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Annealed and quenched disorder in sand-pile models with local violation of conservation
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In this paper we consider the Bak, Tang, and Wiesenfeld (BTW) sand-pile model with local violation of
conservation through annealed and quenched disorder. We have observed that the probability distribution functions
of avalanches have two distinct exponents, one of which is associated with the usual BTW model and another
one which we propose to belong to a new fixed point; that is, a crossover from the original BTW fixed point to
a new fixed point is observed. Through field theoretic calculations, we show that such a perturbation is relevant
and takes the system to a new fixed point.
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I. INTRODUCTION

Power law behavior is observed in many natural phenomena
without tuning external parameters such as temperature. The
behavior is widely seen in nature such as earthquakes, stock
markets, and forest fires [1–3]. In these phenomena, although
the interactions are short ranged, the dynamics naturally takes
the system to a critical state where a small perturbation may
lead to a large event and therefore a long-ranged correlation
is found within the system. Such systems are called self-
organized critical (SOC) systems. Bak, Tang, and Wiesenfeld
(BTW) [4] proposed a very simple model that had the main
features of SOC systems. The model, which is called the BTW
sand-pile model, together with its variants, has given a very
helpful framework to study self-organized criticality. After the
Abelian structure of the model was found by Dhar [5], the
model has been usually called the Abelian sand-pile model
(ASM).

Much analytical and computational work has been done
on the model. The exact results obtained in the model are
mostly on static properties of the model. To name a few one
can mention a number of steady state configurations, height
probabilities, and height correlation functions [5–8]. These
achievements are obtained due to the Abelian structure of the
model. Also the one-site probabilities of the height variable
and the two-point correlation functions have been derived
analytically [6,8–10] and the relation of the model to c = −2
conformal field theory (CFT) is established [11–13]. However,
few exact results are in hand on dynamical properties of the
model and they are mostly obtained through simulations. The
avalanche distribution is studied in [14–18] and the effect of
insertion of dissipation on these probability distributions is
studied in [12,19–22], although some efforts have been made
to calculate the exponents using some assumptions or with the
renormalization scheme [23,24].

The BTW model is a nondissipative model; that is, in each
step of dynamics the number of sand grains is conserved. Only
at boundaries of the system are sand grains allowed to leave
the system. It has been shown that adding bulk dissipation to
the system takes it off the criticality and no finite size scaling
is observed after a certain length scale [12,20,25]. In [20] the
authors have considered a model in which the conservation
of sand grains is violated in two different ways: locally or
globally. In global violation, all the sites dissipate sand grains.
However, in local violation of sand grain conservation, at each

time step sand grains may be dissipated or be produced in a
way that on average the number of sand grains is conserved.
Therefore the total number of sand grains fluctuates. These
fluctuations are considered to be due to some internal degrees
of freedom and have an annealed randomness; that is, at each
time step it is decided how many sand grains are dissipated
or produced. They have shown that such a system is still
critical but the exponents are different, therefore it belongs
to a different universality class.

In many cases, these internal degrees of freedom may have
a quenched randomness. Some sites may always dissipate and
some others may always produce sand grains. In this paper
we consider a BTW model in which some dissipative sites
(sinks) and some productive sites (sources) exist. Through
investigating probability distributions of avalanche properties,
we find that in such a system the system is still critical, but
the obtained exponents are different from the BTW model and
the model introduced in [20]. In the end, we perform a field
theoretic calculation to show that such a perturbation to the
original BTW model actually takes the system to a new fixed
point.

II. BTW MODEL WITH SINK AND SOURCE SITES

We consider the well-known BTW model on a L × L

square lattice. The height variables hi are assigned to each
site on the lattice. These variables are usually regarded as
the number of grains of sands in the sites and can take their
values from the set {1,2,3,4}. The dynamics of the system is as
follows: at each time step a grain of sand is added to a random
site i. As a result the height of the site may become more than
the threshold value hc = 4 and the site becomes unstable and
topples: four grains of sand are transferred from the site to the
neighboring sites. This may cause some of the neighboring
sites to become unstable and a chain of topplings may happen
in the system, which is called an avalanche. While all the
bulk sites are conservative and no grains of sand are lost, the
boundary sites are dissipative; that is, when they topple some
grains of sand leave the system.

