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A self-consistent theory is proposed for the general problem of interacting undulating fluid membranes subject
to the constraint that they do not interpenetrate. We implement the steric constraint via an exact functional integral
representation and, through the use of a saddle-point approximation, transform it into a novel effective steric
potential. The steric potential is found to consist of two contributions: one generated by zero-mode fluctuations
of the membranes and the other by thermal bending fluctuations. For membranes of cross-sectional area S, we
find that the bending fluctuation part scales with the intermembrane separation d as d~2 for d < /S but crosses
over to d~* scaling for d >> +/S, whereas the zero-mode part of the steric potential always scales as d 2. For
membranes interacting exclusively via the steric potential, we obtain closed-form expressions for the effective
interaction potential and for the rms undulation amplitude o, which becomes small at low temperatures 7 and/or
large bending stiffnesses «. Moreover, o scales as d for d < /S but saturates at /kzT S/« for d > +/S.
In addition, using variational Gaussian theory, we apply our self-consistent treatment to study intermembrane
interactions subject to different types of potentials: (i) the Moreira-Netz potential for a pair of strongly charged
membranes with an intervening solution of multivalent counterions, (ii) an attractive square well, (iii) the Morse

potential, and (iv) a combination of hydration and van der Waals interactions.
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I. INTRODUCTION

Lipid membranes are two-dimensional fluids lacking in-
plane shear elasticity, and the only elastic penalty they
experience comes from changes in curvature [1]. Thus, they
undergo vigorous thermally activated undulations, and a pair
of such membranes brought into proximity will experience
an osmotic pressure generated by the reduction of phase
space available for the membranes to fluctuate. The prob-
lem of determining this osmotic pressure is a classic one,
going back to Helfrich [2], and over the past four decades
different methods have been proposed to treat it, employing
various degrees of heuristic argument, field-theoretic tools,
and functional renormalization group (FRG) techniques (see,
e.g., Refs. [3-13]). A major difficulty that has dogged research
in this area is associated with the proper treatment of the steric
constraint, i.e., the constraint that a pair of membranes may
not penetrate each other. One response was to replace the
problem of implementing the steric constraint at the level of the
partition function by an ansatz that the root-mean-square (rms)
fluctuation amplitude (or the amplitude of “roughness”) o of a
membrane is of the order of the intermembrane separation d,
viz., 0% = [id?, where 1 is some numerical constant. One may
interpret the mean-square fluctuation as the inverse curvature
of a harmonic potential well. By integrating out the bending
fluctuations and applying o> = /id?, one then obtains a steric
potential of the form Vy = cq(kp T)?/kd?, which is known as
the Helfrich fluctuation potential [3,4], with « the curvature
stiffness of the membrane. From this potential one derives
the fluctuation osmotic pressure, one that is entirely generated
by constrained thermal fluctuations of the membranes. It has
been argued (see, e.g., Refs. [2,3,13]) in the past that cq is a
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universal number [14]. On the other hand, one may reasonably
expect that the rms fluctuation o, being the effect of thermally
activated undulations of the membrane, vanishes as 7 — 0
and/or k — oo, and, accordingly, /& should depend on 7 /k.
Moreover, as d increases, the behavior of o should cross over
to that of a freely undulating membrane, i.e., scale as v/S
(where S is the transverse projected area of the membrane;
cf. Ref. [3]), and thus o should also be a (possibly nonlinear)
function of d/+/S.

In the foregoing paragraph we have described the problem
of the steric potential generated purely by the thermal undula-
tions of a pair of membranes and the hard-wall constraint.
In more realistic systems (including those of biological
interest), the steric potential is modified by the presence of
other interactions, both short and long range, and these may
include van der Waals, electrostatic (if the membranes are
charged), charge regulation, and/or hydration forces. Problems
of relevant concern include: (i) What is the behavior or
form of the effective interaction potential? (ii) How does the
equilibrium intermembrane separation change as a function
of external osmotic pressure? (iii) In the case where the
interaction is attractive at long range but repulsive at short
range, is there an unbinding transition at zero external osmotic
pressure? If so, what is the order of the unbinding transition and
the threshold value of the (attractive) interaction strength for
the membranes to unbind? Besides the presence of additional
interactions in real systems, the membranes themselves can be
multi-component, e.g., consist of a mixture of lipids and lateral
inclusions that may undergo phase separation [15], and the
solution may also contain polymers (such as proteins) which
then interact with the membranes and anchor or adsorb onto
the membrane surfaces [16].

Theoretical treatments of such problems have traditionally
fallen into four classes: mean-field or Flory-Huggins-type
approaches (see, e.g., Refs. [15,17-19]), variational Gaussian
approximation (VGA) schemes (see, e.g., Refs. [5-7,16]),
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FRG-based methods (see, e.g., Refs. [12,20-27]), and Monte
Carlo simulations of different flavors (see, e.g., Refs. [28-33]).
For the simpler case of a pair of single-component membranes
interacting via a direct potential that consists of a long-range at-
tractive van der Waals tail and a short-range repulsive hydration
potential, mean-field theory (MFT) based on the simple addi-
tion of the direct potential with the fluctuation-induced steric
potential predicts a first-order unbinding transition at a critical
strength of the Hamaker coefficient [17], whereas a Flory-
Huggins-type theory, modeled after the van der Waals theory
of liquid-gas condensation, predicts a continuous unbinding
transition at a critical strength of the Hamaker coefficient
W = W, and scaling behavior d ~ |W — W,|~! [18]. Such
an unbinding transition in three spatial dimensions has also
been predicted by FRG-based calculations [20,21]. On the
other hand, experimental reports that the unbinding transition
in lipid bilayer systems is of first order (see, e.g., Refs. [34-37])
have been more numerous than those that report the unbinding
transition to be of second order (see, e.g., Ref. [38]).

Using an approach based on a self-consistent treatment of
the hard-wall constraint, we revisit the problems described in
the foregoing paragraphs. The requirement of self-consistency
is realized by implementing the hard-wall constraint at the
level of the partition function via the use of the Heaviside
function. By making use of a representation first proposed
by Panyukov and Rabin [39] in a rather different context, the
steric constraint can be transformed into terms of an effective
interaction Hamiltonian. By considering small undulations of
the membrane, we derive closed-form self-consistent expres-
sions for the mean-square fluctuation o> and the equilibrium
intermembrane separation distance, which precisely describe
how the strength of fluctuations is related to both temperature
T and the curvature stiffness « of the fluctuating membrane [1],
as well as the average intermembrane separation distance d.
This effective Hamiltonian also enables one to see the precise
mechanism in which the fluctuation osmotic pressure emerges
from fluctuation and steric forces, and shows a crossover
of scaling behavior from o ~ \/kzT/kd?, when a pair of
membranes are close to one another, to o> ~ (kgT/k)S (where
S denotes the transverse projected area of each membrane),
when the membranes are far apart.

Our self-consistency requirement is reinforced for the
case of real systems (i.e., where the direct potential now
includes non-Gaussian terms stemming from electrostatic, van
der Waals, charge regulation, and/or hydration interactions)
by our use of the VGA. The VGA captures the fact that
the magnitude of the fluctuation-induced steric potential is
influenced by the direct potential and vice versa [5,6,40].
Mathematically, this translates into the problem of solving
a coupled pair of (typically nonlinear) equations for the rms
fluctuation amplitude and the average separation (or, more
generally speaking, the fluctuation correlator of an observable
and the average value of that observable). It is known that
the VGA becomes exact as the codimension of the manifold
(which is equal to the number of components of the vector
field representing the transverse fluctuations of the manifold)
tends to infinity [41].

