moves of the simulation box suggest that triangular
lattice has the highest entropy in two dimensions. It seems
natural to apply the same technique to three dimensions to
determine the entropically favored crystal structure. However,
we were unable to crystallize the system in three dimensions.
Even the longest cooling schedule that we tried resulted in
stacked-slider phases.

Another way to find the entropically favored crystal is
to use Wang-Landau Monte Carlo to directly calculate the
entropy of different crystal structures as a function of the
potential energy. We have performed this simulation on
two-dimensional triangular lattice, square lattice, and three-
dimensional body-centered cubic (BCC) lattice, face-centered
cubic (FCC) lattice, and simple cubic (SC) lattice. The results
are shown in Figs. 15 and 16. In all cases the entropy
decreases as the energy decreases. In two dimensions, the

(a)

(b)

(c)

FIG. 14. (Color online) MD-based simulated annealing result at
(a) χ = 0.55, (b) χ = 0.73, and (c) χ = 0.81. The ending configura-
tion is triangular lattice except for small deformations in the χ = 0.55
case.

entropy of the square lattice clearly decreases faster than that
of the triangular lattice at every χ value, confirming that the
triangular lattice is entropically favored over the square lattice
in the zero-temperature limit. In three dimensions at χ = 0.58,
the entropy of the FCC lattice decreases more slowly than that
of the BCC and SC lattice, suggesting that the entropically
favored ground state in three dimensions at χ = 0.58 is the
FCC lattice. At higher χ values, the scaling of the entropy of
the FCC lattice and the BCC lattice become very close to each
other, preventing us from determining the entropically favored
ground state at these χ values.

V. CONCLUSIONS AND DISCUSSION

The uncountably infinitely degenerate classical ground
states of the stealthy potentials have been sampled previously
using energy minimizations. We demonstrate here that this
way of sampling the ground states to produce ensembles
of configurations introduces dependencies on the energy
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FIG. 15. (Color online) Microcanonical entropy as a function of energy S(�) calculated from Wang-Landau Monte Carlo of triangular
lattice and square lattice at various χ ’s. Here �0 denotes the ground-state energy.

minimization algorithm and the initial configuration. Such
artificial dependencies are avoided in studying the canonical
ensemble in the T → 0 limit. We sample this ensemble by
performing MD simulations at sufficiently low temperatures,

periodically taking snapshots, and minimizing the energy of
the snapshots.

The configurations in this ensemble become more ordered
as χ increases and obey certain theoretical conditions on their

FIG. 16. (Color online) Microcanonical entropy as a function of energy S(�) calculated from Wang-Landau Monte Carlo of BCC lattice,
FCC lattice, and SC lattice at various χ ’s. A curve for SC lattice is not presented for χ � 0.68 because the latter is not a ground state at such
high χ values. Here �0 denotes the ground-state energy.
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pair statistics [12], similarly to previous energy minimization
results. However, other properties of this ensemble are unique.
First, our numerical results demonstrate that the pair statistics
of this ensemble displays no “clustering effect” [divergence of
g2(r) as r → 0] for any χ value and is independent of the
functional form of the stealthy potential. Second, we numer-
ically verify the theoretical ansatz [12] that for sufficiently
small χ stealthy disordered ground states behave like “pseudo”
disordered equilibrium hard-sphere systems in Fourier space,
i.e., S(k) has the same functional form as the pair correlation
function for equilibrium hard spheres for sufficiently small
densities. Third, when χ is above the critical value of 0.5, our
results strongly indicate that crystal structures are entropically
favored in both two and three dimensions in the infinite-volume
limit. Our numerical evidence suggests that the entropically
favored crystal in two dimensions is the triangular lattice.
However, we could not determine the entropically favored
crystal structure in three dimensions. For finite systems, the
disordered-to-crystal phase transition can happen at a slightly
lower χ . A theoretical explanation of this phenomenon remains
an open problem.