The bulk dissipation in the BTW model is considered in
several papers [12,20,25], however a system with sites that
have negative dissipation has been considered much less often.
Negative dissipation causes the system to be unstable and
therefore cannot be studied. In [20] it has been considered that
during each toppling the number of sand grains removed from

1539-3755/2015/92(2)/022116(7) 022116-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.022116


SAMAN MOGHIMI-ARAGHI AND MAHMOUD SEBTOSHEIKH PHYSICAL REVIEW E 92, 022116 (2015)

the toppled site is 4 + ξ , where ξ is a random number taking
integer values between −3 and 3 with equal probabilities. In
this way the local conservation of the sand grains is violated,
however on average no site dissipates sand grains or adds sand
grains to the system. It was observed that with this modification
the distribution function of the avalanche sizes still has a
power law behavior but with a different exponent from the
original BTW model. In this model the local conservation of
sand grains is violated using an annealed randomness; that is,
during the dynamics of the system, every time a site topples
it is decided if the toppling site is going to add a few grains
of sand to the system or a few grains of sand are dissipated.
It is possible to violate the conservation through a quenched
randomness. In our model we introduce such a randomness
to the system in the following way: we take an ordinary
BTW on a square lattice and let a fraction of the sites of
the lattice have positive dissipation, and the same fraction
of lattice sites have negative dissipation. We call these sites
sinks and sources, respectively. The source and sink sites are
distributed randomly throughout the lattice at the beginning
and are not changed during the dynamics. To avoid instability,
we cannot take the number of sources to be more than the
number of sinks. Also, if the number of sinks are taken to be
more than sources, their effect may become dominant in large
avalanches, and as dissipation is a relevant perturbation to the
BTW model [12,20,25] it takes the system off the criticality.
In this way, the bulk of the system is conservative on average,
however the boundary sites are dissipative as in usual the BTW
model.

The usual way to have a dissipative site is to change its
threshold height: the site becomes unstable when its height
gets more than 4 + m, and as a result of toppling it loses 4 + m

grains of sand and only four grains of sand are transferred to
the neighboring sites, then during the toppling m grains of
sand are lost (or −m grains of sand are produced in the case
m < 0). In this way sinks or sources can be introduced in the
system. But such a construction has a problem. For simplicity
take m = ±1; that is, in sinks and sources just one grain of
sand is lost or produced. Now, in order to activate a sink site
its height has to become more than 5, while for a sink site
the height should become only more than 3. Therefore source
sites are activated more easily and more frequently, leading to
instability. We have observed such instabilities in simulations.
In an improved model, we constructed the sinks and source
sites in the following way: when the height of a sink (source)
site becomes more than the critical height hc = 4 it loses four
grains of sand and three (five) grains of sands are added to the
neighboring sites. In the case of sink (source) sites, one of the
neighboring sites is chosen randomly and zero (two) grains of
sands are added to it. Now both source sites and sink sites are
activated, arriving at the height 5.

If the sink and source sites are distributed randomly in the
bulk, there is a finite probability that a few source sites gather in
a region in which no sink sites exist. In such cases the source
sites may activate one another repeatedly and an avalanche
may never end. To avoid such situations we have considered
that source and sink sites come in pairs. In other words we add
a number of pairs of adjacent sites which are sink and source
sites. Such a model is stable, at least for a small number of
pairs, and we are able to collect numerical data.

III. NUMERICAL DATA

To begin, we have considered a system very similar to the
system discussed in [20] and repeated their simulations. We
have considered square lattices with sizes up to 1024 and have
examined the statistics of at least 106 nonzero avalanches. To
have more control on the system, we have considered that each
toppling can be nonconservative with a probability p, and if
it is nonconservative it will dissipate or produce one grain of
sand with equal probabilities. We will call this model local
nonconservative BTW with annealed randomness.

