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Critical properties of short-range Ising spin glasses on a Wheatstone-bridge hierarchical lattice
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An Ising spin-glass model with nearest-neighbor interactions, following a symmetric probability distribution,
is investigated on a hierarchical lattice of the Wheatstone-bridge family characterized by a fractal dimension
D ≈ 3.58. The interaction distribution considered is a stretched exponential, which has been shown recently to
be very close to the fixed-point coupling distribution, and such a model has been considered lately as a good
approach for Ising spin glasses on a cubic lattice. An exact recursion procedure is implemented for calculating
site magnetizations, mi = 〈Si〉T , as well as correlations between pairs of nearest-neighbor spins, 〈SiSj 〉T (〈 〉T

denote thermal averages), for a given set of interaction couplings on this lattice. From these local magnetizations
and correlations, one can compute important physical quantities, such as the Edwards-Anderson order parameter,
the internal energy, and the specific heat. Considering extrapolations to the thermodynamic limit for the order
parameter, such as a finite-size scaling approach, it is possible to obtain directly the critical temperature and
critical exponents. The transition between the spin-glass and paramagnetic phases is analyzed, and the associated
critical exponents β and ν are estimated as β = 0.82(5) and ν = 2.50(4), which are in good agreement with the
most recent results from extensive numerical simulations on a cubic lattice. Since these critical exponents were
obtained from a fixed-point distribution, they are universal, i.e., valid for any coupling distribution considered.
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I. INTRODUCTION

The renormalization group (RG) represents one of the
most successful approximations for studying critical phenom-
ena [1,2]. In the case of a real-space RG, its application for
Bravais lattices usually leads to the generation of additional
terms in the Hamiltonian after each RG step, in such a way that
one is obliged to impose truncations that may affect directly
the results. One way to overcome this difficulty concerns the
introduction of hierarchical lattices (HLs) [2,3] as approaches
to Bravais lattices, which present the notable advantage that
the real-space RG becomes exact for pure systems defined on
the former. This occurs essentially due to the fact that the HLs
are constructed in the inverse order of the application of the
RG procedure, through successive similar operations at each
hierarchical level, e.g., at each level one replaces bonds by
unit cells, as shown in Fig. 1. In this case, the approximation is
concerned with the particular choice of the appropriate HL to
emulate the Bravais lattice under study. Since a given Bravais
lattice may be approached by different HLs, in this choice one
has to take into account both the accuracy of the results and
the difficulty in dealing with the particular HL used.

Although the RG cannot be considered in general as an
exact procedure for random systems on HLs, it is expected to
represent a good approximation, since in many cases pure
systems appear as particular limits of random models. A
random magnetic model that has been the object of attention
of much research throughout recent decades is the Ising
spin glass (SG) [4–9]. Its simple formulation in terms of
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binary variables has attracted many researchers, who have
followed several computational and analytical procedures,
leading to a wide variety of results and interpretations,
some of them contradictory, so that the model remains very
controversial.

The HLs have been very useful in the study of Ising
SGs [10–27], mostly due to the possibility of obtaining
estimates, which are in some cases very close to those of
more time-consuming techniques, by performing relatively
low-time-consuming numerical computations. Some results
related to critical-temperature estimates, as well as those
concerning the lower critical dimension dl , above which
one finds a SG phase at finite temperatures, are worth
mentioning. (i) The SG critical temperatures on the Migdal-
Kadanoff (MK) lattice [28,29] of fractal dimension D = 3, for
symmetric Gaussian and bimodal distributions [10], present
relative discrepancies of about 7% when compared with the
recent estimates from Monte Carlo simulations on a cubic
lattice [30]. (ii) Recently, the estimates of item (i) were
improved further through the hierarchical lattices defined
by the cell of Fig. 1(b) [25], which, when compared with
the estimates of Ref. [30], yields a relative discrepancy of
about 3% in the Gaussian case, whereas for the symmetric
bimodal distribution the two estimates essentially coincide
(leading to a relative discrepancy of about 0.3%). (iii) The
bounds for the lower critical dimension, 2 < dl < 3, were
first obtained on MK lattices [10], a few years before their
confirmation in Refs. [11,31–34] through studies of excitations
from ground states; these domain-wall analyses were improved
later [35,36], reinforcing the early conclusions. (iv) A recent
combination of extensive numerical and theoretical results on
Bravais lattices [37] suggested the lower critical dimension to
be exactly dl = 5/2, confirming the early estimate of Ref. [12]
for MK lattices. (v) Studies on a self-dual hierarchical lattice
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FIG. 1. Two first steps in the generation of the Wheatstone-bridge
hierarchical lattice investigated herein, which has been used in the
literature to approach the cubic lattice [3]. In each step, one replaces
a bond (a) by the unit cell shown in (b) (characterized by a fractal
dimension D ≈ 3.58), where the empty circles (μ and ν) represent
external sites of the cell, whereas the black circles are internal sites
to be decimated in the RG procedure. The same procedure carried in
(b) leads to (c).

