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Quantum heat baths satisfying the eigenstate thermalization hypothesis
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A class of autonomous quantum heat baths satisfying the eigenstate thermalization hypothesis (ETH) criteria is
proposed. We show that such systems are expected to cause thermal relaxation of much smaller quantum systems
coupled to one of the baths local observables. The process of thermalization is examined through residual
fluctuations of local observables of the bath around their thermal values predicted by ETH. It is shown that such
fluctuations perturb the small quantum system causing its decoherence to the thermal state. As an example, we
investigate theoretically and numerically thermalization of a qubit coupled to a realistic ETH quantum heat bath.
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I. INTRODUCTION

Quantum thermodynamics has attracted much attention in
recent years. On the one hand, there has been much progress in
understanding the origin of thermalization in closed quantum
systems [1]. Thermalization is meant to be based purely on
the phenomenology of quantum mechanics without any need
for any external sources of heat to cause thermal relaxation
of local observables in a quantum system [2]. It was shown
that it is the properties of eigenstates of an isolated quantum
system whose local observables show thermal behavior [3,4].
Later, a general canonical principle was introduced [5], stating
that local observables thermalize for almost all pure states of a
sufficiently big closed system under a global constrain. In this
situation, the whole system with respect to local observables
can be regarded to be in a microcanonical ensemble. On the
other hand, in the studies of quantum thermal machines the
emphasis is put on the properties of small systems which are
coupled to some macroscopic sources of heat [6]. The heat
baths are treated phenomenologically using the methods of
open quantum systems. They are usually a collection of an
infinite number of harmonic oscillators, which are presupposed
to be in thermal equilibrium [7].

The smallest thermal machines are supposed to work at
atomic scales and be of benefit in nanotechnology [8]. To
be able to do useful work they need to extract heat from
heat baths. So far the role of heat baths has been played
by macroscopic objects such as electromagnetic radiation or
beams of atoms [9]. An interesting question arises whether it
is possible to realize isolated quantum heat baths as sources of
heat for such small machines. Combining together such small
machines and microscopic heat baths it would be possible
to create genuine quantum heat devices. A quantum heat
bath must satisfy certain conditions to be able to thermalize
a small quantum system coupled to it. Among them is the
requirement that energies of the bath must be much denser
than energies of the system and its density of states must
be an increasing function of energy. Thermalization of the
small system is then achieved by choosing a bath operator
that couples to the system to be a random matrix [10]. The
combined bath-system Hamiltonian is then itself random with
typically thermal behavior [2]. Indeed, it has been shown in
Ref. [11] that a large class of isolated quantum systems in
a pure state can serve as a heat bath for its subsystem. The
crucial limitation of these works is that the bath and the
system could not be separated; they were studied together

as a closed quantum system. According to the second law
of thermodynamics it is not possible to extract work from
a single bath in a complete cycle; we need at least two
baths to be able to build a thermal machine. The need for
autonomous heat baths arises. In this paper, we present a class
of finite realistic quantum heat baths; those thermal properties
are dictated solely by the properties of their eigenstates. We
show that such systems, whose eigenstates satisfy the ETH
criteria, cause thermal relaxation of smaller systems weakly
coupled to it. The ETH bath is thermal with some well-defined
temperature regardless whether a small system is coupled to
it or not. Therefore, the ETH bath is autonomous, the case
which has not been addressed previously. This opens the
possibility to use such baths to build thermal machines. ETH
concerns the thermal properties of local observables of the
bath, while the qubit is a separate system not covered by the
ETH requirements. In this paper we show when and how the
ETH bath thermalizes the qubit coupled to it.