Besides ground states of stealthy potentials, other dis-
ordered degenerate ground states of many-particle systems
have been studied using energy minimizations. Specifically,
previous researchers have constrained the structure factor
to have some targeted functional form other than zero for
prescribed wave vectors [17,18,21]. Finding the configurations
corresponding to such targeted structure factors amounts to
finding the ground states of two-, three- and four-body poten-
tials, in contrast to the two-body stealthy potential studied in
the present paper. This situation is the most general application
of the collective-coordinate approach. It will be interesting to
study the resulting pair statistics of the ground states for these
more general interactions in the zero-temperature limit of the
canonical ensemble.

The collective-coordinate approach is an independent and
fruitful addition to the basic statistical mechanics problem
of connecting local interactions to macroscopic observables.
One important feature of collective-coordinate interactions is
that it has uncountably infinitely degenerate classical ground
states [12]. In the case of isotropic pair interactions, the only
other system that we know with this feature is the hard-sphere
system. However, there are two important differences between
hard-sphere systems and collective-coordinate ground states.
First, while the dimensionality of the configuration space of
equilibrium hard-sphere systems consisting of N particles
within a periodic box is fixed [simply determined by the
nontrivial number of degrees of freedom, d(N − 1)], the
dimensionality of the collective-coordinate ground-state con-
figuration space decreases as χ increases and, on a per particle
basis, eventually vanishes [12]. The decreased dimensionality
of the ground-state configuration space creates challenges
for accurate sampling of the entropically favored ground
states using numerical simulations and hence the development
of better sampling methods is a fertile ground for future
research.

Second, while the probability measure of the equilibrium
hard-sphere system is uniform over its entire ground-state
manifold, that of the stealthy ground states is not uniform.
To illustrate this point, imagine a one-dimensional energy

FIG. 17. (Color online) A model one-dimensional energy land-
scape with two wells located at x1 and x2 of the same depth
but different curvatures. The “feasible regions,” i.e., regions where
V (x) < ε, is marked by red dashed lines.

landscape that has a double-well potential behavior in a portion
of the configuration space, as shown in Fig. 17. Each minimum
represents a degenerate ground state (as we find with stealthy
potentials) and therefore the well depths of the minima are
the same. Let us now consider harmonic approximations of
the two wells in the vicinity of x1 and x2, respectively,

V1(x) = a1(x − x1)2

and

V2(x) = a2(x − x2)2,

where x is the configurational coordinate. At very low tempera-
ture, to a good approximation, the system can only visit the part
of the configuration space with energy less than ε, and ε → 0
as T → 0. Solving Vi(x) < ε, where i = 1,2, one finds the fea-
sible region of configuration space associated with both wells:

x1 −
√

ε/a1 < x < x1 +
√

ε/a1

and

x2 −
√

ε/a2 < x < x2 +
√

ε/a2.

When a1 �= a2, we see that the feasible regions associated
with the two potential wells have different ranges. Therefore,
the weights associated with the two minima, i.e., the relative
probabilities for finding the system in the vicinity of those
minima, will also differ. Similarly, in the stealthy multidimen-
sional configuration space that we are studying, the magnitude
of the eigenvalues of the Hessian matrix will determine
the relative weights. Therefore, the probability measure of
the stealthy ground states is not uniform over the ground-state
manifold, unlike the degenerate ground states of classical hard
spheres. Our low-temperature MD simulations sample ground
states with this nonuniform probability measure. It would be
useful to devise theories to estimate the weights of different
portions of the ground-state manifold. However, a feature that
complicates the problem is that the Hessian matrix has zero
eigenvalues. In the associated directions of the eigenvectors
of the configuration space, the energy scales more slowly than
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quadratically (harmonically) but we do not know the specific
form.

This paper, which investigates the entropically favored
ground states, is the first of a two-paper series. In the second
paper, we will study aspects of the ground-state manifold with
an emphasis on configurations that are not entropically favored
for χ above 1/2 (the ordered regime). In particular, we will
more fully investigate the nature of so-called “wavy” crystals

(a) (b)

(c) (d)

(e) (f)

(g)