The VGA can be regarded as being complementary to FRG
techniques. The FRG is essentially an asymptotic method
which has been used to study problems relevant to critical
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behavior and the associated scaling exponents (i.e., the “shape”
of the effective interaction), addressing the limiting behavior
of the interaction potential in the regions of small and large
intermembrane separations. As such it is less useful as a
tool for making predictions about the system’s behavior at
intermediate separations, which are the typical length scales
of biologically relevant systems. At such length scales there
is usually a number of competing interactions of comparable
strength, and the use of asymptotic methods is not of much
practical value [42]. One of the primary interests in membrane
biophysics is also to elucidate how the effective mesoscale
intermembrane interaction, accessible via detailed osmotic
stress experiments on multilamellar lipid systems [40,43—46],
arises from details of more microscopic forces, an aspect that
is not captured by the FRG-based methods at all. These aspects
can be adequately addressed by a VGA-based approach.
Moreover, the VGA-based approach is comparatively simple
to implement and the physical mechanism shines through the
formalism more transparently.

Among our main motivations here is also to analyze the
behavior of the electrostatic correlation interaction in the
strong-coupling limit [47] that has been already observed
between stiff charged silica surfaces [48] and is now being in-
vestigated also in the case of soft, fluctuating membranes [46].
It seems to us important to be able to understand the difference
between the experimentally measured ion correlation effect
between stiff and soft interfaces and to isolate in what way
the membrane fluctuations change the expected separation
behavior of the strong-coupling interactions. Our analysis is
the first in this direction and should be helpful to understand
the experimental data when available.

Our paper is divided into the following sections. Section II
introduces the problem of determining the osmotic pressure of
a freely undulating membrane near a hard wall and describes
how the hard-wall constraint can be transformed into effective
potential terms via the Panyukov-Rabin representation. The
system considered is a pair of membranes subject only to
hard-wall repulsion and undergoing thermal bending fluctu-
ations. The first main result of this section is Eq. (2.23) for
the rms fluctuation amplitude of a membrane near a hard
wall, which interpolates between the scaling behavior of a
confined membrane at short separations and that of a freely
undulating membrane at large separations. The second main
result is Eq. (2.31), which expresses the steric potential as
the sum of contributions from thermal bending and zero-mode
fluctuations. In Sec. III, we introduce a variational method
due to Feynman and Kleinert [49], which we apply to study
the behavior of membranes in more realistic systems, i.e.,
ones that are characterized by effective interaction potentials
of non-Gaussian form (specifically, an attractive square-well
potential, the Morse potential, the Moreira-Netz potential, and
a combination of van der Waals and hydration energies). In
Sec IV we present our discussion and conclusions.

II. MEMBRANE NEAR A HARD WALL

The fluctuation osmotic pressure of a pair of mutually
impenetrable membranes of bending stiffnesses x| and «, [1]
is equivalent to that of a membrane of stiffness k = k1«2 /(k +
kp) near a hard (i.e., impenetrable) wall. We shall thus
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consider a single membrane fluctuating near a hard wall as our
prototypical system. To maintain the membrane at constant
average distance from the wall, an external osmotic pressure
P that is equal and opposite to its fluctuation osmotic pressure
has to be applied. We fix the position of the wall at the origin of
the z axis, and a point on the membrane shall have transverse
coordinates x; = (x,y) and occupy a position £(x ) on the z
axis. The space between the wall and the membrane could be
empty or filled with electrolyte solution. The membrane’s total
energy is given by

= / dle{g[viam]z + V[é(xm}, @.1)
where the interaction potential is given by
VIex)] = Blex )] + P Ux.), (2.2)

Denoting the (geometric) mean separation by ¢y, defined by
[ d*x1 £(x1) = £y, we can write

420
(2m)?

where the wave-vector integral excludes the Q = 0 mode and
8¢ are the Fourier modes of the deviation 6£(x ). Very soon
[cf. Eq. (2.21)] we shall see the beauty of such a decomposition
that lies at the heart of the Feynman-Kleinert variational
theory: The terms that are linear in fluctuation vanish from the
Hamiltonian (due to the integral over the transverse projected
area of the membrane), and the resulting integration over the
fluctuating fields is trivially Gaussian.

There are three terms in Egs. (2.1) and (2.2). The first
is the free energy associated with bending undulation modes
of the membrane. The second term w represents the direct
potential between the wall and the membrane, arising from
forces of electrostatic and nonelectrostatic (such as hydration)
origin. In general, the direct potential has a nontrivial form
and is non-Gaussian in fluctuations. The third term represents
the effect of applying an external osmotic pressure P on
the fluctuating membrane. Experimentally, for membranes in
solution the external osmotic pressure can be controlled by
using the classic method of Rand and Parsegian [43], which
is to vary the concentration of polymer (such as dextran [44],
polyvinylpyrrolidone [45], or polyethylene glycol [46]) added
to extract water from between the membranes. Theoretically,
the osmotic pressure term can also be interpreted as a source
field that one uses to differentiate the logarithm of Z in order
to obtain the equilibrium separation distance (£).

(x1) =40y +8b(x) =4y + eiQ'XLSEQ’

(2.3)

A. Hard-wall constraint: Functional representation

The partition function of a fluid membrane near a hard wall
is then given by

z=T[ atwoerewnes @9

where B8 = 1/kgT and ®[£(x)] is the Heaviside function
which is equal to unity if £(x;) > 0 and zero if £(x;) < 0.
Taking up an idea in Ref. [39], we express the Heaviside

PHYSICAL REVIEW E 92, 022112 (2015)

function in terms of the Dirac § function:

o0
OU(x))) = / dAS[A — 2(x))]. 2.5)
0
Next, we use a Gaussian representation for the § function and
write the Heaviside function as

OLe(xL)] = lim ©; [£(x1)]
0 1

= lim dA e
2 A2

A—0 Jo
The limit A — 0 is a mathematical idealization for an “in-
finitely hard” wall. However, for real membranes, the boundary
region is not infinitely sharp but has a certain extent which is
set by the length scale of the lipid headgroup size a. The
parameter A reflects the size of this boundary region. We can
thus write

-y

2. (2.6)

A=ca,

2.7)

where ¢ depends on the microscopic details of the chemical
makeup of the membrane.

By making a change of variables A = %uz and promoting a
prefactor u into the exponent by means of a logarithm, Eq. (2.6)
can be expressed in the form

Ol(x,)] = lim / du e/l tEx] (2.8)
+ 1=0J V2 A2
where
2
1 2 (%”2 - E)
fk(u,ﬂ) = 5 Inu- — T (29)

We have obtained an exact functional integral representation
of the steric constraint for each point of the membrane. In
contrast to A, the variable u now runs over the unbounded
interval (—o00,00). Using Eq. (2.8), we can express the partition
function in Eq. (2.4) as

= hml_[ / di(x,) /

f a2 m [A(xL) i(xl)] i

du(xy)
=i de
o H/ (Xl)/oo 22

o S5 Al 0] -p

(2.10)

In the functional integral expression for Z, we have introduced
amicroscopic cut-off length scale a, in order to convert the sum
over a two-dimensional lattice of points into an integral. The
length scale a is set by the size of the membrane’s molecular
constituents, e.g., the diameter of the lipid headgroup.

