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Probing local equilibrium in nonequilibrium fluids
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We use extensive computer simulations to probe local thermodynamic equilibrium (LTE) in a quintessential
model fluid, the two-dimensional hard-disks system. We show that macroscopic LTE is a property much
stronger than previously anticipated, even in the presence of important finite-size effects, revealing a remarkable
bulk-boundary decoupling phenomenon in fluids out of equilibrium. This allows us to measure the fluid’s
equation of state in simulations far from equilibrium, with an excellent accuracy comparable to the best
equilibrium simulations. Subtle corrections to LTE are found in the fluctuations of the total energy which
strongly point to the nonlocality of the nonequilibrium potential governing the fluid’s macroscopic behavior out of

equilibrium.
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I. INTRODUCTION

Nonequilibrium phenomena characterize the physics of
many natural systems, and their understanding remains a major
challenge of modern theoretical physics. Out of equilibrium,
dynamics and statistics are so intimately knotted that no
general bottom-up approach exists yet (similar to equilibrium
ensemble theory) capable of predicting nonequilibrium macro-
scopic behavior in terms of microscopic physics, even in the
simplest situation of a nonequilibrium steady state (NESS)
[1-7]. In contrast with equilibrium, the microscopic proba-
bility measure associated to a NESS (or mNESS hereafter)
is a complex object, often defined on a fractal support or
strange attractor, and is utterly sensitive to microscopic details
as the modeling of boundary reservoirs (e.g., deterministic
vs stochastic) [2,8—10]. Moreover, the connection between
mNESSs and a nonequilibrium analog of thermodynamic
potentials is still murky at best. On the other hand, we do
know that essentially different mNESSs (resulting, e.g., from
different modelings of boundary baths) describe equally well
what seems to be the same macroscopic NESS (or MNESS
in short), defined in terms of a few macroscopically smooth
fields [11]. Key for this sort of nonequilibrium ensemble
equivalence (which can be formally stated via the chaotic
hypothesis of Gallavotti and Cohen [10]) is the notion of
local thermodynamic equilibrium (LTE) [2,12], i.e., the fact
that an interacting nonequilibrium system reaches locally an
equilibrium-like state defined by, e.g., a local temperature,
density, and velocity (the first two related locally via standard
thermodynamics), which are roughly constant across molec-
ular scales but change smoothly at much larger macroscopic
scales, where their evolution is governed by hydrodynamic
equations. LTE plays an important role in physics, being at
the heart of many successful theories, from classical hydrody-
namics [13] or nonequilibrium thermodynamics [14] to recent
macroscopic fluctuation theory (MFT) [4-7]. The latter studies
dynamic fluctuations of macroscopic observables arbitrary
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far from equilibrium and offers explicit predictions for the
large deviation functions (LDFs) controlling the statistics of
these fluctuations [15]. These LDFs are believed to play in
nonequilibrium a role akin to the free energy (or entropy)
in equilibrium systems, establishing MFT as an alternative
pathway to derive thermodynamic-like potentials out of equi-
librium, bypassing the complexities associated to mNESSs
and their sensitivity to microscopic details [4,5]. The LDFs so
obtained exhibit the hallmarks of nonequilibrium behavior;
e.g., they are typically nonlocal (or equivalently nonaddi-
tive) [16] in stark contrast with equilibrium phenomenology.
Such nonlocality emerges from tiny, O(N ') corrections to
LTE which spread over macroscopic regions of size O(N),
with N the number of particles in the system of interest [16].
This shows that LTE is a subtle property: while corrections
to LTE vanish locally in the N — oo limit, they have a
fundamental impact on nonequilibrium LDFs in the form of
nonlocality, which in turn gives rise to the ubiquitous long-
range correlations which characterize nonequilibrium fluids
[4,17,18].

These fundamental insights about LTE and its role out
of equilibrium are coming forth from the study of a few
oversimplified stochastic models of transport [4-7,16]. The
question remains, however, as to whether the emerging picture
endures in more realistic systems: Does LTE hold at the
macroscopic level in fluids far from equilibrium? Can we
measure corrections to LTE at the microscopic or fluctuating
level? Are these corrections the fingerprints of nonlocality?
Here we answer these questions for a quintessential model
of a nonequilibrium fluid, the two-dimensional hard-disks
system under a temperature gradient [19]. As we argue below,
this model contains the essential ingredients that characterize
a large class of fluids whose physics is dominated by the
short-range repulsion between neighboring particles, so we
expect some of our results to generalize also to these more
realistic model fluids. In particular, we show below that
macroscopic LTE (MLTE) is a very strong property even
in the presence of important finite-size effects, revealing a
striking decoupling between the bulk fluid, which behaves
macroscopically, and two boundary layers which sum up all
sorts of artificial finite-size and boundary corrections to renor-
malize the effective boundary conditions on the remaining