For very small values of p, the system is more or less like
BTW, however the system considered by [20] corresponds to
relatively large amounts of p. Figure 1 shows the probability
distribution of avalanche sizes for different values of p and for
different system sizes. In Fig. 1(a), the probability distribution
function is sketched for a system with size L = 1024 and for
different values of p ranging from 2 × 10−4 to 1. Looking
carefully one observes that in the graphs there are two distinct
linear parts with slightly different slopes. Such a phenomenon
was observed before, in the cases where a relevant perturbation
is added to the original BTW model [26]. This phenomenon
was not seen in the model considered in [20]; the reason will
become clear below.

These two regimes are more clear in Fig. 1(b), where the
same probability distribution is sketched for p = 0.02 and
system sizes from 128 to 1024. Finite size scaling is observed
in the system and therefore still the largest length scale of the
system is the system size; that is, the system is critical, although
there exists an intermediate size scale, s∗, which determines
where the second linear portion of the diagram starts. As
observed in the diagrams, this point shows no dependence
on L, but moves forward as we change p.

Let us call the slope of the first and second linear parts ν1

and ν2. We have used the method introduced in [27] to find
the exponents. For large values of p the first linear part is too
short to have a reliable estimate for ν1, and for very small
p the second linear part becomes very short and no reliable
value for ν2 is at hand. Table I shows the obtained values of
these exponents where we had relatively small error bars. The
exponent ν1 gradually increases as p is increased, while the
second exponent ν2 is more or less constant.

The behavior of the exponents associated with the smaller
avalanches can be interpreted as follows: there is little chance
to have a nonconservative toppling in a small avalanche (this
is why in [20] this part of the system was not observed; in their
model even in small avalanches the local violation of the sand
grains exists). For example, for p = 10−3 the avalanche size
should be of the order of 103 so that a nonconservative toppling
is found. Therefore the behavior of the smaller avalanches
should be given by the usual BTW model. In the BTW model,
the exponent associated with the avalanche size, τs , depends
on the size of the system [28] through the relation

τs(L) = τs(L → ∞) − c

ln L
, (1)

where L is the size of the system and c is a constant. In
fact it has been shown that not the size of the system but
the number of topplings needed so that a grain of sand is
lost is the important parameter that controls the value of the
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FIG. 1. (Color online) (a) The log-log plot of the distribution function of avalanche sizes for a system of size 1024 with p = 1, 2.5 × 10−1,
6.25 × 10−2, 2 × 10−2, 4 × 10−3, 1 × 10−3, 2 × 10−4, and 0. The curves with p < 10−1 are shifted downward. (b) The same plot for
p = 2 × 10−2 and system sizes L = 128, 256, 512, and 1024.

exponent [29]. Therefore, in the model we have considered,
the inverse of p plays the role of L in the above equation and
the gradual changes of ν1 are due to the behavior of the BTW
model. It is observed that as p → 0 the exponent ν1 tends to
τs(L), defined above. This means that if we consider systems
with small sizes or focus on very small values of p the effect
of system size on this exponent will become apparent.

Let us now consider the local nonconservative model with
quenched randomness, where pairs of sink and source sites are
added to the original BTW model. Here the control parameter
p is the ratio of the number of sink and source pairs to the total
number of sites. We have investigated very low pair densities,
because if the number of source and sink sites becomes high
the separation of time scales of input and output of mass, which
is a key feature of SOC, is ruined. We have examined values of
pair density ranging from about 10−4 to 10−2. We have mainly
focused on the avalanche size distribution function.

Figure 2 shows a typical log-log plot of such a system.
In this figure the size of the lattice is L = 1024 and p =
4 × 10−3. As in the annealed random case, two distinct
linear parts separating at the point sc can be identified, and
two exponents can be assigned to such graphs. We call the
exponents associated with smaller avalanches τ1 and the
exponent associated with larger avalanches τ2. Figure 3(a)
shows the avalanche size distribution function for different
values of pair density in a system with size L = 1024 and

Fig. 3(b) shows the same plot for p = 2 × 10−2 and systems
with different sizes. Clearly the system obeys finite size scaling
and sc, the characteristic size scale of the avalanches defined
above, depends only on p.