B. Steric potential: Saddle-point approximation
Let us now make the saddle-point approximation to e/ It
is given by
2
1A (g O]

RACOI frlusp ) 2.11)
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FIG. 1. (Color online) Comparison of plots of ®;(x) generated
using the exact function [Eq. (2.9); behavior is described by the
blue-gray circles, yellow squares, and green diamonds for A = 0.01a,
0.1a, and 0.3a, respectively, where a is a microscopic length scale]
and the saddle-point approximation [Eq. (2.13); behavior is displayed
by the blue, red dashed, and green dot-dashed lines for A = 0.01a,
0.1a and 0.3a, respectively]. The agreement is quite good, with the
accuracy improving for smaller values of A.

where ug, solves the saddle-point equation

f){(uspae) =0

= 12 (x1) = 0(x1) + V(XL + 222,

We find that the saddle-point approximation to fj (u) is given
by fi, where

2.12)

L, 1 1 202407 4 £[€ + /2A2 + £2)]
= 3 In(2w) — 3 In

2200+ V202 + £2)
1 1
+ 5 In(e + V2r2 4 02) — TR V222 4 02)2

(2.13)

where we have written ¢ = £(x_ ) to lighten our notation. In
Fig. 1, we compare the saddle-point approximation of ®;
(viz., e/) with the exact function [Eq. (2.9)]. The agreement
is excellent, especially for smaller values of 1. We thus can
approximate Z in Eq. (2.10) by its saddle-point value, viz.,

z*=1m[] / de(xy)e! TS BT (o 14

{x1}

On going from Eq. (2.4) to Eq. (2.14), we have effectively
moved from a partition function involving £(x,) subject
to a hard-wall constraint to a partition function where
£(x_) is unconstrained, but the steric condition is enforced
energetically through terms in an effective Hamiltonian. In
our calculational steps we have not made any assumptions and
made use of only one approximation, viz., the saddle-point
approximation of Eq. (2.11).

PHYSICAL REVIEW E 92, 022112 (2015)

As A is small, we can expand the above to leading orderin A:

. e+ 1 Ve 0+ V2
gr=EAVE L VT,
4).2 47 4 T2\ 20

_(e+s5Ven?
80V E2( + /%)

where we have neglected a constant term %ln(Zn). We see
that terms for which £ is negative diverge to negative infinity,
and so e/ goes to zero, which reflects the zero probability of
finding the membrane inside the wall.

We now focus on the case of membranes undergoing
thermally excited undulations with small amplitude. Let us
write £(x;) = £y + §4(x1), where £y is the geometric (not
thermal) mean defined by £y = (1/S) [ d?x, €(x1),and §€(x )
are small deviations around ¢,. In Fourier space, £ is the zero
wave-vector mode and

sex) =Y @5t
0

+Inx+ 0, (2.15)

(2.16)

where Q is a two-dimensional wave-vector conjugate to X, ,
and the prime denotes the exclusion of the zero wave-vector
mode from the wave-vector sum. Both £ and {§£ ¢} [or §£(x )]
are independent thermally fluctuating variables that take values
from the interval (—oo,00) [cf. Eq. (2.10)]. By performing an
expansion to quadratic order in §4(x_ ), Eq. (2.15) becomes

. 130+5\/>A2 £0+5fxz

fk%_fszo\fzw\f 4(2)™ (¢ +\f
zeo+f z0+5f
SNCICRINI

For negative values of £ the leading-order term of the above
expression diverges to negative infinity, which means that the
geometric average position of the membrane cannot move
inside the wall. Under this approximation, we can effectively
restrict the range of values that ¢ takes in the partition function
to the positive interval (0,00), and re-express Eq. (2.17) as

2.17)

. 32 3)\2
f)L N = 8e(x1) —

A2
3 62 I [6@(:@)12

(2.18)

We note that the term linear in §£(x L) will vanish when we
integrate over the transverse projected area. The saddle-point
approximation to Z thus can be written as

7~ /OO de, H /oo dag(xL)e*ﬂfdz)rL{%[Vi(f(xL)]erV}’
0 _

(2.19)
where V is now an effective potential defined by
V = wll(x)]+ Plxy) (2.20)
and
~ 9k3 TC 3k3 TC2
wle(x)] = wlex)] + [86x )P + ———
83 8¢5
(2.21)
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In the above, we have removed a prefactor (27 A2)~5/2¢" This
can be done, as the prefactor simply corresponds to a shift of
the effective free energy by an (infinite) constant.

The prefactor of the term quadratic in ¢ can be interpreted
as an effective compression modulus generated by the steric
force acting between the membrane and the wall. The interac-
tion potential w thus consists of two contributions: a soft po-
tential w that describes the longer-range (and coarse-grained)
interactions of the membranes and a hard potential which
arises from the steric constraint. Such a decomposition into
soft and hard contributions is possible because we are working
at an already coarse-grained or mesoscopic level; otherwise
all contributions (including steric effects) are reducible to
electrostatic ones. By rewriting the steric constraint in terms of
8 functions [Eqgs. (2.5) and 2.8)] and applying a saddle-point
approximation on u, we were able to transform the partition
function for a sterically constrained membrane into one for
an unconstrained membrane, with the effects of the steric
constraint accounted for by terms in an effective interaction
potential w [cf. Eq. (2.21)]. This also completes the program
set out in Ref. [6] but not carried out to its full implementation.

Two observations can immediately be made: (i) the energy
diverges as the mean separation ¢ tends to zero, which reflects
the fact that the membrane is unable to penetrate the wall,
and (ii) the prefactor of the fluctuation term also diverges as
£y — 0, which reflects the fact that the fluctuations of the
membrane must also be suppressed as it reaches the wall.

C. Application: Steric and fluctuation forces

Let us consider a pair of membranes that interact via only
steric and fluctuation forces. As we have already noted, the
two-membrane system can be recast as a membrane interacting
with a hard wall. This problem admits a closed-form solution
that describes how o depends on £,. We set the soft potential to
zero: w = 0. The hard-wall and fluctuation-induced repulsion
from the wall has to be balanced by an external osmotic
pressure if the membrane is to remain at a finite distance
from the wall. For the potential including only the sterically
generated interactions, Eq. (2.21) assumes the form

9kB TC2 3](3 TC2
83 7

The functional integration over §¢ in Z is thus Gaussian and

readily can be performed. Using Eq. (2.19) and the definition

0?2 = ([86(x1)]*)s¢ (where (...)s; denotes averaging over &4
using Z for a given ) yields for the mean-square fluctuation

amplitude [cf. also Eq. (3.9)]
(26 [«
an — —) . @223)
3¢SV kgT

02 [kgT 2

2= 0 (1B [{_Z
12¢ K

Comparing with the ansatz 02 = pd* of Ref. [2] (where

d = £y), we see that {1 has the following structure:

1 [kgT 2 (2 [«
fL=—,—|1——t —/—= 2.24
F= 120V |: T an <3cS kgT 224

In accordance with the expectations described in the
Introduction, our calculation has revealed the structure behind
the prefactor i, showing it to be a nonlinear function of kg T /k

wlt(xy)] = [8e(x)I* + (2.22)
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and £y/+/S. To understand the properties of /1, we look at two
limiting cases: the regimes of small and large intermembrane
separations. Defining the dimensionless variables ¢y = £(/d*
and & = o/d*, where d* = /3c(kzT)"*/S/(4K)"/*, the
above equation can be put in dimensionless form:

~ 1 [kgT 2
= B—(l — Ztan™! 270)270.
b4

= — 2.25
12¢ K ( )

At separations small compared with the linear dimension of
the membrane, viz., £y < +/3c(kp T/4K)1/4\/§, we obtain

1 [kgT
RSy [T
12¢ K

This formula has the same scaling dependence on separation
as the one originally postulated by Helfrich, but here we
have derived the scaling dependence rather than postulated it.
From our result we see that the fluctuations become small at
low temperature and/or large membrane curvature modulus.
On the other hand, for two membranes that are more widely
separated apart than the linear dimension of either membrane,
viz., £y > \/§(kBT/4K)1/4«/§, there is a crossover to the
behavior of a single, free membrane:

, kTS
"= —-.
Ak

(2.26)

(2.27)

At large separations, each membrane would behave as if
there is no hard-wall potential present, and the mean-square
fluctuation of each membrane is then set by its total area.