with scaling factor b = 3 and fractal dimension D = 2 led
to an estimate for the stiffness exponent y [14] (y = −1/ν,
where ν is the exponent associated with the divergence of
the correlation length at zero temperature) in agreement with
those obtained from other, more time-consuming, numerical
approaches on a square lattice. An analysis of the ±J

Ising SG model [22] on the same hierarchical lattice gave
a ferromagnetic-paramagnetic critical frontier that represents
a good approximation for that of the corresponding model on
a square lattice.

A significant effort has been made on the nearest-neighbor-
interaction Ising SG model on a cubic lattice, for which it is
generally accepted nowadays that a SG phase occurs at finite
temperatures [8–12,27,30,38–43]; it should be emphasized
that some of these works have required extensive computa-
tional efforts. Motivated by the good agreement between the
critical-temperature estimates obtained in Ref. [25], for the
Ising SG model with nearest-neighbor interactions defined on
the HL constructed through the procedure shown in Fig. 1,
when compared with those obtained in Ref. [30] by means
of extensive numerical simulations, herein we study further
critical properties of this model on the HL of Fig. 1. In
the next section, we define the model and the numerical
procedure to be used, emphasizing an exact recursion method
for calculating the local magnetizations of all sites of this
lattice. Since we deal with symmetric probability distributions
for the couplings, only two phases will appear, namely the
paramagnetic (P) and spin-glass (SG) phases; herein we
focus on the critical behavior associated with the P-SG
transition. In Sec. III we make use of the site magnetizations in
order to compute the Edwards-Anderson order parameter and
other important physical quantities. Particularly, considering
a finite-size scaling, we compute the critical exponents β and
ν associated with the P-SG transition; the good agreement
with estimates obtained for the cubic lattice from different
numerical methods is discussed. Finally, in Sec. IV we present
our conclusions.

II. THE MODEL AND THE RECURSION PROCEDURE

Herein we investigate the Ising SG on the HL constructed
through the procedure shown in Fig. 1, defined by the
Hamiltonian

H = −
∑
〈ij〉

JijSiSj (Si = ±1). (1)

The sum
∑

〈ij〉 applies to pairs of nearest-neighbor spins of the
HL, whereas the {Jij } represent independent random couplings
acting on each pair of spins of the lattice. For the purpose of the
present work, the couplings {Jij } may be considered initially as
following any symmetric distribution, characterized by finite
moments, e.g., Gaussian, bimodal, and uniform distributions;
however, for computational reasons, we will use a distribution
very close to the fixed-point distribution, as will be explained
next.

As usual in the RG procedure, after each decimation step the
set of coupling constants {Jij }, as well as the temperature T ,
vary in such a way that the probability distribution P (Kij ), as-
sociated with the dimensionless ratios {Kij } [Kij = Jij /(kT )],
changes its shape. Precisely at the phase P-SG transition, one
starts with a given probability distribution P (Kij ), and after
a few RG iterations one reaches the fixed-point distribution
P ∗(Kij ), which will not change in further RG steps. Strictly
speaking, in order to approach such a distribution, one needs
to be exactly at the critical temperature Tc, associated with this
transition. Operationally, for a given initial distribution, the
associated critical temperature is estimated approximately, by
following numerically P (Kij ), within the standard narrowing
RG procedure (see, e.g., Refs. [10,24,25]). Hence, starting
with different initial distributions will take some steps of
the RG procedure to approach P ∗(Kij ), and after this, all
initial distributions considered will behave in a similar way,
so that critical properties should be computed with P ∗(Kij ).
As a direct consequence, critical exponents are universal, i.e.,
independent of the initial distribution considered [18].