To find the numerical estimates for the exponents τ1 and
τ2 we have used the method introduced in [27]. The values
obtained are shown in Table II. As in the annealed random case,
the first exponent τ1 gradually decreases as p is increased while
τ2 is nearly constant. The same argument as above can be ap-
plied in the quenched random case to interpret where the expo-
nent τ1 comes from and why it decreases as p becomes larger.

The second exponent τ2 which determines the large scale
behavior of the system is nearly constant and equal to 1.38 ±
0.03. This value is completely different with τ1, even with
its value at the limit p → 0 and L → ∞, which is 1.25. As
the system obeys finite size scaling [see Fig. 3(b)] it is still
at a critical point. This means that the addition of pairs of
source and sinks should be a relevant perturbation that takes
the system to a new fixed point with different exponents.

Perturbations that may take the BTW model to a new fixed
point have been observed before [20,26]. For example, if we
violate the local conservation law we will have a model with
different scaling exponents [20], or if we add randomness to
the way the toppled site redistributes its grains of sand we
will arrive at the Manna model that may belong to a different
universality class. It has been observed that even a small

TABLE I. Values of the exponent ν1 and ν2 for the local nonconservative BTW system with annealed randomness. The system size is 1024.

p 5 × 10−4 2 × 10−3 8 × 10−3 2 × 10−2 6.25 × 10−2 2.5 × 10−1 1

ν1 1.10 ± 0.01 1.07 ± 0.01 1.03 ± 0.01 1.02 ± 0.02
ν2 1.45 ± 0.04 1.45 ± 0.03 1.42 ± 0.03 1.44 ± 0.03 1.46 ± 0.03 1.49 ± 0.03 1.53 ± 0.03
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FIG. 2. (Color online) The log-log plot of the distribution func-
tion of avalanche sizes for a system of size 1024 with p = 4 × 10−3.

amount of Manna-type perturbation has an effect just like the
one observed above: for small avalanches BTW exponents are
found and statistics of larger avalanches obeys a power law
with the exponents of the Manna model [26].

One might think that the effect we have observed is due to
the fact that we have added some randomness to the theory:
while redistributing the grains of sands of sources (sinks), a
neighbor is selected randomly to have an extra grain (or no

grains of sand). To test if the existence of source and sink pairs
is the main cause of the new exponent, we have redefined our
model in the following way: each grain of sand is supposed
to be made of four quarter-grains. When a site has more than
16 quarter-grains, it topples. Sixteen quarter-grains of sand are
removed from the site, and for ordinary sink and source sites
4, 3, and 5 quarter-grains of sand are added to all the neighbors
of the site. In this way sink sites dissipate one whole grain of
sand during a toppling and source sites add one grain of sand
to the system during each toppling, and there is no randomness
in the law of toppling. The new system has the same behavior
as the one considered before with the very same exponents.
Therefore stochasticity plays no role in the model.

We have also studied how sc and s∗ depend on pair density
and probability of being nonconservative, respectively. Due
to the above explanations, one expects in each case as p is
increased that the maximum size of an avalanche that does not
see the effect of pairs or being nonconservative will grow and
hence sc and s∗ will be proportional to 1/p. Of course, there
will be a correction due to the fact that some sites may topple
several times. In fact, one has to use the exponents related
to conditional expectation values γas as introduced in [30].
According to the results in [22], this exponent is 0.94 ± 0.05.
Figure 4 shows a log-log plot of the measured sc and s∗ versus
p for 1024 × 1024 systems. The best fit to Fig. 4(a) reveals
sc ∼ p−uq with uq = 1.0 ± 0.1 and the best fit to Fig. 4(b)
gives s∗ ∼ p−ua with uq = 0.8 ± 0.1, which are consistent
with the above argument within the error bars.