The free energy per unit area f; for a given average
separation {( and external osmotic pressure P is given by

fs = —T In Z. The functional integration over the fluctuation
modes 8¢ g in Fourier space is Gaussian and yields
3kpTc® kT [ d° O%kpTc?
fi=Plo+ = 28 Qzln{l 3464}.
8¢5 2 2r) 4l O
(2.28)

In the above calculation, we have subtracted off a constant
background contribution to f; coming from £, — oo [50].
Taking the upper bound of the momentum integral to be co
and the lower bound to be 1/ \/E, we obtain a closed-form

expression for f;:
3kpTc®  kpT
ChE.U LIS TN S
802 8 S

kBT 9kBTC2 1
— tan 1
47 4/(83

PR 9kBTc2S2}
s = 0 4

4K€3

V200 e }
(OkpTc2)V/4/S

V2(410)" 4 “

(9kpTc2)V4/S )

We can consider the far- and near-field behaviors of f;. The
far-field regime is described by £o > «/3c(kp T /4x)"/*\/S. To
order $3¢,%, f, is given by

+ tan™! [1 + (2.29)

3k3T62 9(kBT)2CZS
SE(Z) 3271/(%

27(kpT) c*S?

1287Kc268
(2.30)

fs%PZO'i‘
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In the near-field regime, £y < ~/3c(kgT /4x)"/*y/S. To order
S fs is given by

3kBTC kBT 3kBTC2
fg ~ 2 + 2
1602V « 82

kBT 3C«/kBTS
——l4+In| ———)¢-
47 S 2k}

Equations (2.30) and (2.31) indicate that the steric potential has
two contributions: one that comes from thermal fluctuations
of the zero mode (i.e., £y), represented by the second term in
Eq. (2.30) and in Eq. (2.31), and another that is induced by
thermal bending fluctuations of the membrane [i.e., 6€(x)],
represented by the third and fourth terms in Eq. (2.30) and the
first and last terms in Eq. (2.31). Note that as £ is varied from
small to large values, the bending fluctuation contribution to
the steric potential changes its scaling form from £, 2 to Ly 4
and is thus much weaker at large separations.

In the near-field regime, to zeroth order in S~!, we can
compare our result above with the picture of Ref. [2], where
the free-energy cost of thermal bending fluctuations of steric
membranes is described via the term Vy = cq(kpT)? /KE%; in
keeping with the literature we call Vy the Helfrich interaction.
In the Helfrich interaction term, cq is regarded as a universal
number (see, e.g., Refs. [2,13]). One may regard the first
term of Eq. (2.31) as being the analog of the Helfrich
interaction [51]. However, one should note an important
distinction: for k — oo, Vg goes to zero, and the Helfrich
term thus does not address the case of osmotic pressure
generated by longitudinally fluctuating flat membranes (i.e.,
zero-mode fluctuations) and therefore describes only the
bending fluctuation “decoration” about a flat membrane but
not the longitudinal fluctuation of the flat membrane itself.

As the intervening region between the membranes is free to
exchange volume with the surrounding reservoir while being
subject to a constant external osmotic pressure P, the system
behavior is best described using a constant osmotic pressure
ensemble, where the equilibrium separation (£} is determined
according to

1 o0
=7 [ deatoe S = -
Z Jo

+ Py

2.31)

TolnZ
S 9P

(2.32)

The equilibrium separation can be estimated in the saddle-
point approximation by looking for the minimum of f
with respect to variations in £o. Defining the dimensionless
variables £y = £o/d*, p = BP(d*)’, S = §/(d*)?, and o =
3c/kpT /87 \/k, where d* = /3c(kgT)*V/S/(4i)'/*, we
can recast Eq. (2.29) in dimensionless form:

fo =B f
=l + GG = S (1+5%)
+aly [ tan™' (1 — V20) + tan™'(1 + V20p)]. (2.33)
The stationarity condition 9 ﬁ / 8%y = 0 then leads to

3 1L 2aftan~! (1 — v20%) + tan™' (1 + v/20%)]
(€+y3

p=

’

(2.34)
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el

FIG. 2. (Color online) Steric interaction: Behavior of the dimen-
sionless separation ¢* as a function of dimensionless osmotic pressure
p and (inset) behavior of dimensionless rms fluctuation amplitude &
as a function of £*, where £* ~ (€o)/d* is the equilibrium separation
in the saddle-point approximation, & = o/d*, p = BP(d*)’, and
d* = Belkg TS [ (4ic) 2.

where 0% is the saddle-point approximation to the equilibrium
separation (£y). In the near-field limit (£* <« 1), we obtain to

leading order
~ 3cf1 kBT ~
~—|-,/— )73,
p 4<2,/ ; +c)( )

Restoring dimensions, we have

1/3
<Eo>’~*(kBT)”3[1—C(%,/“—T+c>] P'3. (236)
K

1/3

(2.35)

Thus, the equilibrium separation diverges as P~/ as P — 0
and vanishes as 7 — 0 (the pair of membranes simply
collapse onto each other at zero temperature) as one would
expect. -

- Insthe far-field regime (£* >> 1), we have to the order of
()~

3c? N 3cksT ]k
403 dr(e)s
The equilibrium separation increases monotonically with
decreasing osmotic pressure.

The behaviors of £* and & are plotted in Fig. 2. The
rms fluctuation amplitude vanishes at zero intermembrane
separation (reflecting the hard-wall constraint), scales lin-
early with the intermembrane separation for small values
of the separation, and saturates at a constant value set by
the cross-sectional area of the membrane for large values
of the separation.

P~

(2.37)

III. FEYNMAN-KLEINERT VARIATIONAL
APPROXIMATION

In the previous section we derived an effective Hamiltonian
[Eq. (2.21)] which accounts for the steric constraint via the
hard potential, and applied it to study a membrane interacting
with a hard wall via only Helfrich and steric forces. We were
able to obtain closed-form expressions for the rms fluctuation
amplitude and free energy per unit area of the membrane
[cf. Egs. (2.23) and (2.29)] because for such interactions the
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form of the effective Hamiltonian is Gaussian. In realistic
systems the soft potential rarely has a Gaussian form, and
further approximations will have to be made on the partition
function. One such approximation is the Feynman-Kleinert
(FK) variational approximation [49], developed originally for
the quantum-mechanical partition function of an anharmonic
oscillator, but can equally well be applied to the classi-
cal partition function of thermally fluctuating membranes
[6].

The application of the variational approximation [52]
begins with a trial partition function Z; that is Gaussian in
fluctuations 64, viz.,

o0 o0
Z :/ de l_[/ dag(xl)e—ﬁfdzn{ﬁlvff(n)]zﬁ-‘/mal}’

0
(3.1

where
Vtrial =

3B [86(x ) + wo(£o) + P £(x1). (3.2)

The variational principle relies on Jensens’ inequality, viz.,

7> e—ﬂ(V—Vmal)lzl’ (3.3)
where the notation (. ..); denotes Boltzmann averaging with
respect to the statistics of both £y and {§¢(x,)} specified
by Z;. The best estimate is obtained by looking for the
maximum upper bound on the right-hand side. There are two
unknowns: (i) an unknown parameter B, which is related to the
mean-square fluctuation of the membrane, and (ii) an unknown
function wy. The form of wy is fixed in terms of B by requiring
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that

(V — Vigia)1 = 0. 34

The unknown parameter B is then determined by optimizing
Z.
To see how the FK variational approximation works in the

context of fluctuating membranes, let us define a restricted trial
partition function Z,, viz.,

Z, = l—[ /OO dSE(XL)efﬂ fdz)u{%[Vii(xi)]%le}’ (3.5)

and the associated average (... ), Viz.,

[y [0 d8LxL) (..
X }fOO d(gﬁ(XL)eiﬁfdzxL{%[Vil(XL)lerVtml}
—0Q
3.6)