ETH states that under certain conditions almost all eigen-
states of a closed quantum system with some Hamiltonian
ĤB have the properties of a thermal state. Let |Ek〉 be an
eigenstate of such system with eigenvalue Ek and Ô its
local operator. According to ETH if the diagonal elements
O(Ek) ≡ 〈Ek|Ô|Ek〉 are smooth functions of Ek , while the
off-diagonal elements 〈Ek|Ô|El〉 are negligibly small, then
for an initial state |φ0〉 with energy EB and small energy
variance the expectation value 〈φ|Ô|φ〉 in the pure state
|φ〉 = exp(−itĤB/�)|φ0〉 relaxes to a steady thermal value
and stays there for almost all times [3]. ETH predicts that
the relaxed value tends to an appropriate microcanonical
ensemble average 〈φ|Ô|φ〉 ≈ 1

N
∑′

k〈Ek|Ô|Ek〉. Here we sum
over N energy eigenstates near energy EB of the system,
Ek ∈ [EB − δ,EB + δ], with fixed δ � EB. This yields that
the whole isolated system with respect to a local observable
can be regarded to be in the microcanonical ensemble with the
density matrix

ρ̂m = 1

N

′∑
k

|Ek〉〈Ek|. (1)

For a finite quantum system, the values of the matrix
elements Okl ≡ 〈Ek|Ô|El〉 are not ideally smooth functions
of eigenvalues Ek but exhibit some residual fluctuations:

Okl = O(Ek)δkl + Rkl, (2)
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where Rkl are random with zero mean and small according to
ETH. The semiclassical analysis shows that the values |Rkl|2
are characterized by a smooth function [12]

|Rkl|2 	 S(Ek − El)/2πρ(E), (3)

where S(x) is the spectral function (see Ref. [12] for more
details), ρ(x) is the density of states, and E = (Ek + El)/2.
The density of states grows exponentially with the number of
particles; therefore, the fluctuations are small if the number
of particles is large. Recent developments have demonstrated
that this behavior pertains to chaotic quantum systems lacking
classical analogs [13]. The fluctuating behavior in Eq. (2)
manifests itself on the expectation value of the observable

〈φ|Ô|φ〉 =
∑

k

|αk|2O(Ek) +
∑
k,l

α∗
kαle

it(Ek−El )/�Rkl . (4)

The first term here is the expected relaxed thermal value, while
the second term averages to zero at long times. However, the
fluctuations 〈φ|Ô2|φ〉 − 〈φ|Ô|φ〉2 	 ∑

kl |αk|2|αl|2|Rkl|2 are
not negligible. They can be interpreted as residual thermal
fluctuations [12].

II. ETH BATH

Let an arbitrary small quantum system with Hamiltonian
ĤS be coupled to a larger quantum system satisfying ETH.
For brevity, we call the latter ETH bath. The combined system
Hamiltonian is given by

Ĥ = ĤS + ĤI + ĤB, (5)

where ĤI = gX̂S ⊗ Ô is the interaction between the system
and the bath. Here g is an interaction strength; X̂S is a system
operator which couples to the bath operator Ô. Let |εl〉 be
the eigenstates of the system and |Ek〉 be the eigenstates of
the bath. The basis of the combined system is chosen to be
|Elk〉 = |εl〉 ⊗ |Ek〉. Using Eq. (2), the combined Hamiltonian
assumes the form of the sum of a “smooth” part with the
elements 〈lk|Ĥ |l′k′〉 = δkk′[δll′(εl + Ek) + gXll′O(Ek)] and
the “irregular” part with the elements gXll′Rkk′ . Here, we
denoted Xll′ = 〈εl|X̂S |εl′ 〉.

