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Spectral renormalization group for the Gaussian model and ψ4 theory on nonspatial networks

Aslı Tuncer1,2 and Ayşe Erzan1
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We implement the spectral renormalization group on different deterministic nonspatial networks without
translational invariance. We calculate the thermodynamic critical exponents for the Gaussian model on the Cayley
tree and the diamond lattice and find that they are functions of the spectral dimension, d̃ . The results are shown
to be consistent with those from exact summation and finite-size scaling approaches. At d̃ = 2, the lower critical
dimension for the Ising universality class, the Gaussian fixed point is stable with respect to a ψ4 perturbation up
to second order. However, on generalized diamond lattices, non-Gaussian fixed points arise for 2 < d̃ < 4.
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I. INTRODUCTION

Both static and dynamical phenomena on networks,
which typically lack translational invariance and may not be
naturally embedded in a metric space, have been the subject
of intense study since the early 2000s [1–3]. Phase transitions
and critical phenomena on networks have also received a lot
of attention [4,5].

To date, a unified approach to the theory of critical phenom-
ena on arbitrary networks, analogous to the renormalization
group theory developed by Wilson and Kogut [6–9] on periodic
networks, is still lacking. The outstanding achievement of
the renormalization group (RG) theory of critical phenomena
was to explain the experimentally observed phenomenon of
“universality” and introduce such concepts as the “relevance”
or “irrelevance” of different types of interactions, upper and
lower critical dimensions, and the elucidation of the roles of
the dimensionality of space and of the order parameter.

Dorogovsev et al. [5] have shown how the critical behavior
of scale-free graphs depends on the scaling exponent γ

of the degree distribution, and Bradde et al. [10] have
derived a Ginzburg criterion in terms of an effective spectral
dimension for spatial scale-free networks. Various “real-space
renormalization group” (RSRG) [11–13] methods have been
proposed for arbitrary networks [14], but even when they
are exact, they rarely reveal universal properties of critical
phenomena on nonspatial networks in terms of their spectral
and topological properties, and there is still room for improving
our understanding.

In a recent publication [15] we have proposed a spectral
renormalization group (SRG) scheme modelled on the “mo-
mentum shell” renormalization group a là Wilson [9]. We
expand the fluctuations of the order parameter in terms of
the eigenvectors of the graph Laplacian [16] in a generalized
Fourier transform, partly surmounting the difficulty posed
by non-translationally-invariant lattices. Elimination of the
large eigenvalue fluctuations and rescaling of the effective
Hamiltonian then yield, in the same spirit as in the Wilson
renormalization group, the rescaling factors for the coupling
constants, which then can be related to the critical exponents.

On non-translationally-invariant, nonspatial networks, the
eigenvalues of the graph Laplacian do not have an ob-
vious interpretation in terms of lattice momenta and an
isotropic, translationally invariant correlation length is not
available. Therefore the exponent of the RG eigenvalue in the

temperature-like direction under length rescaling cannot be
naively interpreted in terms of an inverse correlation length
exponent. We have to develop RG schemes which do not
involve lengthlike concepts.

In this paper, we explicitly implement the SRG [15] on
two nonspatial networks which lack translational invariance,
namely the Cayley tree and the diamond lattice [17], for the
Gaussian model [18–20]. Then we include a quartic
interaction term, which on periodic lattices is known to carry
the “trivial” theory into the Ising universality class [9,21] and
we investigate the renormalization behavior of the interacting
theory within a perturbation expansion up to the second order
in the coupling constant and in the deviation from the critical
temperature.

We find that for the Gaussian theory, the critical exponents
depend only on the spectral dimension of the lattice, i.e., the
scaling behavior of the small eigenvalue region of the Laplace
spectrum. However, the interacting theory depends sensitively
on the symmetry properties of the lattice, via the eigenvectors
of the graph Laplacian, which enter the calculations of the
four-vertex.

Within second-order perturbation theory we find that
the Gaussian fixed point is stable at d̃ = 2. Extending our
calculations to a series of generalized diamond lattices with
higher spectral dimensions, we establish the existence of a
nontrivial fixed point of the SRG for 2 < d̃ < 4.

In Sec. II, we define the spectral renormalization group
for the Gaussian model on a generic network. In Sec. III, we
implement this scenario on the Cayley tree and the diamond
(hierarchical) lattice. We compute the specific heat and
magnetic field exponents. For comparison, exact enumeration
and finite-size scaling results are presented in Sec. IV. In Sec. V
we include ψ4 interactions. In Sec. VI we provide a discussion
and conclusions.

II. THE SPECTRAL RENORMALIZATION GROUP
FOR THE GAUSSIAN MODEL

The effective Ginzburg-Landau “Lagrangian” for a scalar
order parameter ψ(x) is given by

H =
∫

V

dx
{

1

2
[r0ψ

2(x) − ψ(x)∇2ψ(x)] + v0ψ
4(x) − hψ(x)

}
.

(1)
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where the integral is over the volume of the system and r0 is
proportional to the reduced temperature t = (T − Tc)/Tc and
h to the magnetic field. We will assume that H is expressed in
units of the thermal energy kBT , where kB is the Boltzmann
constant. The Gaussian model [18] is equivalent to omitting
the fourth-order coupling term in Eq. (1). This model is
defined only for temperatures above the critical temperature,
i.e., for r0 > 0. Nevertheless, one may formally compute the
exponent δ.

For a continuous field ψ(i) ∈ (−∞,∞), living on the nodes
of an arbitrary network, the Gaussian model can be written as

H0 = 1

2

N∑
ij

ψ(i)[r0δij + Lij ]ψ(j ) − h
∑

i

ψ(i). (2)

The usual Laplace operator appearing in the Ginzburg-Landau
expansion has been replaced by (minus) the graph Lapla-
cian [16], with the matrix elements

Lij = diδij − Aij , (3)

where A is the adjacency matrix of the network and di is
the degree of the ith node. The expression in Eq. (2) is now
very general, applicable to arbitrary networks, with only the
requirement that the matrix A be symmetric, to guarantee that
its eigenvalues are real.

Expanding the field ψ(i) in terms of eigenvectors uμ of
the Laplace operator, ψ(i) = N−1/2 ∑

μ ψ̂μuμ(i), the Hamil-
tonian is obtained in diagonal form,

H0 = 1

2

N∑
μ=1

[r0 + ωμ]ψ̂2
μ − hψ̂1. (4)

Here ωμ are the eigenvalues of L. The eigenvalues are
ordered so ω1 � ω2 · · · � ωN , with ω1 = 0. We will assume
the network to be connected so ω2 > 0 for finite N .

For this system, the partition function is immediately
obtained from

Z0 =
∫ ∞

−∞

∏
μ

dψ̂μe−H0 , (5)

and the free energy is given, up to constant terms, by

F0 = 1

2

N∑
μ=1

ln(r0 + ωμ) − h2

2r0
. (6)

(Henceforth we will drop the external field term unless we are
directly dealing with it.)

Note that in Eq. (4) there is a difficulty in going over from
a sum (over μ = 1, . . . ,N) to an integral over the eigenvalues.
In general the eigenvectors uμ, and, consequently, the ψ̂μ, do
not possess, e.g., the rotational symmetries valid on periodic
lattices. Therefore, in general, it is not justified to try to extract
the renormalization factors by rewriting the Hamiltonian as

1

2

∫ �

0
dωρ(ω)[r0 + ω]ψ̂2

ω, (7)

where � is the largest eigenvalue. On the other hand, after the
Gaussian integrals have been carried out, this difficulty is not
there for the free energy (or its derivatives, such as the specific

heat or the two-point correlation function [22]) and one may
formally write

F0 = 1

2

∫ �

0
dωρ(ω) ln(r0 + ω). (8)

We now show how we can implement field-theoretic
renormalization group ideas on a system which, besides not
having an a priori known spectral density, is not embedded in
a metric space, i.e., there is no concept of length.