©2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.92.022117

J.J. DEL POZO, P. L. GARRIDO, AND P. I. HURTADO

bulk. This bulk-boundary decoupling phenomenon, together
with the robustness of the MLTE property, allows us to measure
with stunning accuracy the equilibrium equation of state (EoS)
of hard disks in nonequilibrium simulations, even across the
controversial hexatic and solid phases [20]. To search for
corrections to LTE, we study the moments of the velocity
field and the total energy. While the former do not exhibit
corrections to LTE, the fluctuations of the total energy do pick
up these small corrections, the essential difference coming
from the nonlocal character of the higher-order moments
of the total energy. This suggests that corrections to LTE
are indeed linked to the nonlocality of the nonequilibrium
fluid.

II. MODEL AND SIMULATION DETAILS

One of the simplest ways to simulate a fluid from
microscopic dynamics consists in modeling its constituent
particles as impenetrable bodies undergoing ballistic motion
between elastic collisions with neighboring particles. Such
an oversimplied description picks up, however, the essential
ingredient underlying the physics of a large class of fluids,
namely, the strong, short-distance repulsion between neighbor-
ing molecules. This short-range repulsion dominates the local
and global emerging structures in the fluid, as well as the nature
of interparticle correlations [19,21]. In this way, hard-sphere
models and their relatives capture the physics of a large
class of complex phenomena, ranging from phase transitions
or heat flow to glassy dynamics, jamming, or the physics
of liquid crystals and granular materials, to mention just a
few [11,19-34], hence defining one of the most successful,
inspiring, and prolific models of physics.

From a theoretical standpoint, hard-sphere models are
also very interesting because their low- and moderate-density
limits are directly comparable with predictions from kinetic
theory (either Boltzmann-type equations for low-density or
ring-kinetic theory for higher densities) [35,36]. Moreover,
hard-sphere models are commonly used as a reference systems
for perturbation approaches to the statistical mechanics of
interacting particle systems [19,37,38]. In fact, the idea of
representing a liquid by a system of hard bodies can be
already found in the work of Van der Waals: his famous
equation of state was derived using essentially this principle.
In addition, there exists an extensive literature on efficient
event-driven molecular dynamics algorithms for hard-sphere
models [39,40] which open the door to massive, long-time
simulations with large numbers of particles. This last feature
turns out to be crucial in our case, as deviations from LTE
are expected to be small and to occur at the fluctuating
level [4-7,16], thus requiring excellent statistics to pick up
such a weak signal.

In this work we study a system of N € [1456,8838] hard
disks of radius ¢ in a two-dimensional box of unit size
L =1, with stochastic thermal walls [34,41,42] at x = 0,L
at temperatures Ty € [2,20] and T, = 1, respectively, and
periodic boundary conditions along the y direction. The
stochastic thermal walls work as follows: each time a particle
hits one of these walls, its velocity v = (v,,v,) is randomly
drawn from a Maxwellian distribution defined by the wall
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with the additional constraint that the x component of
the velocity changes sign. Note that we take units where
Boltzmann constant kg = 1. The above process simulates in
a highly efficient manner the flow of energy in and out of the
system from an infinite, equilibrium reservoir at the chosen
temperature. On the other hand, the disks radius is defined as

t=+/n/Nm, ey

with n = w€>N/L? € [0.05,0.725] the global packing frac-
tion. With these definitions, we can approach the N — oo
limit at fixed n and constant temperature gradient AT =
|Ty — Tol/L.

In order to characterize the inhomogeneous nonequilibrium
steady state in the fluid, we divided the system into 15 virtual
cells of linear size A = L/15 along the gradient direction and
measured locally a number of relevant observables including
the local average kinetic energy, virial pressure, packing
fraction, etc., as well as the energy current flowing through the
thermal baths and the pressure exerted on the walls. Local tem-
perature is then defined via the equipartition theorem from the
average kinetic energy per particle in each local cell. Moreover,
in order to look for deviations from LTE, we also measured
moments of the velocity field and the total energy; see Sec. IV.