)e_ﬂfd2xL{%[vi£(XL)]2+Vmal}

(oo

By using Egs. (2.20), (3.2), and (3.4), we obtain

[e9]
Zo [ / d80(x1) (V = Viga) e P BIVHOOF ) — o

B ,
= wo(fo) = w,2(£o) — 79

where the variational estimates of the mean-square fluctuation
o2 and the interaction energy w,> are defined by

(3.7)

d2
o2 = / ”W( xR

In the above calculation, we have made use of the contlnuum
representation of the wave-vector sum, S -1 Z 0 f (271)2 s
and restricted the wave-vector sum to those wave Vectors that
are positive, the reason being that §¢(x ) is real and thus the
components §£', (and 56‘3) are not independent: §¢'; = 8¢
and M‘g = —SZT‘Q. In the second line of Eq. (3.9), we have in-
cluded a correction term due to the finite size of the membrane.
In the limit of an infinitely large membrane (which effectively
means that the square root of the membrane’s projected
cross-sectional area is much greater than the intermembrane
separation), the above result simplifies to

kT
2 : jK_B (3.10)
and
(kpT)?
- 6;/(04, (3.11)

= ([8Lx )]0 (3.8a)
we2(lo) = (w(l))s. (3.8b)
We compute the mean-square fluctuation:
|
S [ £ T g0y [ dSEasER(362)° + (s6ig) ]S ' CantsQ s mi6 ey
[Tig-0 [ dotGdseGe "> "X 0-0( O BIGE P HBER )]
(3.9)

(

which agrees with Eq. (10) in Ref. [6]. Let us compute w,2(£)
by taking explicitly into account the Gaussian variational
ansatz, leading to

* dk .
wx(€o) = (wle(x)])y = f ),

/ dk / dlw(L) e~ HE=t)—3k%0?

= /0>2
= / w)e 222,
—00 27‘[0’2

In the second line, we have performed a second-order cumulant
expansion for the Gaussian variational ansatz, followed by
an inverse Fourier transform of w, and ¢ is a dummy variable
[not to be confused with the thermally fluctuating field £(x )
of the first line] that runs from —oo to co. Next, we have
integrated over k. The final result thus depends only on £, and

(3.12)
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o . Knowing the form of the interaction potential w(£), we can
plug it into Eq. (3.12) to obtain its variational estimate.

In what follows, it is useful to define the variational free
energy for a given £y:

o0 o0
Z, = f dtye PShe = / dty Z,.
0 0

To determine the variational free energy, we first express
Egs. (3.1) and (3.2) in Fourier space:

Z, = /dﬂo l_[ fdwe/d(sgnm —BS[PLo+wo(lo)]

{0>0}

—BST' Y kQ*+B)IsEy
xe 0% . (3.14)

(3.13)

Integrating over real and imaginary modes of §¢y, we obtain

Zy = 1_[ /dSEre/dBE‘m =571 Y o0k Q*+B)I8Lo |

{0>0}
= T (g = 2t
{0>0} Q +B
. do ot
regularize Sf QIH[Q4+(B/»<)] —e 3 (315)

The regularization subtracts off the constant (and divergent)
contribution of membranes that are infinitely far apart [50].
Equation (3.14) thus becomes

Z, = fdﬁo o= BSIPLo+wo(boy+ BE /T (3.16)

Substituting for wy(€y) its value from Eq. (3.7) and using
Egs. (2.21) and (3.8b), we obtain

/dﬁ efﬂS(Engr%le%O +‘kB; +Plo—1 Bo? +k3’f)
0
(3.17)
or, equivalently, from Egs. (3.10) and (3.11),
_BsiE (kpT)? | %kpTc2o? | 3kpTc? Pe
/deoe PSlia+ r+ =g+ T tPbl (3.18)

Comparing with Eq. (3.13), we see that the variational free
energy per unit area is given by

(kBT)2 9kBT6‘20'2 3kBT6‘2

2 + Py,
128¢02 8¢ gz W T

fvar =

(3.19)

In the language of Ref. [26], the first three terms can be
regarded as comprising a repulsive fluctuation potential. The
fourth term is a fluctuation-renormalized version of the direct
potential, and thus f,,; cannot be simply regarded as a sum
of fluctuation and direct potentials. The additive sum would
be valid in the so-called weak fluctuation regime, defined by
Ref. [26] to be one in which the attractive tail of the direct
potential is stronger than the repulsive fluctuation potential.
On the other hand, fy, is not applicable to the strong
fluctuation regime, defined to be one in which the fluctuation
potential is stronger than the attractive tail of the direct
potential, because in such a regime the fluctuations are strongly
nonlinear and the Gaussian approximation assumed by the
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VGA is no longer reliable. The VGA-based f,, thus applies to
aregime intermediate between the weak and strong fluctuation
regimes, which as already stated, is exactly the regime we want
to address.

To obtain a relation between o2 and £, we vary fy,r with
respect to o2; this yields

8EU2 (kB T)2 9kBT62
_ =0. 3.20
do2 128k o? + 8@3 ( )
This can be rewritten in the form
AWy 1 OkpTc?
o2 _ _p_ B C (3.21)
o2 2 SE?)

which is similar to Eq. (17) of Ref. [6], with the extra
contribution coming from the steric potential.

The equilibrium value of ¢, for a given external osmotic
pressure P is defined by

1 o i
E — dﬁ E _ﬁsfvar(P).
(€oh1 ZI(P)/O oloe

The equilibrium separation (£y); is thus a function of P. We
invert the above relation to determine how P depends on (£g)1,
which gives the equation of state. For this one generally has
to resort to numerical means. On the other hand, one can
approximate ({o); by its saddle-point value ¢, obtained by
minimizing fy,r over £o:

(3.22)

afvar

=0. (3.23)

This relation yields £f as a function of the external osmotic
pressure P. To summarize: In the Feynman-Kleinert approach,
one decomposes the thermally fluctuating field into two types
of contributions, a zero-mode contribution £y and a finite
wave-vector contribution {6£ g} g0, and approximates a? by
means of a Gaussian kernel but retains the full nonlinear
dependence of the free energy on £y (present in W,2), which is
then minimized over £,. This leads to an improved accuracy
over that of the more conventional form of VGA [52], which
approximates both the thermal equilibrium average of an
observable and its mean-square fluctuation by means of a
Gaussian kernel.

A. Applications

In what follows, we apply our formalism and the variational
approach developed in previous sections to study the physical
behavior of four different model membrane systems in the
regime where £y < +/S.

First, we analyze a system consisting of equally charged
impenetrable membranes, with an intervening solution of
multivalent counterions, assuming that the surface charge
density is sufficiently large so the system is in the strong-
coupling (SC) regime of electrostatics [53-56]. In this regime,
for the case of two planar, infinitely rigid membranes, the
osmotic pressure decomposes into a simple sum of two
contributions: one describing the entropy reduction of each
counterion and another describing the electrostatic interaction
between the counterion and a charged membrane. We will call
the interaction potential of such a system the Moreira-Netz
potential.
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Our second system has for its interaction potential an
attractive square well, which is a model for describing
the adhesion of membranes by short-range attractive forces,
studied, e.g., in Ref. [31].

In our third system, the direct interaction is modeled by a
Morse potential which has been used in studies of biological
membrane systems and interactions of DNA molecules in
solution [7,57,58]. The Morse potential consists of a repulsive
exponential term which mimics the hydration and excluded
volume repulsion of the membranes and an attractive expo-
nential term (with twice the decay width of the repulsive term)
which mimics the attractive long-range tail.

Finally, we consider a system consisting of two membranes
interacting via a generic soft potential consisting of a hydration
term and a van der Waals term approximated in the nonre-
tarded planar limit [17,40].