We have two possible strategies for eliminating the large
ω fluctuations from the partition function and computing
the renormalization factors. In the absence of a “lengthlike”
quantity, the first method which comes to mind is to truncate
the number of modes, N , by a constant factor, successively
integrating out those with the the largest eigenvalues. The
second method consists of scaling the largest eigenvalue, �, by
a constant, B, in analogy with the usual renormalization group
a là Wilson [6,7,9,20]. These two strategies are implemented
below and give identical results for the Gaussian model.

It should be noted that on these nonspatial lattices,
eigenvectors with the same symmetry properties may have
widely differing eigenvalues. (We illustrate this in Table V
in the Appendix for N = 13 on the Cayley tree. A similar
situation also holds for the diamond lattice.) Eliminating
those fluctuations associated with the high-ω side of the
spectrum makes sense in terms of eliminating the higher-
energy modes but cannot be naively interpreted as eliminating
the “small wavelength” or “high-frequency” fluctuations. On
the other hand, if we interpret the successive iterations in the
construction of trees or hierarchical lattices as a fine-graining
operation [23], the increasing localization of the eigenvectors
on the most recently added nodes may be thought of as greater
articulation on smaller scales.

A. Scaling the number of modes

Since the eigenvalues are numbered in increasing order by
convention, we keep the first N/B eigenvalues in the effective
Hamiltonian and integrate out the rest. Picking the scale factor
B in keeping with the overall symmetries of the system is
convenient; if no such obvious scale symmetry is available,
then B = N/n, with n integer, eliminates spurious points from
the scaling plots. Defining the cutoff μB = N/B, the truncated
Hamiltonian is

H<
0 = 1

2

μB∑
μ=1

[r0 + ωμ]ψ̂2
μ − hψ̂1. (9)

Restoring the Hamiltonian to its full range calls for rescaling
factors to be inserted, viz.,

H ′
0 = 1

2

N∑
μ=1

[r0B
−φ1 + B−φ1−φ2ωμ](ψ̂ ′

μ)2 − h′ψ̂ ′
1, (10)

where ψ̂ ′ = zψ̂ and z is the “wave function renormalization”
[9,20].

We define the rescaling factors σV
1 and σV

2 as

σV
1 (B) ≡

∑N
μ=1 1∑μB

μ=1 1
= Bφ1 (11)
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and

σV
1 (B)σV

2 (B) ≡
∑N

μ=1 ω∑μB

μ=1 ω
= Bφ1+φ2 , (12)

where clearly φ1 = 1, while
∑N

μ=1 ω = Nω.
To find z we require the coefficient of the Laplace term to

remain fixed and get (σV
1 σV

2 )−1z2 = 1, which yields

z = (
σV

1 σV
2

)1/2 = B(φ1+φ2)/2. (13)

The renormalization of the reduced temperature is then given
by

r ′ = (
σV

1

)−1
z2r0 = σV

2 r0 = Bφ2r0. (14)

The external field term rescales as h′ψ̂ ′
1 = hzψ̂1, so

h′ = zh. (15)

On this non-translationally-invariant network, in the absence
of a metric, there is no obvious interpretation of φ2 in terms of
a correlation length exponent. Therefore we use the Kadanoff
scaling relations in order to express other critical exponents
in terms of these renormalization group eigenvalues. The
Kadanoff scaling relations for the renormalized free energy
per mode are

f (t,h) = B−1f ′(BYV
t t,BYV

h h
)
. (16)

From Eqs. (14) and (15), we find YV
t = φ2 and YV

h =(1+φ2)/2.
Finally,

f (t,0) ∼ t2−α (17)

yields the specific heat critical exponent α, since ch ∼
∂2f (t,0)/∂t2 ∼ t−α ,

α = 2 − 1

φ2
. (18)

Setting t = 0 in Eq. (16), we similarly obtain the magnetic
field critical exponent on the critical isotherm, h ∼ mδ , with
m being the magnetization per spin,

δ = 1 + φ2

1 − φ2
. (19)

B. Scaling the maximum eigenvalue

An alternative strategy for eliminating degrees of freedom
with large ω is to eliminate all degrees of freedom with ω �
�/B, where B is again an arbitrary scale factor. In this case,
we define the scaling factors σ�

1 and σ�
2 as

σ�
1 (B) ≡ N∑μB

μ=1 1
= Bp1 , (20)

where

μB = sup{μ ∈ [1,N ] : ωμ < �/B}, (21)

and p1 is now a nontrivial scaling exponent, with N/N ′ = Bp1 .
We also have

σ�
1 (B)σ�

2 (B) ≡ Nω∑μB

μ=1 ω
= Bp1+p2 . (22)

Using σ�
1 and σ�

2 to rescale the truncated Hamiltonian, one
can derive, in a way completely analogous to Eqs. (10)–(15),
that

z = B(p1+p2)/2. (23)

The recursion relation for the reduced temperature is given by
r ′ = σ�

2 r0. From simple power counting one has p2 = 1.
Now taking

f = B−p1f ′(t ′,h′), (24)

with t ′ = BY�
t t and h′ = BY�

h h, one finds that Y�
t = p2 = 1

and Y�
h = (1 + p1)/2. From Eq. (17) one gets

α = 2 − p1

p2
= 2 − p1, (25)

and, similarly,

δ = p1 + p2

p1 − p2
= p1 + 1

p1 − 1
. (26)

It is easy to show [from Eqs. (12) and (22)] that if the
spectral density exhibits a power law behavior, with ρ(ω) ∼ ωβ

for small ω, then the nontrivial exponents p1 and φ2, within
the context, respectively, of scaling the maximum eigenvalue
or the number of modes, are related to β via

φ2 = 1/(1 + β) p1 = 1 + β. (27)

From β � 0, we are ensured that φ2 � 1 and p1 � 1, and,
finally,

α = 1 − β δ = (2 + β)/β. (28)

In terms of the spectral dimension [10] d̃ ≡ 2(1 + β) one gets

α = 4 − d̃

2
δ = d̃ + 2

d̃ − 2
, (29)

so, for the Gaussian model, the exponents depend solely on
the spectral dimension. A comparison with the exactly known
Gaussian exponents in spatial dimension d [19,20] shows that
here the spectral dimension has taken on the role of the spatial
dimension.

III. SPECTRAL RG FOR SOME
DETERMINISTIC NETWORKS

In this section we present numerical and semianalytical
results for the spectral renormalization of the Gaussian model
on the Cayley tree and the diamond lattice. In the Appendix,
the analogous computations for the square and cubic lattices
are presented for comparison.

A. Gaussian model on the Cayley tree

An inspection of Fig. 1 shows that the spectral density of
the graph Laplacian for the Cayley tree can be written as

ρ(ω) =
r∑

n=1

τnδ(ω − ω(n)), (30)

where ω(n) and τn = τ (ω(n)) ∝ ω(n) are the n = 1,2, . . . th
distinct eigenvalues and their degeneracies in the interval
0 < ω < ω∗, where ω∗ is the value at which τ (ω) is maximum.
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FIG. 1. (Color online) The degeneracies, τn, of the distinct eigen-
values ω(n) for the Cayley tree (with branching number b = 3), drawn
for r = 9 generations. The smallest nonzero eigenvalue tends to zero
as b−r . We do not display ω1 = 0. The degeneracies fall on a straight
line with unit slope (red) in this log-log plot. Nevertheless, the spectral
density is zero almost everywhere within the ω < 1 domain, and the
exponent β, defined via ρ(ω) ∼ ωβ for small ω, is equal to zero.
See the text.

We see that, for branching number b and n > 1,

τn = bn−2(b − 1) (31)

and

ω(n) 
 anb
−(r−n+2), (32)

where clearly

τn ∝ [ω(n)]ξ . (33)

In fact, we find ξ = 1. The coefficients an tend to a constant,
with an+1/an ∼ 1 + c1 exp(c2n) for r − n � 1, with c1 of the
order of e−(r−2) � 1 and c2 ∼ O(1). Since we are interested in
the small-ω region of the spectrum we will henceforth treat the
an as constants. The number of eigenvalues within the interval
ω < 1 is 
 br−1 ∼ Nr/b.