In order to measure the reduced pressure Qy = 0% Py
(with Py the pressure), we used two different methods which
yield equivalent results (see below). On one hand, we measured
the reduced pressure exerted by the fluid on the thermal
walls, O, (N), in terms of the average momentum exchanged
between the colliding particles and the thermal wall per unit
length and unit time. On the other hand, we also measured
locally in each cell the reduced virial pressure Q,(x;N)

defined as
702
T ), (2
2AL1c01<C;(X)VJ r,> @

Ov(x;N) = Ty(x)pn(x) +

with py(x) and Txn(x) the local packing fraction and local
temperature, respectively, and where the sum is taken over all
collisions occurring during a time interval 7., in a cell centered
at x. Here v;; = v; — v; is the relative velocity of the colliding
pair (i,j), r;; is the vector connecting the particles centers
at collision, with r;; = 2¢, and angular brackets represent an
ensemble average. In equilibrium, Eq. (2) is just the viral pres-
sure [43], and our results below show that locally in a nonequi-
librium steady state the above expression is a sound definition
of pressure. In fact, we will show below that both wall and virial
definitions of pressure, Q. (N) and Q,(x; N), yield values
consistent with each other and with theoretical predictions.
Finally, note that time averages of the different observables
were performed with measurements every 10 time units for a
total time of 10°~10 (our time unit was set to one collision per
particle on average), after a relaxation time of 103, which was
sufficient to reach the steady state. Small corrections (~0.1%)
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FIG. 1. (Color online) Density profiles for N = 8838, n = 0.5,
and varying Ty € [2,20]. Shaded areas correspond to boundary layers.
Inset: Finite size effects as captured by §on (x) = oy (X) — PNin (X),
with Np.x = 8838 and Ny, = 1456, for different gradients.

due to the spatial discretization of density and temperature
profiles are explicitly taken into account and subtracted (see
Appendix A), and statistical errors in data averages (ata 99.7%
confidence level) are always plotted.

III. MACROSCOPIC LOCAL EQUILIBRIUM

Figures 1 and 2 show the density and temperature profiles,
on(x) and Ty(x), respectively, measured for N = 8838, n =
0.5, and varying gradients AT. These profiles are in general
nonlinear, and similar profiles are measured for different N, n,
and AT. Interestingly, temperature profiles in Fig. 2 (top) can
be fitted with high accuracy by the phenomenological law

Tx)*=ax+b 3)

with o an exponent characterizing the apparent nonlinearity.
This simple law has been deduced for some two-dimensional
Hamiltonian and stochastic models of heat transport [44].
In our case, however, the fitted exponent « exhibits a
pronounced dependence on N and AT (not shown), with
o € [0.681,0.715] and no coherent asymptotic behavior, a trait
of the strong finite-size corrections affecting the hydrodynamic
profiles. These corrections are captured, for instance, by the
finite-size excess density and temperature profiles, defined as

SING) = [N () = [Ny (X)s )

with f = p, T, and Ny = 8838 and Ny, = 1456 the max-
imum and minimum number of particles used in our simula-
tions. The insets in Figs. 1 and 2 show dpx(x) and §Ty(x)
measured for different temperature gradients, signaling the
importance of finite-size corrections in this setting, particularly
near the boundaries and most evident for density profiles.
Indeed, the thermal walls act as defect lines disrupting the
structure of the surrounding fluid, a perturbation that spreads
for a finite penetration length toward the bulk fluid, defining
two boundary layers where finite-size effects and boundary
corrections concentrate and become maximal; see insets in
Figs. 1 and 2. Furthermore, the boundary disturbance gives
rise to a thermal resistance or temperature gap between
the profile extrapolated to the walls, Ty(x = 0,L), and the
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FIG. 2. (Color online) Top: Temperature profiles for the same
conditions as in Fig. 1 and finite-size effects (inset). Bottom:
Temperature gap at the hot wall vs 1/+/N for varying Ty, and linear
fits to the data.

associated bath temperature Ty ; . In the bottom panel of Fig. 2
we study the system size dependence of this thermal gap,
)/(),L(AT,N) = |T()’L — Tn(x = 0,L)|, finding that

Yo..(AT,N) ~ N~"* VAT, (5)

In this way, the boundary thermal gaps disappear in the
thermodynamic limit when approached at constant packing
fraction 1 and temperature gradient AT'. In order to minimize
boundary corrections, we hence proceed to eliminate from
our analysis below the boundary layers by removing from the
profiles the two cells immediately adjacent to each wall, i.e.,
cellsi = 1,2 and 14,15 (see shaded areas in Fig. 1) [42].