The smooth part is a block matrix which contains for
a given index k a smaller matrix hll′(Ek) = δll′(εl + Ek) +
gXll′O(Ek). The terms gXll′O(Ek) simply shift the energies
of the unperturbed system by an amount δεl(Ek), which are
some smooth functions of Ek . For an ETH bath the energy
variance is small around mean energy EB and we can assume
that its eigenenergies Ek ≈ EB . Since the coupling g is small
we may apply perturbation theory to estimate the energy shift

δεl(EB) ≈ gXllO(EB) + g2O2(EB)
∑

l′

|Xll′ |2
εl − εl′

. (6)

The irregular part, on the other hand, intertwines blocks
with different indices k in a chaotic manner due to randomness
of Rll′ . This has a more profound effect on the dynamical
evolution of the small quantum system. One can imagine that
these random terms disturb the phase of the quantum state of
the small system leading to its dephasing. Additionally, the off-
diagonal nature of the irregular part allows energy exchange

between the bath and the small system leading to dissipation.
Both effects, dephasing and dissipation, lead to decoherence
of the small system [14]. We will show that the ETH bath
causes the system to decohere to a thermal state.

III. QUBIT COUPLED TO ETH BATH

Consider a specific example of great interest: a qubit
coupled to the above ETH quantum bath. The Hamiltonian
of the qubit with two available states |1〉 and |2〉 and
corresponding energies ε1 and ε2 reads

ĤS = ε1|1〉〈1| + ε2|2〉〈2|, (7)

where � ≡ ε2 − ε1 > 0. We allow energy exchange between
the qubit and the bath considering for simplicity X̂S = σ+ +
σ−, where σ+ = |2〉〈1| and σ− = |1〉〈2| are the raising and
lowering operators of the qubit. Following the formalism of
open quantum systems [7], we move into the interaction picture
ĤI (t) = eit(ĤS+ĤB )/�ĤI e

−it(ĤS+ĤB )/�, which yields X̂S(t) =
ei�t/�σ+ + e−i�t/�σ− and Ô(t) = ∑

k,l e
it(Ek−El )/�Okl|k〉〈l|.

As the next step, we need to calculate the correlation
function of the bath operators C(t,s) = tr[Ô(t)Ô(s)ρ̂B]. As
we discussed above, the bath satisfying ETH can be assumed
to be in the microcanonical ensemble ρ̂B = ρ̂m, where the
density matrix ρ̂m is given in Eq. (1). This allows us to evaluate
the correlation function

C(t,s) = C(t − s) = 1

N

′∑
k

∑
l

ei(Ek−El )(t−s)/�|Okl|2. (8)

The coupling is assumed to be small and the bath is
large enough to satisfy ETH requirements. Under these
conditions we use the Born-Markov approximation to study the
dynamics [7]. In fact, it was shown in Ref. [15] that randomness
of the coupling renders the second order approach valid. Under
these assumptions we obtain the following Schrödinger picture
master equation:

�
∂

∂t
ρ̂S(t) = −i[ĤS,ρ̂S(t)]

− g2
∫ ∞

0
dτ [X̂S,X̂S(−τ )ρ̂S(t)]C(τ )

− g2
∫ ∞

0
dτ [ρ̂S(t)X̂S(−τ ),X̂S]C(−τ ). (9)

To solve this equation we need to evaluate the integrals∫ ∞
0 dτ X̂S(−τ )C(±τ ), which arise in the second and third

lines of Eq. (9). This boils down to taking the integrals I (�) =∫ ∞
0 dτ e±i�τ/�C(τ ). By using the identity

∫ ∞
0 dt e±iεt =

πδ(ε) ± i P
ε

, where P denotes the principal value, we obtain

I (�) = S(�)
1

2N

′∑
k

ρ(Ek ± �)/ρ(Ek ± �/2)

+ 1

N P
′∑
k

∑
l

|Okl|2
Ek − El ± �

. (10)

Here, ρ(ε) = ∑
l δ(ε − El) is the density of states of the

bath and we used Eqs. (2) and (3) in deriving Eq. (10).
The first term in I (�) is equal to S(�)/2e±β�/2, where
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β = ∂ log ρ(EB )
∂EB

is the inverse temperature of the bath. We
have assumed that � � EB , which allowed us to expand
ρ(Ek ± �) ≈ ρ(Ek)(1 ± β�) ≈ ρ(Ek)e±β� and similarly for
ρ(Ek ± �/2) ≈ ρ(Ek)e±β�/2. The second term in I (�) is sig-
nificant if Ek = El when it is equal to ±i 1

N
∑′

k O2(Ek)/� ≈
±iO2(EB)/�.