To find the spectral dimension, i.e., the scaling form of
the spectral density, let us consider going from the discrete
sum over n to a continuous integral. Defining the continuous
variable x via ω(n) ∝ exp(x ln b) and using Eq. (33),∑

n

τn ∝
∫

dx exp(ξx ln b). (34)

Making the change of variables ω(x) = exp(x ln b), we get
dω = ln b exp(x ln b)dx or

dx = dω

ω ln b
. (35)

Thus ∑
n

τn →
∫

dω ωξ

ω ln b
= 1

ln b

∫
ωξ−1dω. (36)

This yields ρ(ω) ∼ ωβ with β = ξ − 1, and since we have
found ξ = 1, we see that β = 0 in the region ω < 1. Notice that
the spectral density (and therefore also the spectral dimension)
does not depend on the branching number b.
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FIG. 2. (Color online) Rescaling factors σV
i and σ�

i , i = 1,2,
for the Cayley tree with branching number b = 3. See the text,
Eqs. (11), (12), (20), and (22). The scale factor is chosen as
B(k) = bk−1. The linear fits are to the last four points for each set.
The exponents are found to be φ1 = 1.00, φ2 = 1.03 ± 0.04, p1 = 1,
and p2 = 1.01 ± 0.01. The critical exponents are given in Table I.

It is straightforward to directly compute the renormalization
group eigenvalues from a knowledge of the structure of the
discrete eigenvalue spectrum. Choosing B = bk ≡ Bk , we
have, for the rescaling factors,

σV
1 (Bk) = N∑r−1−k

n=0 τn

= Bφ1 (37)

and

σV
1 (Bk)σV

2 (Bk) = Nω∑r−1−k
n=0 τnω(n)

∝ Bφ1+φ2 , (38)

where we have set an = const.
Doing the sums for r � 1, 1 � k < r (i.e., in the small-ω

region), we find φ1 = φ2 = 1. The numerically obtained
scaling behavior of σV

1 and σV
2 , as well as σ�

1 and σ�
2 , are

shown in Fig. 2 and are in agreement with our approximate
analytical result. The critical exponents are given in Table I.

B. Gaussian model on the diamond lattice

We next consider a hierarchical lattice, sometimes also
known as the diamond lattice [17]. The zeroth generation
consists of two nodes connected by an edge; at the first iteration
the edge is replaced by a rhombus with the two new nodes
making up the first generation, and the network is constructed
by iteratively replacing each edge of a rhombus by yet another
rhombus. Indexing the different generations by k = 0, . . . ,r ,
the total number of nodes is Nr = 2(1 + ∑r−1

k=0 4k), the number
added at each generation is Nk − Nk−1 = 22k−1 for any k � 1.

After r iterations, the nodes belonging the kth generation
have degrees dk , where d0 = d1 = 2r and dk = 2r−k+1, for 1 <

k � r . This leads to an overall scale-free degree distribution
with γ = 2. On the other hand, embedding the lattice in a
metric space and regarding the iterations as a fine-graining
operation [23] leads to a multifractal degree distribution over
the lattice [24]. We are interested in the region 0 � ω � 2
where 〈ω(n+1) − ω(n)〉 ≡ � → 0 as 4−r . We find that the
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TABLE I. Exponents of the spectral density, the rescaling factors, and critical exponents obtained for the Gaussian model on spatial and
nonspatial networks. The first set of exponents are obtained by the method of scaling the total number of modes and the second set via scaling
the upper cutoff for the eigenvalues. The values for δ that are larger than the inverse of the error bars around zero have been shown as ∞. The
Gaussian model yields identical results on the square lattice, the Cayley tree, and the diamond lattice, which all have spectral dimension d̃ = 2.
The exact Gaussian values are indicated with the subscript G. See the text for definitions.

Network β φ1 φ2 α δ p1 p2 α δ αG δG

Square 0.00 ± 0.02 1 0.996 ± 0.003 1 ∞ 1.00 ± 0.01 0.99 ± 0.03 1.00 ± 0.03 ∞ 1 ∞
Cubic 0.5 ± 0.1 1 0.66 ± 0.05 0.48 ± 0.12 4.88 ± 0.25 1.49 ± 0.02 0.98 ± 0.05 0.48 ± 0.05 4.8 ± 0.4 1/2 5
Cayley3 1.03 ± 0.04 1 1.03 ± 0.04 1.03 ± 0.04 ∞ 1 1.01 ± 0.01 0.99 ± 0.01 ∞ 1 ∞
Cayley5 1.06 ± 0.09 1 1.06 ± 0.09 1.06 ± 0.09 ∞ 1 1.05 ± 0.05 0.95 ± 0.05 ∞ 1 ∞
Diamond 1.01 ± 0.03 1 1.01 ± 0.03 1.01 ± 0.03 ∞ 0.97 ± 0.04 1.06 ± 0.07 1.09 ± 0.11 ∞ 1 ∞

degeneracies of the distinct eigenvalues ω(n) obey a scaling
relation ω(n) ∼ ns with s = 2.06 ± 0.02 for small n (Fig. 3).
The degeneracies τn are organized in triplets, Tj = {1,2,τ (j )},
with τ (j ) being defined now as the j th distinct element of the
series 1,5,21, etc., given by τ (j + 1) = 4τ (j ) + 1, or τ (j ) =∑j

k=0 4k ∼ 4j , for 0 � j � r − 1. The spectral distribution is
naturally embedded in the real numbers and has a multifractal
structure, which is generated by the replacements T1 →
{T1,T2,T1} and, for j � 2, Tj → Tj+1 at each iteration.

The spectral distribution for the diamond lattice, plotted
on a log-log scale, is shown in Fig. 4, with the initial ω

values for each j th family being given by ωinit(j ) ∝ 4j obeying
the scaling relation τ (j ) ∝ ωinit(j ), so the envelope of the
distribution is qualitatively the same as that of the Cayley tree,
Fig. 1.

The complexity of this spectral distribution is tamed by
the rescaling factors σ1 and σ2. It should be noted that, for
nB = r − 1 − k and Bk = 4k , σ−1

1 ∼ ∑nB

n τn and σ−1
1 σ−1

2 ∼∑nB

n ω(n)τn, are, respectively, the (truncated) zeroth and first
moments of the multifractal spectral distribution described
above. These integrated quantities smooth out the singular
nature of the distribution itself and yield a simple scaling
law for large B (small ω), the relevant regime for the critical
behavior.

In Fig. 5 σV
1 , σV

2 , σ�
1 , and σ�

2 , are calculated numerically,
again with a set of scale factors B(k) = 4k , in keeping with

0 50 100 150
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n

ω(n)

0 1 2 3 4
−10

−5

0

5

ln n

ln
ω

(n
)

ω(n)∼ ns

s=2.06±0.02

FIG. 3. (Color online) The distinct eigenvalues ω(n) of the graph
Laplacian on the diamond lattice plotted against n. The inset shows
the scaling behavior in the small-ω(n) region.

the discrete scaling symmetry of the lattice. The exponents are
given in in Table I. The numerically computed values of the
critical exponents are in agreement with the scaling behavior
(β = 0, i.e., d̃ = 2) which one may read off from the envelope
of the spectral distribution (Fig. 4).