As described in Sec. II, we also measured the pressure in the
nonequilibrium fluid using two different methods, namely, by
monitoring the (reduced) pressure exerted by the fluid on the
thermal walls, Q,,(N), and alternatively by measuring a local
version of the virial pressure for hard disks, Q,(x; N); see
Eq. (2). The latter yields pressure profiles which are constant
across the bulk of the fluid but exhibit a clear estructure at
the boundary layers; see inset in top panel of Fig. 3. This is
of course expected because of the local anisotropy induced
by the nearby walls. A sound definition of the fluid’s pressure
is then obtained by averaging in the bulk the virial pressure
profiles. This pressure exhibits strong finite size corrections
which scale linearly as N~! for each AT (see inset and bottom
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FIG. 3. (Color online) Top: Bulk-averaged virial and wall re-
duced pressures as a function of AT for n = 0.5 in the N — oo
limit, and cubic fit. The light blue squared symbol (W) at AT =0
represents the equilibrium pressure predicted by the Henderson EoS;
see Eq. (7). In both cases (virial and wall pressures) finite-size data
scale linearly with N~'; see bottom panel. The inset shows virial
pressure profiles for different N, n = 0.5 and AT = 10, which are
constant in the bulk.

panel in Fig. 3), converging to a well-defined value in the
N — oo limit. Wall pressures similarly scale as N~! (see
bottom panel in Fig. 3), and in all cases (both for finite N
and in the N — oo limit) the measured values agree to a high
degree of accuracy and VAT with those of the virial expression
(see top panel in Fig. 3). Notice that the N — oo data are
consistent with a cubic polynomial dependence of pressure on
the temperature gradient (see top panel in Fig. 3), and such
cubic dependence is in turn compatible with the equilibrium
pressure (for AT = 0) predicted by the Henderson equation
of state [19,48]; see Eq. (7) below. We hence conclude that
both definitions of pressure are compatible with each other
and with theoretical predictions, suggesting already a sort of
local mechanical equilibrium in the nonequilibrium fluid.

We now focus on the macroscopic notion of local thermo-
dynamic equilibrium described in the introduction, an issue
already explored in early computer simulations [42]. Macro-
scopic LTE implies that, locally, the density and temperature
fields should be related via the equilibrium EoS,

Q = pT O(p.T), (6)
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FIG. 4. (Color online) Top: Compressibility factor Qy =
On/[Ty(x)pn(x)] as a function of Ty(x) and py(x) measured for
N = 2900 and varying  and Ty. Bottom: Oy vs py(x) measured
for n =0.5, N €[1456,8838] and T, € [2,20], as well as for
n € [0.05,0.65], N = 2900 and T, = 10,20, summing up a total of
2530 data points. For comparison, data from previous equilibrium
simulations in literature are shown, together with the Henderson EoS
approximation (line). The inset shows a detailed comparison of a
running average of our data with equilibrium results after subtracting
the leading Henderson behavior.

where Q(p,T) is the compressibility factor [19]. The top panel
in Fig. 4 shows results for Oy = Qy /[Ty (x)pn(x)] measured
out of equilibrium, as a function of py(x) and Ty (x). Note that
each nonequilibrium simulation, for fixed (AT,n,N), covers a
fraction of the EoS surface, thus improving the sampling when
compared to equilibrium simulations, which yield a single
point on this surface. As hard disks exhibit density-temperature
separability (i.e., temperature scales out of all thermodynamic
relations) [19,45], the associated O depends exclusively on
density, meaning that a complete collapse is expected for
the projection of the EoS surface on the Q-p plane, as we
indeed observe; see top panel in Fig. 4. Strikingly, although
density and temperature profiles, as well as pressures, all
depend strongly on N (see Figs. 1-3), the measured Qy as a
function of the local density exhibits no finite size corrections
at all; see bottom panel in Fig. 4, where a total of 2530
data points for different N € [1456,8838],n € [0.05,0.65] and
To € [2,20] are shown. This strongly suggests a compelling
structural decoupling between the bulk fluid, which behaves
macroscopically and thus obeys locally the thermodynamic
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EoS, and the boundary layers near the thermal walls, which
sum up all sorts of artificial finite-size and boundary correc-
tions to renormalize the effective boundary conditions on the
remaining bulk. This remarkable bulk-boundary decoupling
phenomenon, instrumental in the recent discovery of novel
scaling laws in nonequilibrium fluids [45,46], is even more
surprising at the light of the long-range correlations present in
nonequilibrium fluids [4,17,18], offering a tantalizing method
to obtain macroscopic properties of nonequilibrium fluids
without resorting to unreliable finite-size scaling extrapola-
tions [46]. For comparison, we include in Fig. 4 (bottom) data
from several extensive equilibrium simulations carried with
different methods during the last 60 years [20,47], as well as
the Henderson EoS approximation [19,48]

2 4
1+07/8 0.043/)_],
(1-p)? (I-p)
which is reasonably accurate in the fluid phase. The inset in
Fig. 4 shows a fine comparison of a running average of our
data and the equilibrium simulations in literature, once the
leading Henderson behavior has been subtracted. An excellent
agreement is found to within 1% relative error, confirming
the validity and robustness of macroscopic LTE and the
bulk-boundary decoupling phenomenon here reported. The
accuracy of our data for the EoS is surprising taking into
account that local cells have at most 500 particles, and many
fewer in the typical case.