To conclude, we have found that adding source and sink to
the BTW model causes the large-scale statistics of the system
to change; the system still is at criticality, therefore we suggest
that we have arrived at a new critical point. In the next section,
using perturbative conformal field theory techniques, we find
theoretical support for our suggestion.

FIG. 3. (Color online) (a) The log-log plot of the distribution function of avalanche sizes for a system of size 1024 with p = 2 × 10−2,
8 × 10−3, 4 × 10−3, 2 × 10−3, 1 × 10−3, 5 × 10−4, and 2 × 10−4. The curves with p < 10−1 are shifted downward. (b) The same plot for
p = 2 × 10−2 and system sizes L = 128, 256, 512, and 1024.
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TABLE II. Values of the exponent τ1 and τ2 for the system with quenched randomness.

p 5 × 10−4 1 × 10−3 2 × 10−3 4 × 10−3 8 × 10−3 2 × 10−2

τ1 1.10 ± 0.01 1.08 ± 0.01 1.07 ± 0.01 1.05 ± 0.01 1.03 ± 0.01 1.02 ± 0.01
τ2 1.38 ± 0.03 1.39 ± 0.03 1.39 ± 0.03 1.40 ± 0.03 1.37 ± 0.03 1.36 ± 0.03

IV. PERTURBATIVE CONFORMAL FIELD THEORY
DESCRIPTION OF THE MODEL

Conformal field theory (CFT) has proved to be very
powerful in the description of equilibrium critical models in
two dimensions. Many statistical models have been studied by
means of conformal field theory techniques [31]. The Abelian
sand-pile model is one of such models that are found to have
a close connection with a specific CFT model. It has been
shown that in steady state ASM can take only a subspace
of its configurations. These configurations, which are called
recurrent configurations, happen with the same probability
and their total number is just det � [5], where the matrix
� is the toppling matrix whose dimensions are equal to the
number of sites in the sand-pile and the element �ij is equal
to the number of sand grains removed from the site i if the
site j is toppled. In the BTW model the toppling matrix is
the discrete Laplacian matrix; that is, �ii = 4 and �ij = −1
if i and j are neighbors and other elements of � are zero.
Therefore the partition function of the system can be written
as Z = det �. This partition function can be reexpressed as
Gaussian integrals over Grassman variables:

Z = det � =
∫ ∏

(dθidθ̄i) exp(θi�ij θ̄j ), (2)

through which one is able to introduce an action for the
model [32]. As the matrix � is the discrete Laplacian
matrix in the BTW model, in the continuum limit, the above
mentioned action becomes S0 = (1/π )

∫
dz dz̄∂θ ∂̄θ̄ , which is

the action of c = −2 conformal field theory. It was stated that
the connection of the two models (BTW and c = −2) was
established because both of them had connections with the
q = 0 Potts model and spanning trees.

Our model is a perturbation of the BTW model: there exist
some sites that are dissipative and some other sites that are
productive. In other words, effectively some of the diagonal
elements of the matrix � are different from 4; we write these
diagonal terms as 4 + m, where m can take nonzero values,
a positive value for m means that the site is a sink site, and
a negative m indicates that the site is a source site (in fact,
in the model we have introduced, we have changed �ij for
neighboring sites i and j , but it is equivalent with changing
�ii while keeping �ij fixed). In this way, in the continuum
limit, the action of the model will become

S = 1

π

∫
dzdz̄(∂θ∂̄θ̄ + m(z)θ θ̄) = S0 +

∫
ε(z)φ(z), (3)

where φ = θ θ̄ and ε = (1/π )m. We want to treat the above
action as a perturbed action of c = −2 and find out if this
perturbation is a relevant one or not. It is clear from field
theoretic arguments that if m is positive for all sites (in all the
space) the theory will lose its criticality. This has been shown
through correlation functions of height variables in [12]. On the
other hand, if m take only negative values, the system becomes
unstable. We are interested in the case in which the variables
ε(z) have a quenched randomness where their mean value is
vanishing but have a nonzero variance. In the simplest case we
take ε variables to be independent variables with probability
distribution P (ε) ∼ exp (−ε2/2g0). Here g0 determines the
width of the probability distribution; our goal is to determine
the behavior of this parameter under a renormalization group
(RG). If g0 = 0 turns out to be a stable fixed point, then the
above perturbation is irrelevant and one expects the model to
be just the same as the BTW model. Otherwise there should
be another fixed point that determines the critical behavior of
the system.