C. Recovering the mean-field exponents

Goldenfeld [20] discusses the anomaly of obtaining non-
classical (non-mean-field) values for the critical exponents of
the Gaussian model, which is based on a Landau expansion
[see Eq. (1)] and points out that the anomaly can be understood
in terms of the dangerous irrelevant field v0. We may repeat
the argument in the present case, using the scaling relation
in Eq. (16) with a third scaling field, v, which leads to
f = B−xf ′[BYt (x)t,BYh(x)h,BYv(x)v], yielding

m(0,h,v) = h[−Yh(x)+x]/Yh(x)M(vh−Yv/Yh ), (39)

for the magnetization on the critical isotherm. Here x = 1 or
x = p1 = 1 + β depending on whether we scale the number
of modes (Sec. II A) or the maximum eigenvalue (Sec. II B),
respectively. We will require that Yv ∝ 1 − β, in analogy with
setting yv ∝ 4 − d in Euclidean space. The Landau expansion
gives m(0,h,v) ∝ (h/v)1/3; therefore one takes [20] the scaling
function M(v) ∼ v−1/3 in the limit of small h. Equation (39)

−8 −6 −4 −2 0 2 4 5
0

2

4

6

8

10

ln ω

ln
τ 

(ω
)

FIG. 4. (Color online) Spectral distribution for the diamond lat-
tice, for r = 7 generations, on a log-log scale. Families of eigenvalues
with degeneracies τj = ∑j

k 4k can be seen as horizontal sets of points.
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FIG. 5. (Color online) The numerically calculated rescaling fac-
tors for the diamond lattice. The scale factors have been chosen as
B(k) = 22k and 1 � k <� r + 1 for σV

1 ,σ V
2 and 1 � k � r + 2 for

σ�
1 ,σ�

2 , for a total number of generations r = 7. The linear fits are
to the last four points for each set. We get φ1 = 1, φ2 = 1.01 ± 0.03,
p1 = 0.97 ± 0.04, and p2 = 1.06 ± 0.02. The critical exponents are
summarized in Table I.

then gives

−1 + x

Yh(x)
+ 1

3

Yv(x)

Yh(x)
= 1

δ
. (40)

For x = 1 + β, one has Yh = (2 + β)/2, Yv = 1 − β. For
x = 1, Yh = (2 + β)/[2(1 + β)] and one must take Yv =
(1 − β)/(1 + β). In either case, β cancels out of the final
result, yielding the mean-field value for δ. One may similarly
show that keeping v0 in the calculation and using the Landau
expansion for h = 0 to get m ∝ √−r0/v0 gives the order
parameter exponent βm to be 1/2, from which one may derive
α = 0 using the scaling relation βm(1 + δ) = 2 − α.

D. Square and cubic lattices

For completeness, we have also computed the spectral
densities of the square and cubic lattices and their rescaling
factors. The Laplace eigenvalues for the square and cubic
lattices are analytically given by

ωq = 4
d∑

j=1

sin2

(
qj

2

)
, (41)

where we have indexed the eigenvalues by the wave vector,
the lattice spacing is unity, d is the Euclidean dimension, and
qj = (πnj N−1/d ) are the Cartesian components of q. In the
limit of small q = ‖q‖, ωq 
 q2. Then the spectral density is
ρ(ω) ∝ ωβ with β = d/2 − 1.

The numerical results for the nontrivial scaling exponents
and for α and δ are given in Table I. The plots of the spectral
density and rescaling factors are provided in the Appendix.
It is instructive to compare the accuracy obtainable from
the rescaling factors as opposed to the spectral densities
themselves, which converge very slowly, in the small ω region,
to their thermodynamic limits.

IV. COMPARISON WITH CONVENTIONAL METHODS

In this section we check our SRG results against conven-
tional methods which we here adapt to nonspatial lattices,
namely exact summation of the leading term in the specific
heat, obtained by differentialting Eq. (8), and finite-size scaling
(FSS) by the number of nodes of the lattice, instead of the linear
size of the system.

A. Exact enumeration

For the Gaussian model, the specific heat can be explicitly
calculated to leading order as

ch ∝ 1

2N

N∑
μ=1

1

(r0 + ωμ)2
= 1

N

r−1∑
n=0

τn

[t + ω(n)]2
. (42)

The results for the Cayley tree, the diamond lattice, and
square and cubic lattices are shown in Fig. 6. The critical
scaling behavior of ch is obtained for r0 between the first
nonzero Laplace eigenvalue and the van Hove singularity in the
Laplacian spectral density (which falls near unity) and yields
the critical exponent α in agreement with the SRG results in
Table I.

B. Finite-size scaling for nonspatial lattices

In order to estimate possible errors due to the finiteness of
the lattices considered, an FSS analysis adapted to nonspatial
lattices was performed for the example of the Cayley tree. The
size-dependent relevant effective “field” in this case is N−1, in
place of the linear size of the spatial lattice [20].

The specific heat should then scale as

ch(t,N−1)

N2Y−1
=

{
const, x < 1

x1−2Y , x > 1,
(43)

−15 −10 −5 0 5
−10
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15
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N
cubic

     = 42875

N
diamond

 =10924

N
Cayley3

 = 29524

N
Cayley5

 = 19531
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FIG. 6. (Color online) Specific heat exponent α obtained from
Eq. (42) for the Cayley tree with branching numbers b = 3, 5
(indistinguishable in graph) and the diamond, square, and cubic
lattices. The legend indicates the size of the different lattices. The
positions of the first nonzero eigenvalues of the graph Laplacian are
indicated by triangles with colors that match the curves and mark the
onset of the scaling region. The slope of the tangent lines yield α = 1
for all except the cubic lattice, which has α = 0.5.
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where x = t (1/Y )N . Plotting N−(2Y−1)ch versus Nt , we find
Y = 1, with a satisfactory collapse for r = 3, . . . ,7. We can
show that α = 2 − Y−1 and our SRG result for α is confirmed.

For the Cayley tree, the same result may be obtained by
substituting the approximate analytic results for τn and ω(n)

from Eqs. (32) and (33) into Eq. (42). Noticing that br ∼ Nr ,
one gets, after multiplying and dividing the right-hand side by
N2

r and simplifying,

ch

Nr


 b − 1

b2

r−1∑
n=0

bn

(Nr t + bn)2
. (44)

The right-hand side is only a function of Nr t and approaches
a constant for Nrt < 1. Going over to an integral immediately
gives the result that ch ∼ (Nr t)−1 for Nr t > 1.

V. INCLUDING THE ψ4 INTERACTIONS

In this section we will add a ψ4 term [Eq. (1)] to the
Gaussian Hamiltonian and treat this system on the Cayley
tree and the diamond lattice. This interaction term leads to
couplings between different fluctuation modes, and the precise
nature of the eigenvectors come to play an important role.

The Ising model exhibits mean-field critical behavior on
the Bethe lattice (Cayley tree in the infinite limit) [25,26],
therefore we should expect to find that on this network, the
Gaussian fixed point is stable with respect to the inclusion
of a ψ4 coupling. However, on the diamond lattice, we
would expect the emergence of a non-Gaussian fixed point
as well, since the Ising model on the diamond lattice
undergoes an order-disorder phase transition with nontrivial
exponents [23,27].

The interaction term Hint = v0
∑

i ψ
4(i) in the Hamiltonian

[see Eq. (1)] can be expanded explicitly in terms of the
eigenvectors of the graph Laplacian on an arbitrary network,
as

Hint = v0

∑
1,2,3,4

ψ̂1ψ̂2ψ̂3ψ̂4 �(1,2,3,4), (45)

where, for brevity, we have written {1,2,3,4} instead of
{μ1,μ2,μ3,μ4} and we have defined the four-vertex

�(1,2,3,4) =
N∑
i

u1(i)u2(i)u3(i)u4(i). (46)

Here uμ(i) is the ith element of the eigenvector uμ of the graph
Laplacian.

On a periodic lattice where the eigenvectors are the
harmonic functions uμ(j ) = N−1/2 exp(ikμ · xj ) and ωμ =
‖kμ‖2, one immediately has

�(1,2,3,4) = δ(d)(k1 + k2 + k3 + k4), (47)

where in the thermodynamic limit δ(d) becomes the d-
dimensional Dirac δ function. In the case of an arbitrary
network, a similar constraint is difficult to find in general, even
with an analytical solution for the eigenvalues [15,28–30]. In
this paper we will avail ourselves of the numerically calculated
eigenvectors for the respective lattices.