Note that our data include points across and beyond
the controversial liquid-hexatic-solid double phase transition
regime [20]. In fact, for n = 0.6 a coexistence between a fluid
phase near the hot wall and a solid-like phase near the cold one
is established. In Fig. 5 we plot a typical configuration in this
nonequilibrium coexistence regime with two color codings.
The first one (top) represents the local angular order parameter
Y [20], with

Ourr(p) = [ @)

Vo= — ) e, (8)

where N}, is the number of nearest neighbors of a given particle
and ¢; is the angle of the bond connecting the reference
particle with its k neighbor, relative to an arbitrary direction
(X in our particular case). The order parameter V¢ picks the
local hexatic order of the symmetry-broken phase, offering
an interesting method to characterize the interface between
the inhomogeneous fluid and solid phases. This coexistence
appears in the presence of a strong temperature gradient and
an associated heat current, as captured by the second color
code, which represents kinetic energy in the bottom panel of
Fig. 5. This interesting nonequilibrium fluid/solid coexistence
will be investigated in detail in a forthcoming paper [49].

IV. CORRECTIONS TO LOCAL EQUILIBRIUM AT THE
FLUCTUATING LEVEL

The macroscopic notion of LTE that we have just confirmed
does not carry over, however, to microscopic scales. The
local statistics associated to a fluid’s mNESS must be more
complicated than a local Gibbs measure, containing small
(but intricate) corrections which are essential for transport to
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FIG. 5. (Color online) Snapshot of a typical hard-disks configu-
ration with N = 7838, n = 0.7, and T, = 10 and two color codes
representing respectively the local hexatic order (top) and the kinetic
energy (bottom). Inhomogeneous fluid and solid phases coexist for
such high » under a temperature gradient.

happen. In fact, the local Gibbs measure in a fluid is even in
velocities, while, for instance, the local energy current is odd,
thus leading to a zero average energy current for a mLTE state,
in contradiction with observed behavior. It is therefore the tiny
corrections to mLTE that are responsible for transport.

To search for these corrections, we first measured the
local velocity statistics (not shown), which turns out to be
indistinguishable within our precision from a local Maxwellian
distribution with the associated local hydrodynamic fields as
parameters. Experience with stochastic lattice gases [12,16]
suggests that deviations from LTE are more easily detected in
global observables, so we also measured the global velocity
moments

1 N
Uy = <N;j|vir’> 9)

with n = 1,2,3,4, and compared them with the LTE predic-
tions based on a local Gibbsian measure,

1
e = &1 / dxp()T (x)"? (10)
n Jo

(see Appendix B for a derivation), with a; = /7/2, a, = 2,
az = 34/m/2,and a4 = 8. The LTE corrections we are looking
for are tiny, so several correcting factors must be taken into
account, e.g., the effect of the discretized hydrodynamic
profiles and their fluctuations on v', and the appropriate
error propagation; see Appendix B. Figure 6 shows the first
four velocity moments as a function of AT, after subtracting
the (uncorrected) LTE contribution, as well as the N — oo
extrapolation before and after the corrections to v}° mentioned
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FIG. 6. (Color online) Velocity moments after subtracting the LTE contribution, as a function of AT for n = 0.5 and varying N. Filled
symbols correspond to the N — oo limit before (@) and after (M) correcting the LTE values for the discretization of hydrodynamic profiles
and their fluctuations (see Appendix B). After the correction, no deviations from LTE are observed in velocity moments. The insets show the

moments before subtracting the LTE part.

above. Although a naive comparison of velocity moments with
raw LTE estimates would suggest that LTE already breaks
down at this level, it becomes apparent that, after properly
accounting for all corrections mentioned, no deviations from
LTE are observed in velocity moments.