1. Moreira-Netz potential

Let us first consider the case of a pair of strongly charged
membranes in solution with counterions of valence ¢ in the
intervening region of charge sign opposite to the charge on
the membranes. As the membranes are strongly charged,
the system is in what is known as the strong-coupling (SC)
regime [53-56], where Poisson-Boltzmann (PB) theory and
its fluctuation-corrected version break down. The SC regime
is characterized by E 2 1, where the coupling strength E =
27q*€%0,. Here o is the number density of charges on the
surface of either membrane, and {5 = €2 J4meegkpT is the
Bjerrum length (e is the elementary charge). The Bjerrum
length provides a measure of the interaction strength between
a pair of unit charges at a given temperature 7. The regime for
which PB theory holds is known as the weak-coupling regime
and is characterized by E < 1.

In the SC regime, the interaction between two equally
charged hard planar surfaces is described by the Moreira-Netz
free energy per unit area [54,56]:

V4 b4
frara = 4k T g0} (ﬂ —1In —) (3.24)

where 1 = 1/2mglgo; is the Gouy-Chapman length, which
is inversely proportional to both the valence of the counterion
species and the surface charge density of each plate. The first
term in Eq. (3.24) reflects the electrostatic attraction between
the counterions and the charged plates, while the second
term originates from the entropic pressure of the counterions
confined between the two plates. The Moreira-Netz free energy
was derived for a system where the charged plates are held
fixed and are effectively rigid.

We can generalize the Moreira-Netz free energy to the
case of two thermally fluctuating membranes, where the
membranes are allowed to equilibrate under an externally
applied osmotic pressure (thus we are considering a constant
osmotic pressure ensemble). We replace £ with £(x, ), where
the intermembrane separation now depends on the transverse
coordinate x; = (x,y). As before, we write the separation
as the sum of mean and fluctuating contributions: £(x) =
Lo + 84(x, ), where £y and 8£(x ) are thermal variables. The
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corresponding soft potential w is given by

~ 12 L
W= —4nkBT;wBoSz [ln (x1) — (XL)i|
21 21
£ 8¢ 8¢ 2
= —4nkBTuEBaSZ{ In -2 + (X1) — L (X;)]
21 £ 245
£ 8¢
_ 0 ﬂ} (3.25)
21 21

In the second step, we have Taylor expanded the logarithm
to quadratic order in §¢(x;). On applying the Gaussian
approximation of Eq. (3.12), we obtain

~ ¢ ) 2
Bl (bo) = —4wz3q3(1n b _b_o

—]. (3.26
2u 2w ZZ%) ( )

The variational free energy per unit area is then given by
[cf. Eq. (3.19)]

Bfon = kgT n 9¢%0? n 3c? +BP
YT 128k 86 82 ’
o ¢ 2
—4mzﬂaf<1n 00 ”—2) (3.27)
2w 2 28

where P is the external osmotic pressure applied to keep the
membranes at a constant average separation.
Varying f,, with respect to o, we obtain

) 80,2\ ? [ksT €3
or=(1+ S
9¢%q K 12c

To form dimensionless variables, let us rescale o and £, in
units of o = gu (since the Gouy-Chapman length o varies
as q’l; we are interested in the effect of varying the valence ¢,
so the basic length scale should be independent of g). Let us
also define dimensionless variables t = kT /«, €y = £o/ 1o,
o, = /,L(Z)O’S, and & = o/ 9, whence the above equation can be
put in the form

(3.28)

1/2

- 702 85,02\~
52 = Q(l n ﬂ) (3.29)

T 12¢ 9c2q
This formula holds strictly for the SC regime where & > 1.
Substituting the value of o2 into our expression for fia

yields fiof, the effective interaction energy between two “soft”
surfaces:

T 162V ke

¢
— 47 plgo’lIn 2—0 + (BP +21€p02)E. (3.30)
n

80&%) V2 302

9¢%q 8_6(%

The system still needs to be equilibrated with respect to £,.
Let us define the dimensionless variables: £y = £/ to and
p=pBP/Ant BUSZ. Equation (3.30) then becomes

~ o~ ~ 1\~ qzo 3qc?
y=q(p+=)lo—-mLl 4 2
fsoft( 0) q (P 2) 0 ) 165YZ%
3gey/t 85,02
p 2ty S0l (3.31)
320,65 9¢%q
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FIG. 3. (Color online) Moreira-Netz potential. Behavior of o=
£5/ o (where £7 is the saddle-point approximation to the equilibrium
intermembrane separatlon and puo =1 /2715303) as a function of
rescaled osmotic pressure p = P /4w €0’ [givenby Eq. (3.32)] and
(inset) behavior of the rescaled rms fluctuation amplitude & = o /g
as a function of £* [defined in Eq. (3.29)] for r = 0.1, ¢ =1, and
oy = 1, studied for the following three cases: (i) g =2 (blue),
(i) ¢ =3 (green dashed); and (iii) ¢ = 4 (red dot-dashed). For
comparison, we have displayed the behavior of the disjoining osmotic
pressure (horizontal axis) due to counterions between two fixed
charged plates as a function of the interplate separation (vertical
axis) for counterion valences g =2 (black dotted), ¢ =3 (cyan
dot-dot-dashed), and ¢ = 4 (orange dot-dashed-dashed) [obtained by
differentiating Eq. (3.24)], and also shown (cf. inset) is the behavior
of & of amembrane interacting only sterically with a hard wall [black;
cf. Eq. (2.26)].

where f— Bf/Amnlpo?. In the saddle-point approximation,
the equilibrium separation 0 is given by the solution to the
equation 0 fqoﬂ(ﬁo) / 850 = (. We obtain

~_ 1 g 3¢ Vi
P 2t G @ A Tro
056 1oclr f1 4 MY
3qcf,/ 8(5 3 =41
. (3.32)
163, (0%)

The last three terms on the right-hand side of Eq. (3.32)
describe corrections to the equilibrium separation induced by
the thermal fluctuations of the membrane.

In Fig. 3, we display a plot of £* as a function of p for
the case of thermally fluctuating membranes, where we have
also plotted the case of fixed charged plates for comparison. In
the inset we show the behavior of & = o/ as a function
of ¢* for thermally fluctuating membranes. The behaviors
are plotted for t = 0.1, c =1, 6, = 1, and three choices
of the counterion valence: ¢ = 2,3,4. As we see from the
figure, in the SC regime a bound state always forms at zero
external osmotic pressure. Second, the bound-state separation
is smaller for larger counterion valences. Third, at zero osmotic
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pressure the equilibrium bound-state separation of thermally
fluctuating membranes is consistently enhanced relative to
the corresponding separation of the hard plates for the same
counterion valences. Finally, at large values of £* the pressure
curves tend to a saturation value of p' = —¢ /2 for counterion
valence ¢, identical to the case with no thermal fluctuations.
Our prediction is thus that for multivalent counterion-mediated
interactions, the equilibrium intermembrane spacing for soft
and rigid surfaces, everything else being the same, should
differ and the larger the valency the more they should differ.
The predicted difference in equilibrium spacing can be in
excess of a factor of 2, see Fig. 3.

2. Attractive square-well potential

Following Ref. [31], we describe the binding potential by an
attractive square-well potential and study the effect that this
square-well potential has on the fluctuation and free-energy
behavior of a membrane using the variational framework we
developed in Sec. III. As before we represent our system
by a hard wall at z =0 and a membrane whose surface is
at a separation z = £(x, ). The square-well potential V(z) is
describedby V(z) = Vpfor0 < z < band V(z) = Oforz > b.
For an attractive potential V < 0.