We now explicitly perform the scaling with respect to the
maximum eigenvalue by taking partial integrals in the partition
function, over fields ψ̂μ with μ > μB , with the Gaussian

weight e−H>
0 . We choose to define μB as in Eq. (21), so

we are explicitly truncating the largest eigenvalue; however,
truncating the number of modes gives parallel results for
d̃ = 2. The superscripts > and < have the same meaning
as in Sec. II, i.e., H>

0 = 1
2

∑N
μ>μB

[r0 + ωμ]ψ̂2
μ. Note that the

functional e−Hint involves fields ψ̂μ with μ in both the lower
and upper ranges with respect to the cutoff μB , We obtain

Z(r0,v0) = Z>
0

∫ ∞

−∞

∏
μ<μB

dψ̂μe−H<
0 〈e−Hint〉>0 . (48)

The normalization factor is Z>
0 = ∫ ∞

−∞
∏

μ>μB
dψ̂μe−H>

0 , and
we have implicitly defined the expectation value,

〈Q〉>0 = (Z>
0 )−1

∫ ∞

−∞

∏
μB<μ<N

dψ̂μQe−H>
0 . (49)

The perturbation up to second order in the coupling constant
is obtained via a cumulant expansion,

〈e−x〉 
 e−〈x〉e
1
2 [〈x2〉−〈x〉2]. (50)

A. First-order terms

The different diagrams corresponding to the different terms
in the perturbation expansion are given in Fig. 7. There are
only two terms arising from the cumulant expansion to first
order in v0, and they are

H<
2,1 = 6v0

∑
1,2<μB

ψ̂1ψ̂2

∑
3>μB

G(ω3,r0)�(1,2,3,3) (51)

and

H<
4,1 = v0

∑
1,2,3,4<μB

ψ̂1ψ̂2ψ̂3ψ̂4�(1,2,3,2). (52)

The Green’s function G(ω,r0) arises from the contraction
of two fields with indices μ > μB and is defined via

〈ψ̂μψ̂μ′ 〉>0 = δμ,μ′
1

ωμ + r0
≡ δμ,μ′G(ωμ,r0). (53)

FIG. 7. The Feynman diagrams for the quadratic and quartic
interactions, up to second order in the coupling constant. The
diagrams are labelled from the top down as, in column (a) D2,1,
D4,1; in column (b) D2,2, D2,2′ D2,2′′ ; and in column (c) D4,2′ and
D4,2.
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We see from Eqs. (51) and (52) that the couplings have
acquired an eigenvector dependence in a way similar to the
case on periodic lattices. For the Cayley tree we can explicitly
show that the four-vertex �(μ1,μ2,μ3,μ3) is nonzero only if
its arguments (a) are equal pairwise or (b) one of them is equal
to the constant vector and the remaining three equal to each
other. In obvious notation,∑

{1,2,3,4}
�(μ1,μ2,μ3,μ4)

=
(

4

2

) ∑
{1,2,3,4}

δμ1,μ2δμ3,μ4�(μ1,μ2,μ3,μ4)

+ 4
∑

{1;2,3,4}
δμ1,1δμ2,μ3,μ4�(μ1,μ2,μ3,μ4).

In Eq. (51), the requirement that 1,2 � μB and 3,4 > μB

means that only the first set of conditions (a) can be satisfied
and therefore H<

2,1 is actually diagonal in μ1,μ2 and contributes
to the quadratic term in the truncated Hamiltonian. For the
diamond lattice we find the same result numerically.

It is convenient to define

I1(B,r0,i) =
N∑

μ=μB+1

G(ωμ,r0)u2
μ(i) (54)

and

I1(B,r0) =
N∑
i

I1(B,r0,i). (55)

In addition to the scaling factors σ�
1 , σ�

2 , we now have to
also define σ2,1 and σ4,1 for the first-order quadratic and quartic
terms (where we have dropped the superscript �),

σ2,1(B) ≡
∑N

μ1,μ2

∑N
i=1 I1(1,i)uμ1 (i)uμ2 (i)∑μB

μ1,μ2

∑N
i=1 I1(B,i)uμ1 (i)uμ2 (i)

∼ Bφ2,1 (56)

and

σ4,1(B) ≡
∑N

1,2,3,4 �(1,2,3,4)∑μB

1,2,3,4 �(1,2,3,4)
∼ Bφ4,1 . (57)

These scaling factors have been computed at r0 = 0. The
numerical values of the scaling exponents for the Cayley tree
and the diamond lattice are given in Table II.

TABLE II. All the different terms which we consider to second or-
der in the perturbative calculation of the renormalized Hamiltonian on
the Cayley tree and the diamond lattice. The diagrams D2,1, . . . D4,2,
which are displayed in Fig. 7, have been evaluated at r0 = 0 and we
scale the maximum eigenvalue �.

Scaling behav. Cayley Diamond

σ2,1 ∼ Bφ2,1 φ2,1 = 0.80 ± 0.03 φ2,1 = 0.75 ± 0.02
I

(0)
1 (B) log B log B

I
(0)
2 (B) ∼ BφI2 φI2 = 1.09 ± 0.04 φI2 = 0.92 ± 0.03

σ4,1 ∼ Bφ4,1 φ4,1 = 2.11 ± 0.03 φ4,1 = 1.97 ± 0.04
σ2,2 ∼ Bφ2,2 φ2,1 = 0.40 ± 0.04 φ2,1 = 0.60 ± 0.03
σ4,2 ∼ Bφ4,2 φ4,2 = 1.11 ± 0.03 φ4,2 = 1.11 ± 0.04

To first order in v0, we get, after rescaling the effective
Hamiltonian and neglecting the explicit eigenvector depen-
dence in the second term,

H ′
1 = 1

2

N∑
μ=1

[r0B
−p1 + B−p1−p2ωμ]z2ψ̂2

+ 6v0

N∑
μ=1

z2ψ̂2
μB−φ2,1

+ v0

∑
1,2,3,4

z4ψ̂1ψ̂2ψ̂3ψ̂4�(1,2,3,4)B−φ4,1 − hzψ1,

where we have suppressed all numerical coefficients, as we
will do in the rest of this presentation.

Expanding I1(B,r0) in r0, in order to obtain the linear
contribution to the recursion relation of r0, we write σ−1

2,1 ∼
B−φ2,1 ∼ B−φ�

2,1 [I (0)
1 − r0 I

(0)
2 ], where � signifies a summation

over the outer legs, while the terms in the brackets are
given by the loop integral expanded in terms of r0. We find
I

(0)
1 (B) ∼ log B and I

(0)
2 (B) ∼ BφI2 (see Table II). Since we

computed σ−1
2,1 at r0, we compare it with B−φ�

2,1I1(0) and see that
φ2,1 is consistent with 1 minus a small number. What appears as
a small exponent actually corresponds to a logarithmic factor.
The factor z is found again from Eq. (23) and does not change
in the first-order calculations.

Using Eq. (23) and the results of Sec. II A, the recursion
relations for r and for v to first order are

r ′ = Bp2r0 + 12v0z
2B−φ�

2,1
[
I

(0)
1 − r0I

(0)
2

]
. (58)

The third term in Eq. (58) is of second order in the small
quantities r0,v0 and may be dropped. If we ignore the
eigenvector dependence, we can define

I
(0)
K =

N∑
μ=N/B

1

ωK
μ

(59)

and are then able to provide analytical estimates for the
scaling behavior of these functions. See the Appendix for the
computation in the case of the Cayley tree, where we find
I1(0) ∼ ln B and I2(0) ∼ B.

To first order the recursion relation for v′ is

v′ = v0z
4B−φ4,1 = v0B

4−φ4,1 , (60)

yielding v∗ = 0, r∗ = 0 as the only fixed point; i.e., the
Gaussian fixed point is stable to this order for both the
Cayley and the diamond lattices, as we would expect from
our experience with Bravais lattices [20].