To further pursue the analogy with stochastic lattice
gases [12,16], we also studied the central moments m,, (1) =
((u — (u))") of the fluid’s total energy per particle:

N

(1)

Figures 7(a)-7(c) show the measured m, (1), n = 1,2,3, as a
function of AT for n = 0.5 and different N, together with
the N — oo extrapolation of our data and the (corrected) LTE
estimates for energy moments, m,,(1)'® (see Appendix C). We
observe that, while the average energy does indeed follow the
LTE behavior, (1) ~ (u)', energy fluctuations [as captured by
my(u) in Fig. 7(b)] exhibit increasing deviations from the LTE
estimate. In fact, the excess energy fluctuations scale linearly
with the squared gradient,

Smo(u) = Nma(u) — ma(u)*] ~ —i—41—OAT2 (12)
[see Fig. 7(d)], aresult strongly reminiscent of the behavior ob-
served in schematic models like the Kipnis-Marchioro-Presutti
(KMP) model of heat transport or the symmetric exclusion
process (SEP) [16], where 8m,(u) = +AT?/12. Interestingly,
energy fluctuations for hard disks are enhanced with respect to
LTE, dmy(u) > 0, as happens for the KMP model and contrary
to the observation for SEP [16], although the excess amplitude

is roughly three times smaller for disks. A natural question is
then why we detect corrections to LTE in energy fluctuations
but not in velocity moments. The answer lies in the nonlocal
character of energy fluctuations. In fact, while v, includes only
a sum of local factors, m,(u) includes nonlocal contributions
of the form (V?V?), i # j, summed over the whole system.

Small, O(N~!) corrections to LTE extending over large,
O(N) regions give rise to weak long-range correlations in the
system which, when summed over macroscopic regions, yield
a net contribution to energy fluctuations, which thus depart
from the LTE expectation [4,5,16]. In this way, the observed
breakdown of LTE at the energy fluctuation level is a reflection
of the nonlocality of the underlying large deviation function
governing fluctuations in the nonequilibrium fluid. This result
is, to our knowledge, the first evidence of a nonlocal LDF in a
realistic model fluid, and suggests the study in more detail of
large deviation statistics in hard disks.

A first step in this direction consists in investigating the
statistics of the energy current flowing through the system
during a long time t, a key observable out of equilibrium.
In order to do so, and given the difficulties in sampling
the tails of a LDF, we measured the central moments of
the time-integrated energy current for v = 10. Figures 8(a)
and 8(c) show the behavior of the first three central moments
of the current as a function of the temperature gradient,
while Figs. 8(b) and 8(d) show the dependence of the first
and second current moments on the global packing fraction
n. Notice that we scale the current by the radius of the
particles £ in order to normalize data for different number
of particles. A first observation is that our measurements for
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the current third moment seem compatible with zero VAT
in the asymptotic N — oo limit [see Fig. 8(c)] suggesting
Gaussian current fluctuations within our accuracy level. On
the other hand it is interesting to note that, while the average
current (as well as the total energy moments, not shown) are
smooth functions of the global packing fraction [see Fig. 8(b)]

current fluctuations as captured by m,(j) exhibit a remarkable
structure, with a minimum right before the liquid-to-hexatic
equilibrium transition ny, ~ 0.7, where a first inflection point
appears, followed by another one at the hexatic-to-solid
transition nys & 0.72; see Fig. 8(d). This shows that hints of
the double phase transition arise in the transport properties of
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FIG. 8. (Color online) (a, ¢, and inset) Scaled central moments of the time-averaged current vs AT for n = 0.5 and varying N. (b, d)
Average current and its variance as a function of the global packing fraction for AT = 10 and N = 8838. The liquid-to-hexatic (1,) and

hexatic-to-solid (7)) transition points are signaled.
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the nonequilibrium hard-disk fluid, a behavior that deserves
further exploration [49].

V. DISCUSSION

In summary, we have probed LTE in a quintessential model
fluid, the hard-disks system, finding that macroscopic LTE is
a very robust property. This is so even under strong finite-size
effects, due to a remarkable bulk-boundary structural decou-
pling by which all sorts of finite-size and boundary corrections
are renormalized into new boundary conditions for the bulk
fluid, which in turn obeys the macroscopic laws. We use these
properties to measure with high accuracy the hard-disks EoS,
even across the fluid-hexatic-solid transition regime. However,
weak but clear violations of microscopic or statistical LTE are
found in the fluctuations of the total energy, which strongly
suggest that the nonequilibrium potential governing the driven
fluid’s macroscopic behavior is intrinsically nonlocal. It would
be therefore interesting to investigate more in depth the large
deviation statistics of hard disks, using both macroscopic
fluctuation theory and simulations of rare events.
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APPENDIX A: CORRECTIONS DUE TO DISCRETIZATION
EFFECTS IN DENSITY AND TEMPERATURE PROFILES