From Eq. (9) we can now obtain two coupled equations
for the diagonal elements of the density matrix describing the
process of thermalization:

�
∂ρ11

∂t
= −g2S(�)e−β�/2ρ11 + g2S(�)eβ�/2ρ22,

(11)
�
∂ρ22

∂t
= −g2S(�)eβ�/2ρ22 + g2S(�)e−β�/2ρ11.

The qubit relaxes to the expected thermal steady state
limt→∞ ρ11(t)/ρ22(t) = eβ�. The specific form of fluctuations
|Rkl|2 used in the derivation of this result proves to be crucial to
yield the correct thermal steady state. The remaining equations
are for the off-diagonal elements describing the process of
decoherence:

�
∂ρ12

∂t
= i(� + 2δ�)ρ12 + i2δ�ρ21 − γ (ρ12 − ρ21),

(12)

�
∂ρ21

∂t
= −i(� + 2δ�)ρ21 − i2δ�ρ12 − γ (ρ21 − ρ12),

where we denoted δ� = g2O2(EB)/� and γ =
g2S(�) cosh(β�/2). It can be shown that the population
relaxation occurs at the time scale 1/(2γ ), while the loss
of coherence occurs at the time scale 1/γ . Thermalization
of the qubit is thus twice faster than decoherence, which
is a standard result in the context of atomic decay and
quantum optics [7]. An example of this dynamics is
shown in Fig. 1. The off-diagonal terms can be shown to
behave as ∼ exp(it

√
�(� + 4δ�) − γ 2/�) exp(−γ t/�).

At small g we have γ � δ� � �; therefore, the
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FIG. 1. (Color online) Elements of the density matrix of the
qubit, which were obtained by solving Eq. (11) and (12) with
the initial state ρ11 = ρ22 = ρ12 = ρ21 = 0.5 and exp(β�) = 4,
γ = 0.1, δ� = 0.5, and � = 1. The qubit relaxes to the thermal
state ρ11/ρ22 = 4 and ρ12 = ρ21 = 0. The process of thermalization
(relaxation of diagonal elements) is twice faster than the process of
decoherence (relaxation of off-diagonal elements).

energy levels of the qubit are shifted by the amount√
�(� + 4δ�) − γ 2 − � ≈ 2δ� ≡ 2O2(EB)/�. This can

be easily seen also from Eq. (6), since in this case |X12| = 1
and ε2 − ε1 ≡ �.

We study now the case X̂S = σz, which does not allow
energy exchange between the bath and the qubit. Following
the same procedure as above we arrive at the following master
equations:

�
∂ρ12

∂t
= −2g2S(0)ρ12 + i�ρ12,

�
∂ρ21

∂t
= −2g2S(0)ρ21 − i�ρ21,

while ∂ρ11/∂t = ∂ρ22/∂t = 0. This leads to dephas-
ing of the off-diagonal elements |ρ12(t)| = |ρ21(t)| ∼
exp[−2g2S(0)t/�] but not to thermalization, since ρ11 and
ρ22 do not change.

These results are in line with the analysis in the paragraph
below Eq. (4): the first term in Eq. (2) causes energy level
shift of the qubit, while the residual thermal fluctuations lead
to the loss of coherence but not necessarily to thermalization
(cf. also Ref. [16]). Therefore, energy exchange between the
system and the bath is crucial to obtain thermalization of the
system.

The Markovian assumption might not be strictly satisfied
for a concrete system. In this case, for example, the upper
limit of the time integral in Eq. (9) cannot be extended to
infinity but only up to time t [7]. This renders more fine-grained
dynamics especially at short times. As we are concerned with
thermalization of a qubit, we are interested in the asymptotic
state at t → ∞. It is thus expected that the above formalism
is adequate for the present studies.