B. Second-order terms

To second order, there are more diagrams to consider. In
the recursion relation for r0 [Eq. (58)], we have expanded in
r0, which is small by assumption, and we will keep only terms
that are at most second order in the small quantities v0 and r0.
In the context of the ε expansion [9], to first order in ε one
could ignore v2

0 contributions to Eq. (58) by arguing that they
would be of higher order in ε. But here, to 2nd order, we still
have to consider those v2

0 terms that are zeroth order in r0.
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The diagrams D2,2′ and D2,2′′ have vanishing amplitudes,
nearly 10 orders of magnitude smaller than the other terms,
and go like log B, so we neglect them. For the Cayley tree, as
explained below Eq. (53), it is not possible to get a nonzero
contribution from D2,2′′ except for the case where one has the
constant vector for the outer legs and three identical internal
lines, giving only a negligible amplitude. The only diagram
which could contribute to the second term in Eq. (58) is D2,2

evaluated at r0 = 0, so we get

r ′ = Bp2r0 + 12v0z
2[B−φ�

2,1
(
I

(0)
1 − r0I

(0)
2

) − 6v0B
−φ2,2 ].

(61)

The only nontrivial one-loop contribution to the four-vertex
at second order comes from the bubble diagram D4,2, since
D4,2′ turns out to have a vanishing amplitude as well. Let us
define

I2(B,i,j ; r0) ≡
N∑

μ,μ′=μB+1

G(μ)G(μ′)uμ(i)uμ(j )uμ′(i)uμ′(j ),

where the r0 dependence of the Green’s functions are implicit.
The leading contribution from the bubble diagram to the ψ4

term is

H<
4,2 = 36v2

0

μB∑
1,2,3,4

ψ̂1ψ̂2ψ̂3ψ̂4

×
N∑

i,j=1

I2(B,i,j ; 0)u1(i)u2(i)u3(j )u4(j ).

where r0 has been set to zero and we will drop it from the
notation. To rescale this term we define

σ−1
4,2 ∝

μB∑
1,2,3,4

N∑
i,j=1

I
(0)
2 (B,i,j )u1(i)u2(i)u3(j )u4(j ) ∼ B−φ4,2 .

(62)

Putting together all the quartic terms, we get the recursion
relation for the interaction constant v up to second order,

v′ = v0z
4[B−φ4,1 − 36v0 B−φ4,2 ]. (63)

Recalling that z2 = Bp1+p2 [Eq. (23)], and that, in the present
case, with β = 0, we have p1 = p2 = 1, we get

v′ = v0B
4−φ4,1 [1 − 36v0 B−φ4,2+φ4,1 ], (64)

where we have again suppressed all numerical coefficients.
If one neglects the explicit eigenvector dependence of

σ−1
4,2 and performs the sums over the lattice points, then the

bubble diagram essentially factorizes into the integrals over
the external legs and the loop integral I

(0)
2 ∼ B [Eq. (62)],

so σ−1
4,2 ∼ B−φ4,1I

(0)
2 . The scaling behavior of all the various

diagrams appearing in Fig. 7 are shown in Fig. 8. The values
of the different exponents are given in Table II. From Table II
we see that indeed φ4,2 
 φ4,1 − 1, bearing out our estimate
for both the Cayley tree and the diamond lattice.

Using this estimate, finally we may write down the
recursion relation:

v′ = v0B
4−φ4,1

(
1 − 36v0I

(0)
2

)
, (65)
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FIG. 8. (Color online) The renormalization group factors σ2,1,
σ4,1, and σ4,2 for the Cayley tree (empty triangles, circles, and
diamonds, respectively) and the diamond lattice (red filled triangles,
circles, and diamonds), in arbitrary units. The points for the bubble
diagram, σ4,2, for the Cayley tree have been shifted down by two
decades for better visibility. The linear fits are indicated by dashed
lines.

which yields the fixed point equation:

v∗ = 1 − B−(4−φ4,1)

36I
(0)
2

. (66)

Note that the scaling exponents involved in Eq. (64) are, within
error bars, identical for the Cayley and diamond lattices. In
both cases, large B (the infrared regime) leads to the Gaussian
fixed point once again since I

(0)
2 ∼ B. Iterating the recursion

relation Eq. (64) leads to the same result.
Although the Cayley tree has a spectral dimension d̃ = 2,

which is the lower critical dimension for models with Ising
symmetry, it is well known that the Ising model on the Cayley
tree has mean-field behavior on the Bethe lattice (the r → ∞
limit of the Cayley tree) [25,26]. In fact, a tree structure is
a lattice on which the Bethe-Peierls approximation is exact,
in the same way as the RSRG [11–13,31] is exact for the
diamond lattice [23,27]. We should therefore expect that on
the Cayley tree, the Guassian fixed point should be stable with
respect to perturbation by a ψ4 term and that is indeed what
we find.

The Ising model on the diamond lattice, on the other hand,
which has the same spectral dimension as the Cayley tree,
exhibits nonzero magnetization below Tc > 0 and nonclassical
exponents, as also found by non-RG methods [32]. We would
have expected that the perturbation by a ψ4 term would
lead to nonclassical behavior for the diamond lattice, but a
non-Gaussian fixed point eludes us. For Eq. (64) to yield a
nonzero fixed point, with at most a logarithmic correction,
one should have 4 − φ4,1 equal to a small constant, which one
may use as an expansion parameter, and I

(0)
2 to have at most

a logarithmic dependence on B. Note that on a Bravais lattice
in d = 2 dimensions, precisely the same scenario would have
led to a null result within the usual Wilson momentum shell
renormalization group as well.
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FIG. 9. The generalized hierarchical lattice a là Itzykson and
Luck [33], shown for p = 3 and p = 4 parallel paths with bs = 2
steps each.

C. Spectral dimension d̃ > 2

In order to see whether we can obtain a non-Gaussian fixed
point for the quartic coupling constant v0 and nontrivial critical
exponents for d̃ > 2, we have utilized a generalization of the
diamond lattice [33] illustrated in Fig. 9, with p parallel paths
replacing a bond and each path consisting of bs steps. This
yields a fractal dimension of df = ln(p bs)/ ln bs . We take
bs = 2 as in the foregoing sections but vary p and numerically
calculate the spectral dimension d̃ from the scaling exponent β
in the region of small ω. The relevant exponents φ�

4,1, φ�
4,2, φ�

4,2′ ,
and ζ� ≡ 4 ln z/ ln B are provided in Table III. In this section
we scale the maximum eigenvalue and therefore we will again
omit the superscript � in the remainder of the section, although
we keep it in the tables for clarity. In dimensions d̃ > 2, we
have not attempted to factorize the contributions from the outer
legs and the internal loops, as we do not have a sufficient
understanding of how the vertex � behaves.

Within our perturbative scheme up to second order in v0,
Eq. (64) is in the form of a one-dimensional iterative map
which can be written as v′ = a1v(1 − a2v), with a1 = Bζ−φ4,1

and a2 = 36 Bφ4,1 [B−φ4,2 + 4
3B−φ4,2′ ], where, for p > 2, we

include the diagram D4,2′ as it has a nonvanishing amplitude
and an exponent close to that of D4,2′ . The iteration converges
to a stable non-Gaussian fixed point v∗ = (a1 − 1)(a1a2)−1 in
the interval v∗ ∈ (0,a−1

2 ) provided 1 < a1 < 3.
We can read off from Table III that at p = 2, the trajectory

of v is chaotic and goes off to infinity as the maximum of the v′
curve exceeds 1/a2. A non-Gaussian fixed point exists and is
stable for p = 3,4,5, while for p = 7, d̃ = 4.12 > 4, we find
a1 = 3.5 > 3, so the nonzero fixed point looses its stability.