We measure in the steady state the local temperature (i.e.,
local average kinetic energy) and local packing fraction at
each of the 15 cells in which we divide the simulation box
along the gradient (i.e., x) direction. In order to minimize
cells boundary effects, when a disk overlaps with any of the
imaginary lines separating two neighboring cells, it contributes
to the density and kinetic energy of each cell proportionally to
its overlapping area. Note that the number of cells is constant
in all simulations, independently of N, n, Ty or Ty, so each
cell becomes macroscopic asymptotically as N — oco. We now
relate averages around a finite neighborhood of a given point
in space with the underlying continuous profiles in order to
subtract any possible bias or systematic correction from the
data. In particular, let T7c and pc be the temperature and
packing fraction in a cell centered at x. € [0,L] of size A.
Assuming that there exist continuous (hydrodynamic) profiles
T (x) and p(x), we can relate the cell averages to the continuous
profiles by noting that

1 Xe+A/2
Te = — dx p(x)T (x),
Apc Jy—ap
1 Xc+A/2
pc=— dx p(x).
A Ji—ap

We may expand now the continuous profiles around x, inside
the cell of interest and solve the above integrals. Keeping
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results up to A2 order we arrive at

Ic = i{ (x)T( )+A—2d—2[ ()T (x)] +0(A3)}

C_,OC P(Xc Xe 24dx2 pPX X)x=x, s
_ A? d?p(x) 3

pc = plxe) + ﬁW'xZM + 0(A%).

By inverting the above expressions, we obtain the desired
result, namely,

1] 2
T(x))=Tc — =—| —(oc+1 — pc)Tcy1 — Tc)
241 pc
+ Tcv1 —21c +TC—1}, (A1)
1
p(xe) = pc — ﬁ[pc-&-l —2pc + pc-1l, (A2)

which yields the points of the underlying continuous profiles,
T (x.) and p(x.), in terms of the measured observables, T¢
and pc¢ respectively. These corrections to the cell density and
temperature are typically small (~ 0.1%), though important to
disentangle the different finite-size effects in order to obtain
the striking collapse of the hard-disks EoS described in the
main text.

APPENDIX B: VELOCITY MOMENTS UNDER LOCAL
EQUILIBRIUM AND CORRECTIONS

The local equilibrium probability measure to observe a
particle configuration with positions r; and momenta p;,
Vi € [1,N], can be written as [12]

We(ry, .. TN P - PY)
ocexpy— Y Blex) ﬁ+52¢(ri—rj) , (B)

i=1 J#
where € is the parameter that connects the microscopic
scale with the hydrodynamic one, S(ex;) is the local inverse
temperature around x;, and ®(r) is the interparticle potential.
Note that we have already assumed that temperature varies
only along the x direction. Under this microscopic LTE
hypothesis, one may argue that the probability density for
any particle to have a velocity modulus equal to v is given by

v b px) v?
= E/o P &P [ - 2T(x)] B2

with n = fol dxp(x) the global packing fraction, p(x) being
its local version. Then, by definition, the local equilibrium
velocity moments follow as

1
= e = 2 [ aweeorare e
0
where a; = (1/2)'?, ay =2, a3 = 3(7/2)"/?, and a4 = 8.
Now, in order to compare the measured velocity moments
in the main text with the local equilibrium expectations, v}f,
we first have to express the latter in terms of our observables.
For that, three steps should be taken, namely:

(1) Write Eq. (B3) as a function of the measured cell
temperatures and densities, 7¢ and p¢, following Egs. (Al)—
(A2).
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(2) Take into account the fact that both 7¢ and pc have
error bars and thus should be considered as fluctuating
variables around their average. Note also that the fluctuations
of p(x) should be constrained to a constant average 7.

(3) Consider the correct error propagation to compute the
error bars of v/,

1. Conversion to cell variables

We now express Eq. (B3) in terms of cell variables. In order
to proceed, we write

a Xc+A/2
e == Z/ dxp()T (x)"?, (B4)
n C xc—AJ2

where x. are the center of the cells. We may expand the
previous expression up to order A? to arrive at

- d*p(x)
le _ n/2
A§ j(p(xaT(xc) 24{ |

T (x.)"?