FIG. 18. (Color online) A portion of the real-space potential v(r)
around the origin for the stealthy potential (5) with K = 1 and V (k) =
1. (a)–(f): Real-space potential in a periodic simulation box that is [(a),
(c), and (e)] square or [(b), (d), and (f)] rhombic in shape; the latter
has a 60◦ interior angle. The volumes of the simulation boxes, vF ,
are [(a) and (b)] 100, [(c) and (d)] 400, and [(e) and (f)] 1385. Panels
(a)–(d) use unrealistically small simulation boxes and is intended
to illustrate finite-size effect only. (g) The real-space potential in
the infinite-system-size limit. All potentials are normalized by their
respective values at the origin since scaling does not affect the ground
state. Note that, starting from the center, the dark (red) region indicates
the highest values of the potential, whereas towards the edge of the
box, the dark (blue) region indicates the lowest values of the potential.

or “stacked-slider” phases, discovered in Ref. [14]. Using an
analytical description of such states, we will demonstrate that
they are part of the ground state but are not entropically
favored. Our analytical model will also demonstrate that
stacked-slider phases exist in three and higher dimensions.
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APPENDIX A: REAL-SPACE POTENTIAL IN
FINITE SYSTEMS

In the infinite-system-size limit, an isotropic ṽ(k) corre-
spond to an isotropic real-space pair potential v(r). However,
for finite systems, the corresponding v(r) is anisotropic. To il-
lustrate the finite-size effect, we compare the two-dimensional
real-space potential v(r) in the infinite-system-size limit to
corresponding potentials associated with finite-sized funda-
mental cells of square and rhombic shapes of different volumes
in Fig. 18. The real-space potential in the rhombic simulation
box with a 60◦ interior angle is appreciably more isotropic than
the real-space potential in a square simulation box. Therefore,
in this paper, we will henceforth use rhombic fundamental
cells in two dimensions. Similarly, in three dimensions, we
always use a simulation box shaped like a fundamental cell of
a body-centered cubic (BCC) lattice since BCC lattice is the
unique ground state at χ∗

max.

APPENDIX B: LOCAL GRADIENT DESCENT
ALGORITHM

Most optimization algorithms are designed for efficiency.
They use complex rules to determine the direction of the
next step and take as large steps as possible. These features
make their path less obvious. To minimize energy in the path
following the gradient vector, we designed a “local gradient
descent algorithm” with the following steps:

(1) Start from an initial guess, x, and find the function value
f (x) and derivative f ′(x).

(2) Start from a relatively large (10−3 times the simulation
box side length) step size, s, and calculate the vector to the
next step �x = −s

f ′(x)
|f ′(x)| . Find the function value at the next

TABLE I. The number of particles N of each systems shown in
Figs. 9 and 10.

χ N for d = 1 N for d = 2 N for d = 3

0.05 1001 541 261
0.1 501 270 131
0.143 351 190 92
0.2 251 136 66
0.25 201 109 53
0.33 151 181 191
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TABLE II. The number of particles N of each
systems shown in Fig. 11.

χ N

0.33 181
0.35 171
0.38 161
0.4 151
0.43 141
0.46 131

step f (x + �x). Calculate the change of function value �f =
f (x + �x) − f (x).

(3) If we are following the path of steepest descent
accurately, the change of the function value should be close
to f ′(x) · �x. If the difference between �f and f ′(x) · �x is
less than 1%, we accept this move. Otherwise, we abort this
move and half the step size s.

(4) Repeat the above steps until a minimum is found with
enough precision.

TABLE III. The number of particles N of each systems shown in
Fig. 12.

χ N for d = 1 N for d = 2 N for d = 3

0.05 1001 541 261
0.1 501 270 131
0.143 351 190 92
0.2 251 136 66
0.25 201 109 53

APPENDIX C: NUMBER OF PARTICLES OF EVERY
SYSTEM IN SEC. IV

In this Appendix we report the number of particles N in
each system in Sec. IV. Both configurations in Fig. 6 consist
of 51 particles. Configurations (a) and (b) in Fig. 7 consist of
271 and 151 particles, respectively. Those in Fig. 8 consist of
131 and 161 particles, respectively.

The number of particles of each system in Figs. 9–12
are shown in Tables I–III, respectively. Each configuration in
Figs. 14–16 consist of 36, 400, and 343 particles, respectively.
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and P. Lindner, Macromolecules 34, 2914 (2001).
[5] C. N. Likos, A. Lang, M. Watzlawek, and H. Löwen, Phys. Rev.
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