TABLE III. Higher spectral dimensions: Generalized diamond
lattice (Fig. 9). The spectral density exponent β, spectral dimension
d̃ , and the exponents for the field renormalization factor z4 and for the
Feynman diagrams contributing to the quartic coupling constant, as
well as the coefficient a� and the stable fixed point v∗, are provided
for different p � 7 for p � 7, d̃ > 4. See the text for definitions.

p β d̃ ζ� φ�
4,1 φ�

4,2 φ�
4,2′ a�

1 v∗

2 0 2 4 1.99 1.11 1.425 4 0
3 0.40 2.80 4.80 3.25 2.34 2.24 2.93 0.0040
4 0.66 3.32 5.32 4.13 3.75 3.89 2.28 0.0054
5 0.83 3.46 5.66 4.14 3.31 3.54 2.87 0.0048
7 1.06 4.12 6.12 4.31 4.43 5.75 3.5 0

We now consider the iterative equation for r0, which is in
the form r ′ = arr − cr , where the coefficients depend upon v∗.
Defining the scaling exponents φ2,1;0 and φ2,1;1 for the zeroth-
and first-order terms of the expansion in r0 of σ−1

2,1 , we have

ar = Bp2 − 12v∗B
1
2 ζ−φ2,1;1 (67)

and

cr = 12v∗B
1
2 ζ

[
B−φ2,1;0 − 6v∗(B−φ2,2 + B−φ2,2′ + 2

3B−φ2,2′′ )].
(68)

The fixed point r∗ is unstable, with |ar | > 1 and negative since
the critical temperature increases with the interactions.

The linearized transformation matrix for r and v is upper
triangular, and ∂r ′/∂r|v∗ = ar ∼ BYt by our definition. The
critical exponent α can now be found from differentiating
Eq. (24) twice with respect to t and using ch ∼ t−α . One gets
α = 2 − p1/Yt . We calculate Yt from Eq. (67) by comparing
the exponents of the first and second terms in ar , and we find
Yt = ζ/2 − φ2,1;1 > 1 in all cases where v∗ �= 0.

For p = 7, with v∗ = 0, the only surviving term in ar is
the Gaussian one. Then Yt = 1 and from Eq. (25) we find
α = 2 − (1 + β). However, for β = 1.06 > 1, the ultraviolet
singularity in

ch ∼
∫ �

0

dω ωβ

(r0 + ω)2
(69)

takes over and we find α = 0. The values of α for different p

are given in Table IV.
Since the field renormalization z has not changed in this

second-order perturbation expansion, the eigenvalue for the
external field h, namely BYh = z, is still given by Eq. (26).
In terms of β we have δ = (2 + β)/β. The values are listed
in Table IV. Clearly for β = 1, we get δ = 3, the mean-field
value. Actually, one may show by the methods of Sec. III C
that for β > 1 (or d̃ > 4), where v0 is an irrelevant variable,
δ = 3.

VI. CONCLUSIONS AND DISCUSSION

The eigenvalue spectrum of the graph Laplacian has already
been used to define an effective dimensionality which governs
both vibrational and diffusive behavior, as well as the infrared
singularities of the Gaussian model [22,34,35] on arbitrary
lattices. Bradde et al. [10] have discussed the Ginzburg
criterion for phase transitions on spatial complex networks
in terms of the spectral dimension d̃ of the closely related
adjacency matrix. The present paper is complementary to the
approach of Bradde et al. [10] in the sense that we study
nonspatial networks, although both the Cayley tree and the
diamond lattice are embeddable in two dimensions.

We build the spectral renormalization group method on
the generalized Fourier transform using the eigenvectors of
the graph Laplacian. We show how to implement a renor-
malization group a là Wilson on non-translationally-invariant
nonspatial networks either by changing the upper cutoff of the
eigenvalues of the graph Laplacian (in place of the momentum
cutoff on Bravais lattices) or by scaling the total number
of nodes (which is the same as the number of eigenvectors
of the graph Laplacian). The lack of translational invariance
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TABLE IV. Higher spectral dimensions: The exponents for the quadratic terms, the specific heat exponent α and the magnetic exponent δ.
For p = 2, corrections for the dangerous irrelevant coupling have been incorporated into the critical exponents.

p φ�
2,1;0 φ�

2,1;1 φ�
2,2 φ�

2,2′ φ�
2,2′′ r∗ Yt α δ

2 0.83 ± 0.06 0.14 ± 0.04 0.02 ± 0.08 −0.04 ± 0.03 0.10 ± 0.03 0 1 0 3
3 1.27 ± 0.08 0.77 ± 0.07 1.06 ± 0.08 0.73 ± 0.13 0.90 ± 0.06 − 0.113096 1.63 1.14 6
4 1.82 ± 0.24 1.49 ± 0.22 1.91 ± 0.26 1.37 ± 0.21 1.49 ± 0.09 − 0.06192 1.17 0.58 4.03
5 1.58 ± 0.12 1.36 ± 0.12 1.69 ± 0.13 1.31 ± 0.11 1.34 ± 0.16 − 0.1490197 1.47 0.75 3.41
7 1.91 ± 0.24 1.78 ± 0.23 2.03 ± 0.25 1.71 ± 0.23 1.76 ± 0.23 0 1 0 3

forces us to avoid length rescaling altogether, since the only
thermodynamically meaningful length, the correlation length,
is not well defined on these lattices [23]. The hyperscaling
relations cannot be used, since it is not quite clear how the
dimension should be defined [23] (embedding dimension d,
fractal dimension df , or spectral dimension d̃). It should be
noted that the exact real-space renormalization group for Ising
spins on the diamond lattice, applied blindly as a length
rescaling, yields an eigenvalue for the reduced temperature
yt = 0.7479, a correlation length exponent ν = 1.3370, and,
if the hyperscaling relation (with d = df = d̃ = 2) is used, a
rather embarrasing α = −0.6738.

For the Gaussian model, we find that the critical exponents
depend exclusively on the spectral dimension through β, the
scaling exponent of the spectral density in the infrared region.
Note that β = d̃

2 − 1. The Gaussian fixed point is stable with
respect to the introduction of quartic couplings in d̃ = 2. This
seems to be due to the fact that the spectral dimensionality d̃

is equal to the lower critical value within the Ising universality
class rather than to the lack of translational invariance [36] or
some other exotic property of the diamond lattice. It has been
noted by Wilson and Kogut [9] that reaching the nontrivial
fixed point is difficult in two (Euclidean) dimensions, as
the fixed-point functions acquire a sensitive dependence on
the choice of the initial function to be iterated. Several
authors [37,38] have found that, in fact, scalar field theories
in two dimensions may not be amenable to perturbative RG
schemes.

We have gone to higher fractal and spectral dimensions
by using a generalized diamond lattice [33], using an integer
parameter, p (see Fig. 9). The spectral dimension is raised
from two towards four (β = 1), and we encounter stable non-
Gaussian fixed points. We are able to calculate the eigenvalues
for all the different diagrams in the perturbation expansion up
to second order and compute the specific heat exponent. As the
spectral dimension is raised beyond four, although the fixed
point still exists, it looses its stability. (In fact, iterations for the
coupling constant v0 exhibit a period four attractor; however,
this does not carry much physical meaning because it depends
purely on the truncation of the perturbation expansion).

Note that, due to the strong dependence on the eigenvectors
of the graph Laplacian that is introduced by the four-vertex �

[Eq. (46)], we are forced to resort to numerical computations in
order to extract the eigenvalues, and beyond Gaussian theory
we are not able to express them solely in terms of the spectral
dimension. However, better analytical understanding of the
symmetries of the eigenvectors should allow us to extract more
information. Work is under progress in this direction.

We conclude that critical fluctuations on non-
translationally-invariant networks are amenable to investiga-

tion by the present method. Only near lower critical dimensions
for the universality class under study, the perturbative scheme
might break down.

One question is how to go to higher orders in perturbation
theory. In this paper we have gone only up to second order
in the coupling constant and/or the reduced temperature. This,
however, is not enough to introduce corrections to the field
renormalization z, and the computation of the critical exponent
η may be problematic for the same reasons as that of ν.
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APPENDIX

1. Square and cubic lattices

In Figs. 10 and 11, we present plots for the numerical
calculation of the spectral density and the exponent β for the
square lattice (N = 4×104) and the cubic lattice [N = (35)3].
In Figs. 12 and 13, the scaling plots for the exponents
φ1, φ2, p1, and p2 are displayed. A summary of all the critical
exponents computed in this paper was given in Table I in the
main text.