We represent the square-well potential in terms of Heaviside
functions ©, i.e.,

wle(x )] = Vo{®Le(x )] — O[4(x1) — b]}. (3.33)

The Gaussian approximation w,: is given by Eq. (3.12):

W / T e —ew—nre S
Wy2 = — — e 2
—00 V27T02 0

e ) (2
2 V20 V2o /]
The variational free energy [cf. Eq. (3.19)] is given by

o= ) ()]

(kgT)*  9kgTc?0? 3kgTc?
128k02 8¢, 8¢5

(3.34)

+ Ply. (3.35)

We define a dimensionless separation distance lo = £ /b, di-
mensionless mean-square fluctuation & = /b, dimensionless
well depth Ty = Vpb?/ V27 kpT, dimensionless temperature
t = kpT /k, and dimensionless external osmotic pressure p =
Pb? /kpT.Interms of these quantities, the dimensionless free
energy is given by

~ \/Ego Zo Zo—l
= 2 — —
Femie= 50 () - )]

N t +9c252+3c2+~z
12852 " g 8 T

(3.36)

In the expression for the free energy above, ¢ is not
independent of £y. From Eq. (3.20), we find that o is related
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FIG. 4. (Color online) Attractive square well. Behavior of exter-
nal osmotic pressure p (scaled in units of kg7 /b) versus average
separation ¢*fort =0.1 and ¢ = 1, and the following four binding
strengths: (i) To = 0 (black), (ii) Uy = —0.04 (blue dashed), (iii)
Vg = —0.06 (red dotted), and (iv) vy = —0.08 (green dot-dashed).
Inset: Behavior of dimensionless rms fluctuation & = o/b (where b
is the well width) versus dimensionless separation = £5/b for the
same values of ¢, ¢, and the above four binding strengths.

to £ via

VO _(l()*b)2 _ﬁ
G (bo —D)e 22> —Lpe 7

(kB T)2 9k3 TCZO'
- =0. 3.37
64k a3 40 G:37)
In dimensionless form, the above equation becomes
W[ d e ST
%7 — - 2 —_——— = =
Vo| toe 0 e + 615 4%

(3.38)

The behavior of the effective interaction energy between
the membranes as a function of £; can be determined
from Eq. (3.36) subject to the contraint on o imposed by
Eq. (3.38). To determine the external osmotic pressure at
which the membranes are maintained at a given separation,
we differentiate Eq. (3.36) with respect to £( and set it to zero
(which is equivalent to making the saddle-point approximation
(€o)1 ~ £3). This yields

- 3 952  Top _@p  _@?
= — 4+ = — :[e %2 — e 23?2 :I 3.39
P 4(@*)3 (g*)s o ( )

For = 0.1 and ¢ = 1 the behavior of the rescaled osmotic
pressure p versus the separation £* and the behavior of the
rescaled fluctuation amplitude & as a function of £* are plotted
in Fig. 4. Note that the fluctuation amplitude is suppressed
(relative to that of a purely steric system) for £ < b, whereas
it is enhanced for £§ > b. This is because for £j < b, the
membrane effectively “sees” two repulsive (albeit one of
which is finite) potential barriers and the repulsion has the
effect of suppressing the amplitude of fluctuation, whereas for
£5 > b, the membrane effectively “sees” an attractive potential
well which lessens the steric repulsion of the hard wall, and
the fluctuation amplitude of the membrane is thus enhanced.
For even larger values of £, the fluctuation amplitude tends
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towards that of a purely steric membrane (represented by the
black line), as it should.

We note that the use of the Gaussian variational ap-
proximation is reliable for sufficiently small well depths
and/or membrane separations, a criterion of reliability being
that the rms fluctuation behavior has to approach that of
a purely steric membrane at sufficiently large membrane
separations, as the square-well potential is short ranged. For
larger well depths and/or larger separations, the application
of the smooth Gaussian approximation to a sharp square
well results in a certain oscillatory behavior reminiscent of
the Gibbs phenomenon (which can be observed in the rms
fluctuation behavior at large membrane separations) and the
predictions specifically for the order of the unbinding transition
are not reliable. In fact, the VGA-based formalism with
attractive square-well potential and our steric potential predicts
a discontinuous unbinding transition. This discrepancy with
FRG-based approaches [20,21] that predict a continuous
unbinding transition could arise from the relative smallness
of the codimension (which is unity) of the membrane [41]
and/or from the fact that the hard steric potential is being
approximated by the soft(er)-, long(er)-range interaction of
a finite A, reflecting the size of a soft boundary region that
depends on the microscopic details of the chemical makeup of
the membrane [12].

3. Morse potential

Let us now consider the following Morse potential, which
has been used to describe the condensation of DNA molecules
in multivalent salts [57,58] and to model the interactions of
fluid membranes [7]:

() = wi(0) + wa(0), (3.40a)
wi[€(x))] = Re ™), (3.40b)
wall(x1)] = —A e~ 2¥0tEL), (3.40c)

The Morse potential has three fitting parameters: the
strength of (short-range) repulsion R, strength of (longer-
range) attraction A, and an inverse length scale kp. Apply-
ing the variational approximation to w,2 [with the aid of
Egs. (3.12) and (3.40)], we obtain

_e=tp?

©de
Wy = / (Re™™* — A e_%'“’e) e 22
—00 2o

2

1,2 2 1 1.2
— Re_KDe(H—iKDG _Ag_EKDZU+§KDG . (341)

The variational free energy per unit area [defined in Eq. (3.19)]
becomes

Soar = Re_KDE[H_%K%’Gz —A e_%"Deo-Félqz)H

(kBT)2 9kBTC20'2 + 3kBTC2
128«02 8ed 8¢

+ Ply. (3.42)

. . . .- ) )
IZeﬁmng dlmenslonless quantities u; = Bk, R, uy = Bi, A,
f= ,Blcngw, oy =kply, 6 =Kkpo, P = ,3K53P, and t =
kpT /k, we can recast the above free energy in dimensionless
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FIG. 5. (Color online) Morse potential. Behavior of = kplj
(where £} is the saddle- pomt approx1mat10n to (£o)1) as a function
of external osmotic pressure P = BPk;’ p~ and (inset) behavior of rms
fluctuation amplltude 0 = kpo as a function of separation 7 for
c=1,k =10kpT, < /S, and the following four cases: (i) u; =
uy = 0 (black), (ii) u; = 1,u; = 0.5 (blue, dashed), (i) u; = u, =1
(red, dotted), and (iv) u; = 1,u, = 2 (green, dot-dashed).

form:
_ lo+50 *Zo-‘rloz 3C
ue 27— ype 2
f 1 2 8£
t 9¢252
+ 12352 + —=— o7 + pﬁo (3.43)
0

By varying fwith respect to &, we obtain a self-consistent
relation:

2
M frte M2 tiie L 9 0 g
2° 8¢ nse el O
In the saddle-point approximation, the equilibrium separation
(£o) is given by the solution £y = £* to d f /3¢y = O:

9¢?5?  3¢?