dp(x)
dx

dT (x)
dx

T(xc)n/Z—l

X=X,

+n

X=X,

E E_ n/2—2 @ i

TR

and using Egs. (A1)-(A2), we obtain

o 2T (x)

n n
+ EP(XC)T(XC) dx2

A n n
gle = 24 Z pc T, /2+—n(n—2)
x chTC"/ “Ter — Te). (B6)
C

2. Accounting for cell temperature and density fluctuations

Due to the finite number of measurements in simulations,
any magnitude and, in particular, the cell observables will
exhibit fluctuations that will affect the observed averaged
behavior. We now assume that these fluctuations are Gaussian
and obey

c = pc + vcéc,

M
Prob(&, ... .Ey) = V21 M ]‘[ [
i=1

! M
—£2)2 2 :
e ) il
v2r :| <i=1 ¢ )
Tc = Tc + oclc,

M

1 P

Prob(¢y, ....Cy) = ——W}, B7
rob(Z1, - -, Emr) ]J[me (B7)

where M = 15 is the number of cells, y¢ and o¢ are the
measured (empirical) errors associated to the average density
and temperature at cell C, p¢, and T¢ respectively, and &¢
and ¢ are Gaussian random variables with zero mean and
variance one. Notice that the density noise takes into account
the fact that the total density is constant. For the case studied

PHYSICAL REVIEW E 92, 022117 (2015)

here we may assume that the errors are O(A), and we will
expand results up to orders o2 or 2. Now, by substituting p¢
and T¢ in Eq. (B6) by the fluctuating expressions in (B7) and
then averaging over the noise distributions, we arrive at

A
o = (2),, = ;1 > ae(T?), +
Cc

2)

x 3 BT A (Tep = Te) + O(AY),  (BB)
C

where

(T27), = T2 4 4ntn = DT 02 + 0(0f).  (BY)

It therefore becomes clear that fluctuations in each cell add a
small correction to v'®.

3. Computing error bars in the local equilibrium approximation

Once we know how to compute v ¢ from our set of data, we
want to obtain their error bars, ¥, deﬁned as

~le\2 ~le\2
X” - <( Uy ) >§,( - <vn )5,;‘ (BIO)
In order to do so, we first need to know that
(62), = 1= (bt === if C#C. (BID
CS - M’ CcscC E - M N
It is then easy to show that
2 Aay, 2 2 =2 Fn-2 2Fn
Xn = R Z(b”GCpCTC +vele)
c
| 2
B M(Z VcTé’”) (B12)
c

with by =1/4, by =1, b3 =9/4, and by = 4. To better
appreciate the relevance of the above corrections, it is useful
to define

(vnle)o =

(B13)

That is, (v,,'®)corr contains the A2 effects due to the finite sizes
of the boxes and the effects of the errors on the measured
temperature and density profiles. Though small, this correction
term is essential to confirm that corrections to LTE does not
show up in our measurements of velocity moments; see main
text.

APPENDIX C: ENERGY CENTRAL MOMENTS UNDER
THE LOCAL EQUILIBRIUM HYPOTHESIS

To compute the local equilibrium expressions for the central
moments of the total energy per particle let us start with the
equilibrium expression for the energy fluctuations in the grand
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canonical ensemble

on
_(_ n+1 =
m,(U) = (—1) _8,3" In E, CD

where U is the system total energy [see the Hamiltonian Hy
defined in Eq. (B1)], m,,(U) = (U — (U))"), and

o0
1 -
B = ZOZNZN’ ZN = W/SdrN/dee ﬂHN. (C2)
N=

For hard disks the canonical partition function Zy can be
written

PHYSICAL REVIEW E 92, 022117 (2015)

where A is the configurational part of the canonical partition
function which does not depend in this case on temperature.
The energy fluctuations then follow as

my(U) = T*[(N) + ma(N)], )
m3y(U) = T*[2(N) + 3ma(N) + m3(N)],

with m,(N) the central moments of the total number of
particles in the grand canonical ensemble. Assuming now that
local equilibrium holds we can write

1
<wb=/dMMW@L
0 (C5)

1
mWszdmmmx
0

Q@m)N where N, (U,) is the local number of particles (local energy)
Zy = N1h2N BN AN, S.r), (€3) at position x. In this way, if N is the total number of particles
in the system, we arrive at
J
uy 1 (!
Lﬁ=%%=—fdwuﬁux
nJo
myU)e 1 /1 ) my(Ny)
N e=—""2 —_ [ d T 1 ,
mo(u) N 0 ) xp()T(x)"| 1+ (N,
uye 1 (! 3my(Ny) 1 m3(N,
N2maye = ™Y _ _/ drp)T ()| 14 2 MW | TmaVo) | (C6)
N nJo 2 (N)y 2 (N)

These expressions define the local equilibrium prediction for the first three central moments of the total energy per particle in
our hard disk system. Note that the calculation of the corrections to these LTE estimates due to the discreteness of the measured
profiles is similar to that explained in Appendix B for the velocity moments.
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