FIG. 4. (Color online) The log-log plot of characteristic avalanche size scale as a function of the probability p (a) in a quenched random
nonconservative system and (b) in an annealed random nonconservative system.
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One of the most powerful methods in such systems where
a quenched randomness exists is the replica method [33].
The averaging over quenched random variables should be
done after calculation of the free energy or the logarithm of
the partition function. Such averaging is done in the replica
method in the following way: we write −βF = log10 Z =
limn→0(Zn − 1)/n and calculate the right-hand side of the
equation for integer values of n. In the end we formally take
the limit and find the free energy.

To calculate Zn we write

Zn =
n∏

a=1

∫
DθaDθ̄ae

S0,a+
∫

ε(z)φa (z)d2z, (4)

where the index a counts the replica number. Now we are
ready to average over different configurations of the quenched
random variables ε(z). Doing the Gaussian integrations we
arrive at

〈Zn〉ε =
∫ ∏

DθaDθ̄ae
∑

a S0,a+g0
∫

d2z
∑

a,b φa (z)φb(z). (5)

Regarding φaφb as a perturbation and following the usual
RG steps [33] we are able to find the flow of g0 un-
der the RG. In order to do that, we have to expand
exp (g0

∫
d2z

∑
a,b φa(z)φb(z)) and do the averaging with the

weight defined by S0. If we collect the terms up to second
order in g0 we will have the following terms:

g

∫
d2z

n∑
a,b=1

φa(z)φ2(z)

= g0

∫
d2z

n∑
a,b=1

φa(z)φ2(z)

+ 1

2

(
g0

∫
d2z

n∑
a,b=1

φa(z)φ2(z)

)2

+ . . . , (6)

where g is the renormalized parameter. The above equation
could be written in the form g = g0 + A2g

2
0 + . . ., where A2

is found to be 2(n − 2)
∫ 〈φ(z)φ(w)〉. Knowing the correlation

functions of φ fields, A2 could be calculated. The correlation
function diverges as z → w and the above term becomes
infinite. Therefore one has to put a cutoff r and do the integrals
for |z − w| > r . In this way the renormalized parameter is
obtained to be

g = (r2 ln r2 − r2)
(
g0 + A(r)g2

0

)
, (7)

where A(r) is 2π (n − 2)(r2 ln r2 − r2). Note that we multiply
the result by (r2 ln r2 − r2) in order to obtain a dimensionless
coupling constant. Hence the beta function of the theory turns
out to be

β(g) = 2g + 4π (n − 2)g2. (8)

In the limit n → 0 we have β(g) = 2g − 8πg2, which shows
that g = 0 is an unstable fixed point and even a small
perturbation takes the system to the new fixed point with
g∗ = 1/4π .

We have to express that from such field theoretic calculation
we are able to find only the static properties of the system
and cannot obtain the exponents of the avalanche distribution
function. The above calculations only express that we will have
a crossover to a new fixed point and therefore the exponents
would be changed.

V. CONCLUSION

We have shown both numerically and analytically that
introducing sink and source sites to a BTW system causes
the system to fall into a new fixed point. In simulations we
have observed that adding even a few pairs of sink sites and
source sites changes the statistics of the large avalanches and
a new exponent is observed, yet the system shows finite size
scaling which means the system is still critical. We have done
a field theoretic calculation in support of this result. Adding
the perturbing operator originated from sink and source sites
to the original theory, we have used the replica method to find
the renormalization group plow and have observed that the
BTW fixed point is unstable under RG transformation and a
new stable fixed point exists in the model.
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