For many networks, even in the thermodynamic limit the
spectral density does not become a smooth function which
behaves as a power law, ρ(ω) ∼ ωβ for small ω. In particular,
the spectral density of the Barabasi-Albert network [4], as

−3 −2 −1 0 1 2 3
4.6 

4.8 

5 

5.2 

5.4 

ln ω

ln
 ρ

(ω
)

FIG. 10. (Color online) The spectral density for the 200×200
square lattice, ρ(ω) ∼ ωβ , with β = 0.00 ± 0.02 for small ω. The
first 13 points have been fitted.
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FIG. 11. (Color online) The spectral density for the N = 353 =
42875 cubic lattice with periodic boundary conditions. ρ(ω) ∼ ωβ ,
with β = 0.50 ± 0.03. Here ρ(ω) is fitted from the 2nd to the 35th
point.

well as scale-free networks with γ > 3 grow exponentially
for small ω (so the spectral dimension diverges), although
they have a power-law tail for large ω, Ref. [15].) As in
the case of the Cayley tree and the diamond hierarchical
lattice, the spectral density may be nonzero only on a union
of discrete sets of measure zero. Where one cannot compute
ρ(ω) analytically, one should be aware that its numerical
determination may call for prohibitively large network sizes,
as has also been noted by Bradde et al. [10]. Even for Bravais
lattices with periodic boundary conditions, the convergence
of the numerical spectral density to the thermodynamic limit
is very slow, especially in the small-ω region, see Figs. 10
and 11.

2. Eigenvalues and eigenvectors of the graph laplacian

Closed-form expressions for the eigenvalues of the graph
Laplacian of the Cayley tree are known [28,29]; however,
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FIG. 12. (Color online) The rescaling factors σV
1 (blue triangles),

σV
2 (black squares), σ�

1 (red circles), and σ�
2 (green diamonds) for the

square lattice; some symbols fall on top of each other. The exponents
φ1, φ2, p1, p2 are given in the legend. The scale factors are B(k) =
N/k, k = 1, . . . ,N/2. The scaling region is taken from k = 4 to
k = 1000.
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FIG. 13. (Color online) The RG factors σV
1 (blue triangles), σV

2

(black squares), σ�
1 (red circles), and σ�

2 (green diamonds) for the
cubic lattice with periodic boundary conditions. All the points after
the first two have been fitted. The numerical values of the exponents
are provided in the legend.

to our knowledge, explicit solutions for all the eigenvalues
for arbitrary r are not available. (Also see Rozikov and
coworkers [39–41].) We present in Table V the eigenvalues
and eigenvectors of the graph Laplacian for the Cayley tree
with r = 2.

Ochab et al. [29] provide valuable insights into the
successive stages of symmetry breaking leading to the different
eigenvectors and the eigenvalues of the adjacency matrix of
the Cayley tree. We have been able to analytically compute
the eigenvectors for arbitrary r , for ω < ω∗, using the auto-
morphism properties of the Cayley tree; this will be presented
in a separate publication. For larger trees, the same pattern
(Table V) is stretched to the whole tree, and then, for increasing
ω, becomes localized on subtrees of diminishing size.

3. Scaling of the functions IK (0) on the Cayley tree

Here we calculate explicitly the functions IK (B), K = 1,2,

IK (B) ≡
N∑

μ=μB

ω−K
μ , (A1)
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FIG. 14. (Color online) Scaling behavior of I
(0)
1 (circles) and I

(0)
2

(squares) for the Cayley tree. The data points for I
(0)
1 are better fitted

by ln B, as seen in the inset. The (red) line fitted to the (blue) squares
yields I

(0)
2 ∼ B1.09±0.04.
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TABLE V. The eigenvalues and eigenvectors of the Cayley tree with two generations (r = 2) and branching number b = 3. The integers
in the first line of the table below indicate the nth distinct eigenvalue ω(n). The eigenvalues are, in increasing order, ω(1) = 0, ω(2) = (α+ −
1)/α+, ω(3) = 1, ω(4) = b + 1 − √

b, ω(5) = (α− − 1)/α− = 1/ω(2), and ω(6) = b + 1 + √
b, with α± = 1±√

1+4/b

2 . Defining θ = 2π/b, the
numerical factors appearing in the eigenvectors μ = 2,3,11,12 and 4, . . . ,9 are the real and imaginary parts of exp(i�θ ), � = 1,2, . . . ,b. The
constants appearing in columns marked 4 and 6 are p = −b − √

b and q = −b + √
b. The normalization constants have not been included for

clarity. Notice the wide disparity between the second and fifth, and respectively fourth and sixth, eigenvalues belonging to eigenvectors with
the same symmetries.

1 2 2 3 3 3 3 3 3 4 5 5 6

1 0 0 0 0 0 0 0 0 −√
b3 0 0 +√

b3

1 −1/2
√

3/2 0 0 0 0 0 0 p −1/2
√

3/2 q

1 −1/2 −√
3/2 0 0 0 0 0 0 p −1/2 −√

3/2 q

1 1 0 0 0 0 0 0 0 p 1 0 q

1 −(1/2)α+ (
√

3/2)α+ −1/2 0 0
√

3/2 0 0 1 −(1/2)α− (
√

3/2)α− 1
1 −(1/2)α+ (

√
3/2)α+ −1/2 0 0 −√

3/2 0 0 1 −(1/2)α− (
√

3/2)α− 1
1 −(1/2)α+ (

√
3/2)α+ 1 0 0 0 0 0 1 −(1/2)α− (

√
3/2)α− 1

1 −(1/2)α+ −(
√

3/2)α+ 0 −1/2 0 0
√

3/2 0 1 −(1/2)α− −(
√

3/2)α− 1
1 −(1/2)α+ −(

√
3/2)α+ 0 −1/2 0 0 −√

3/2 0 1 −(1/2)α− −(
√

3/2)α− 1
1 −(1/2)α+ −(

√
3/2)α+ 0 1 0 0 0 0 1 −(1/2)α− −(

√
3/2)α− 1

1 α+ 0 0 0 −1/2 0 0
√

3/2 1 α− 0 1
1 α+ 0 0 0 −1/2 0 0 −√

3/2 1 α− 0 1
1 α+ 0 0 0 1 0 0 0 1 α− 0 1

for the Cayley tree, making use of the approximate formulas
[Eqs. (31) and (32)]. Let us take the scaling factor to equal
powers of the branching number b, so Bk = bk . We see that
already for k = 1, the eigenvalues included in the sum will
be below the peak at ω∗ = 1, where the equations cited above
hold to a good approximation. Defining nk as the label of the
smallest distinct eigenvalue compatible with μBk

,

I
(0)
K = AK +

r∑
n=nk

τn[ω(n)]−K. (A2)

Note that for k = r , N/Br 
 1. The constant AK is the sum
of [ω(n)]−K over all n such that ω(n) > 1. Then

I
(0)
K = AK +

r∑
n=nk

b(n−2)(b − 1)

anb−(r−n+2)K
. (A3)

Approximating an by a constant as before, canceling bn in
the summand, and using nk = r − k + 1 and r − nk − 1 = k

we find, for K = 1,

I
(0)
1 = A1 + (b − 1)br

a
k, (A4)

or

I
(0)
1 = const. + (b − 1)br

a ln b
ln Bk, (A5)

where the dependence on the scaling parameter is only
logarithmic. Similarly, one gets

I
(0)
2 = A2 + br+2(bk − 1)

a2
, (A6)

which in turn gives

I
(0)
2 = const + br+2

a2
Bk, (A7)

where the dependence on the scaling parameter B is linear. It
should be noted that br ∝ N in all of the above. Numerical
results to be compared with Eqs. (A5) and (A7) are shown in
Fig. 14.
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of the Braşov School Conference, Prog. Phys., Vol. 11, edited by
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