Uy _1 +
200 46

B = ujebot3® _ 22,-3hy® (3.45)

In Flg 5 the behavior of E* as a function of p and the behavior
of ¢ as a function of 0% are plotted for ¢ = 1, x = 10kpT,
o < /S, and the following four cases: (i) u; =u; =0
(black), (i1) u; = 1,u, = 0.5 (blue, dashed), (iii) u; = u, =1
(red, dotted), and (iv) u; = l,u; = 2 (green, dot-dashed).
Note that for cases (ii) and (iii), the rms fluctuation of
the membrane is smaller than the steric-only case (i) for
e < 1, as the repulsive interaction dominates in this range
of separatlons At separations larger than €% ~ 1, the attractive
u, interaction dominates over the repulswe u interaction, and
the rms fluctuation is enhanced relative to the steric-only case,
becoming larger for larger attraction strengths u,. At still larger
separations the rms fluctuation of all four cases converge as the
steric potential [which decays as (€*)~2] dominates over the
exponentially decaying attractive tail. The rms fluctuation goes
to zero at £* = 0 due to the hard-wall constraint. For u, > 0
the membranes are always bound at zero external osmotic
pressure, and the bound-state separation is smaller for larger
values of u5.
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4. Hydration and van der Waals forces

Let us now consider the case of two uncharged membranes
interacting via hydration and van der Waals forces, a generic
case of interacting zwitterionic lipid membranes [40,43]. For
a pair of membranes of finite thickness &, the interaction
potential can be expressed as [17,40]

Ao TS W1 2 1
T Ane T oy [zz C1or U+ 25)2}’
(3.46)
where the first term describes repulsion due to hydration forces
and the second term describes van der Waals attraction of
Hamaker strength W. For small membrane undulations, we
can expand £(x ) around £, to quadratic order in §£(x ). Using
Egs. (3.12) and (3.19), we obtain

w(e)

kgT 3c? -h '_’3
— A “H 2%7 Pe
Bfvar 128x02 8€2 + BAne # + BPly
" 9 BW[1 2 n 1 2
= _ - o
863 4r ﬂg Lo+ 8)* (Lo +28)*

B 2 1
127 [22 T Grer T (Lo +28)2] G471

Defining rescaled quantltles t =kpT/k, l = Lo/Au, 8~_
S/AH, Ay =BApry, p=BPA}, w=pBW/127 and [ =
BA3 fears We can re-express the above equation in dimension-

less form:

I 4 3 : Z+ 52
f=——= 2852 822 +AHe 0 +p€0
9¢ ~[1 2 1 ~
Hiog 3|~ — == =+ = = (%
8¢5 Ly (o +96) (Lo + 28)

1 2 1
W — ===+ —= — |. 3.48
w[zg (Co+38?  (bo+ 25)2] G49)

The relation between o2 and ¢, is given by Eq. (3.20), which
yields

—6@|:~i— ~ 2~ + — ! ~ ]:0. (3.49)
by o +8)* (Lo +20)*

In Fig. 6, we study the behavior of the free energy and external
osmotic pressure as functions of intermembrane separation
for fixed hydration strength Ay = 0.2Jm~2, hydration length
scale Ay = 0.3nm, and bilayer th1ckness 6 =4nm. The
critical point Wy = W, at which 8p/8£* = 0and ? /8(6*)2

0 is determined numerically; we find that w. = 0.04902 for
t = 0.0248 and ¢ = 0.255. We also find the critical separa-
tion £, = 26.91y and the critical rms fluctuation amplitude
0. = 4.76)y. For Hamaker strengths greater than w. the
system exhibits phase coexistence similar to the one found
in the case of the attractive square well (Sec. III A 2). The
threshold Hamaker strength at which the membranes undergo
a discontinuous and complete unbinding transition at zero
external osmotic pressure is estimated to be wy = 0.061 (the
blue disks in Fig. 6).
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FIG. 6. (Color online) Hydration repulsion and van der Waals
attraction. Behavior of dimensionless free energy F = BAY foar (With
P = 0) and (inset) dimensionless external osmotic pressure p with
respect to rescaled separation = L5/Ay for ZH = BAxAL =
483, w = ﬁW/lZn,gz 8/Ay =13.3,t =kpT/K = 0.0248, T =
270K, ¢ = 0.255, and the following Hamaker strengths: (i) w = 0.04
(black), (ii) w = 0.04902 (orange dash-dash-dotted), (iii) w = 0.053
(red dot-dashed), (iv) w = 0.061 (blue disks), and (v) w = 0.068
(green diamonds).

Whereas FRG-based approaches [20,21] predicted a con-
tinuous unbinding transition for a pair of steric membranes
interacting via van der Waals (vdw) and hydration forces,
our VGA-based formalism with our steric potential predicts a
discontinuous unbinding transition. Just as we concluded for
the short-ranged square-well potential in this case, too, the
VGA-based formalism as implemented here does not reliably
predict the order of the unbinding transition when compared
with the FRG-based approaches [20,21] for the same reasons
as already invoked above.

IV. SUMMARY AND DISCUSSION

We have proposed a self-consistent theory for studying
the interaction between a pair of mutually impenetrable and
thermally undulating fluid membranes, giving in the process
a definitive and consistent form to the previous partially
successful attempts in the same direction [5,6].

We have implemented the steric constraint via the
Panyukov-Rabin representation of the Heaviside function. For
a pair of membranes of bending stiffness x and cross-sectional
area S interacting exclusively via steric and fluctuation forces,
and separated by a mean distance {;, we have derived a
closed-form expression for the steric potential per unit area
Vs [see Eq. (2.29)]:

3kgTc*  kgT
A R L
8  8xS

kBT 9kBTC2 1
—_— tan 1
4\ dict]

9k3 TC2S2
4K€3

V2040 }
(9kgTc2)/4V/S

V2(40)1 ey “
(kT VAYS )
This has two contributions: one that is induced by zero-mode
fluctuations of the membranes and one that is induced by

thermal bending fluctuations. At small separations £y < /S,
the bending fluctuation-dependent part scales as £; 2 and

crosses over to £ 4 scaling for large separations £y >> /8.

+ tan~! [1 + 4.1)

PHYSICAL REVIEW E 92, 022112 (2015)

On the other hand, the zero-mode-dependent part of the steric
potential always scales as £ 2. Concomitantly, we also derived
a closed-form formula [see Eq. (2.23)] for the rms undulation
amplitude o, viz.,

0% [kgT 2 202
o= 0 JEBEL N Zpt (20 XV 42
12¢ K T 3¢SV kgT

which has the following asymptotic behavior: for £y < +/S, o
scales linearly with ¢y, whereas for £y > /S, o saturates at
the order of kg T S/x. The rms fluctuation amplitude becomes
small at low temperatures T and/or large bending stiffnesses k.
We believe that our result refines and substantiates the ansatz
o? = /M% first postulated (on the basis of heuristic arguments)
in Ref. [2].

To investigate fluid membrane systems that experience
interactions of non-Gaussian form, we have adapted the
Feynman-Kleinert version of the variational Gaussian approx-
imation (VGA) to the case of fluid membranes subject to
our effective steric potential V;. We have applied this VGA
approach to four different types of potential: (i) the Moreira-
Netz potential for a pair of strongly charged membranes with
an intervening solution of multivalent counterions, (ii) an
attractive square well, (iii) the Morse potential, and (iv) a
combination of hydration and van der Waals interactions.

In the first case we make a prediction that, everything
else being the same, the multivalent counterion-mediated
interaction measured between hard and soft surfaces should
display a substantial difference in the equilibrium spacing,
with soft surfaces displaying larger equilibrium spacing. This
difference should increase with the valency of the counterions
and could easily reach a factor of 2 for high valency
counterions and should thus be eminently measurable in the
planned osmotic-stress experiments with lipid membranes
in the presence of multivalent salts [59]. We furthermore
note here that our results for multivalent salts imply also a
pronounced effect on the estimated values of the bending
rigidities that could be extracted from the linewidth of the x-ray
scattering intensity in these types of experiments, irrespective
of whether they directly renormalize the bending rigidity of
lipid membranes or not [60-62].

Within the same VGA approach we also analyzed in detail
the three other cases of the coupling between long-range
interactions and conformational fluctuations, showing the
versatility and usefulness of our approach in the context of
widely differing types of long-range interactions in the regime
of intermediate separations, which are also the typical length
scales of biologically relevant systems.

As future projects in the same general direction, our self-
consistent theory can be employed to study multicomponent
membranes, membranes with nonzero surface tension, and
tethered and polymerized membranes.
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