IV. NUMERICAL EXPERIMENT

To realize the proposed heat bath, we consider a two-band
double-well potential filled with cold bosons. A complex
interplay between the tunneling of bosons and their mutual
interactions makes it possible to satisfy the ETH criteria and
show thermalization [17]. We use this system as a heat bath for
a qubit coupled to it. The Hamiltonian of the bath reads [17,18]

ĤB = −
∑
r �=r ′,l

J l b̂l†
r b̂l

r ′ +
∑
r,l

U ln̂l
r

(
n̂l

r − 1
) +

∑
r,l

El
r n̂

l
r

+U 01
∑
r,l �=l′

(
2n̂l

r n̂
l′
r + b̂l†

r b̂l†
r b̂l′

r b̂l′
r

)
, (13)

where b̂l
r (b̂l†

r ) are the annihilation (creation) operators of a
boson with mass mB in the well r = L,R on the energy
level l = 0,1. For a given double well potential V (x) the
corresponding single-particle wave functions φl

r (x) can be
found. The coefficients in the above equation can be then
evaluated [18] as follows. The single-particle tunneling rate
is J l = ∫

dx φl∗
L (x)( − �

2

2mB
∇2 + V (x))φl

R(x), on-site interac-
tion strength is Ul = gB

∫
dx|φl

r (x)|4, single-particle energies

are El
r = ∫

dx φl∗
r (x)( − �

2

2m
∇2 + V (x))φl

r (x), and induced
interaction between levels is U 01 = gB

∫
dx|φ0

r (x)|2|φ1
r (x)|2.

Here, gB is the two-body interaction coupling between bosons.
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FIG. 2. (Color online) Example of expectation values of the bath
operators in the eigenenergy basis, 〈Ek|b̂0†

L b̂0
L|El〉 = O(Ek)δkl + Rkl .

At low energies the distribution of the diagonal elements O(Ek)
resembles smooth function in accordance with ETH, while at larger
energies their behavior is more chaotic. Inset: off-diagonal elements
Rk = |Rkk0 |2 with fixed k0 corresponding to Ek0 ≈ 3.65Nε0. They
are much smaller than the diagonal elements in accordance with ETH
and their distribution resembles a smooth symmetric function around
Ek0 (shown in red) in accordance with the semiclassical estimate.

The double well is created by splitting the harmonic poten-
tial mBω2

0x
2/2 by the focused laser 10�ω0 exp(−x2/2σ 2) with

the width σ = 0.1
√

�/mBω0. We choose energy units ε0 =
�ω0. For gB = 0.3ε0 we obtain J 0 = 0.26ε0, J 1 = 0.34ε0,
U 0 = 0.14ε0, U 1 = 0.1ε0, U 01 = 0.06ε0, E0 = 1.25ε0, and
E1 = 3.17ε0.

The Hamiltonian of the bath can be easily diagonalized
numerically for N = 30 bosons and the eigenenergies |Ek〉
with the corresponding eigenvalues Ek can be extracted. The
bath satisfies the ETH criteria at low energies as it is shown in
Fig. 2. We define the entropy of the bath at energy E as S(E) =
−Tr(ρ̂mlnρ̂m) and the corresponding inverse temperature as its
derivative β(E) = ∂S(E)/∂E. The results are presented in
Fig. 3.

A two level qubit is represented via a single particle
with mass mS trapped in a harmonic potential mSω

2x2/2
with two energy states ψn(x) (n = 0,1) available to it. The
corresponding single-particle Hamiltonian is

ĤS = �ω

1∑
n=0

(n + 1/2)â†
nân. (14)

We choose � ≡ �ω = 1ε0. The particle interacts with the
bosons in the double well potential via contact interaction g.
The Hamiltonian of the combined system is given in Eq. (5),
where the last term describes the interaction between the qubit
and the bath:

ĤI = g

1∑
nn′ll′=0

R∑
r,r ′=L

Cnn′ll′
rr ′ â†

nân′ b̂l†
r b̂l′

r ′ , (15)

where Cnn′ll′
rr ′ = ∫

dx ψ∗
n (x)ψn′ (x)φl∗

r (x)φl′
r ′ (x). The interlevel

transitions of the qubit between n �= n′ are allowed, such
that the qubit and the bath may exchange energy. We expect

FIG. 3. (Color online) Inverse microcanonical temperature of the
bath as a function of energy. It can be inferred from the entropy
showing in the inset using the relation β(E) = ∂S(E)/∂E. Dashed
line shows energy of the bath used in the calculations.

the qubit to relax to a thermal state with the microcanonical
temperature of the bath.

We simulate the quantum dynamics by creating the Hamil-
tonian in the Fock basis of localized wave functions and
propagate an initial state |ψ(0)〉 by solving the Schrödinger
equation, |ψ(t)〉 = exp(−iH t/�)|ψ(0)〉. The initial state of
the entire system is a Fock state of the bath |n0

L,n0
R,n1

L,n1
R〉

times an initial state of the qubit. We choose two initial
states for the qubit: (1,0)T corresponding to the particle
occupying initially the lowest state of the trapping potential
and (1,1)T /

√
2 corresponding to the superposition of the

lowest and the first excited states. The initial Fock state
of the bath is chosen such that the energy of the bath
〈ψ(0)|ĤB |ψ(0)〉 ≈ 3.65Nε0 satisfies the ETH. The energy of

FIG. 4. (Color online) Diagonal elements of the reduced density
matrix of the qubit. It relaxes to the thermal state ρ11/ρ22 = exp(β�).
Solid lines correspond to the initial state of the qubit (1,1)T /

√
2 and

dashed lines to (1,0)T , respectively. For our simulations we chose
� = 1ε0 and we found β ≈ 0.8ε−1

0 . This is in very good agreement
with the inverse microcanonical temperature of the bath; cf. Fig. 3.
Inset: corresponding energies of the bath.
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FIG. 5. (Color online) Diagonal elements of the reduced density
matrix of the qubit. The initial state of the qubit is (1,1)T /

√
2 and the

initial value of the bath energy EB ≈ 5Nε0. ETH is not satisfied at
this energy; cf. Fig. 2. The qubit does not relax to the thermal state.
Inset: corresponding energy of the bath.

the bath 〈ψ(t)|ĤB |ψ(t)〉 changes in time slightly from this
value, since the qubit is coupled weakly to the bath and its
Hilbert space is much smaller than that of the bath. At this
energy the inverse temperature of the bath can be found from

Fig. 3, β ≈ 0.8ε−1
0 . As expected, the reduced density matrix of

the qubit ρ̂(t) = TrB |ψ(t)〉〈ψ(t)| relaxes to the thermal state
limt→∞ ρ11(t)/ρ22(t) = exp(β�) as shown in Fig. 4. On the
contrary, thermalization is not observed for higher energies of
the bath where ETH is not satisfied as it is evident from Fig. 5.
Therefore, ETH is crucial to obtain thermalization of a small
quantum system.

V. CONCLUSIONS

We have demonstrated that isolated quantum systems
satisfying the criteria of ETH can serve as finite autonomous
heat baths for smaller quantum systems. As an example, we
studied theoretically and numerically the thermal relaxation of
a qubit weakly coupled to a realistic ETH heat bath. We believe
ETH heat baths will be of benefit in building thermal machines
working genuinely on the microscopic level, where not only
the engine but also heat bath is treated quantum mechanically.

The qubit is believed to be the smallest quantum engine. It
is an interesting open question of how large the Hilbert space
of the thermalized system can get.
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