Flux diagrams representing the evolution of two probability
distributions P (Kij ) under RG iterations, constructed from a
Gaussian (with unit variance) and the stretched exponential

P (Jij ) = exp(−|Jij /J |δ)

2J�
(
1 + 1

δ

) , (2)

with J = 1.22(3) and δ = 1.60(2) are shown in Fig. 2. These
diagrams are represented in suitable variables [12,18], so
that throughout the evolution of the distributions one has
the following: (i) The unstable fixed-point, associated with
the phase transition P-SG and assigned to the fixed-point
distribution P ∗(Kij ) (indicated by a blue arrow). (ii) The two
attractors characterizing the corresponding phases are given
by [tanh2 Kij ]P → 0 and 1/[K2

ij ]1/2
P → ∞ (P attractor), as

well as [tanh2 Kij ]P → 1 and 1/[K2
ij ]1/2

P → 0 (SG attractor).
(iii) These attractors define two basins of attraction, such that
for initial distributions corresponding to values of [tanh2 Kij ]P
above (below) those of the fixed-point distribution, one is
driven to the SG (P) attractor. (iv) From the two initial
distributions considered, one sees that the stretched expo-
nential of Eq. (2) corresponds essentially to the fixed-point
distribution, whereas the Gaussian presents a “larger distance”
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FIG. 2. (Color online) Flux diagrams of two probability distri-
butions P (Kij ) are represented in suitable variables [12,18]. These
distributions were constructed, respectively, from a Gaussian (with
unit variance) and the stretched exponential of Eq. (2), for the coupling
distributions of the Ising SG model of Eq. (1), on the HL defined
according to Fig. 1. For each of these two distributions, three different
temperatures were considered, namely T > Tc (fluxes toward in-
creasing abscissas), T < Tc (fluxes toward decreasing abscissas), and
T = Tc. For the critical temperature associated with each distribution,
we have used the estimates of Ref. [44], namely (kTc/J ) = 0.9821
(Gaussian distribution) and (kTc/J ) = 0.948 (stretched-exponential
distribution). The blue arrow indicates the point associated with the
fixed-point distribution P ∗(Kij ), from which one concludes that the
distribution of Eq. (2) may be considered as a good approximation
of the fixed-point distribution, whereas the Gaussian distribution
presents a “larger distance” from P ∗(Kij ). In the variables used, [ ]P
represent averages over the corresponding probability distributions.

with respect to the fixed-point distribution. (v) In the variables
used, the abscissa is related to the renormalized dimensionless
temperature at each step of the RG process, so that the
critical temperature associated with the fixed-point distribution
is given by (kT FD

c /J ) ≡ [(K∗
ij )2]−1/2

P , to be computed for
P (Kij ) = P ∗(Kij ). Recently, a thorough analysis was carried
out showing that the distribution of Eq. (2) is indeed very close
to the fixed-point distribution associated with the P-SG phase
transition [44]. In this work, it is also shown that different initial
distributions, when considered at their corresponding critical
temperatures Tc, approach such a unique (i.e., universal)
fixed-point distribution after some RG steps.

A procedure for calculating the site magnetizations exactly
was developed for the Ising ferromagnet on HLs of the MK
family in Ref. [45]; later on, this method was implemented
for random Ising systems, such as Ising SGs [16] and the
random-field Ising model [46], on the same HLs. Herein, such
a procedure is extended for Ising SGs on the lattice defined in
Fig. 1, as explained next. First of all, the whole HL is generated
up to a hierarchy level of order N , where all sites and bonds
should be labeled appropriately. Then, all bonds generated at
level N are assigned to coupling constants {Jij }, drawn from
a given probability distribution. The standard RG is followed
N − 1 times, taking care to store each renormalized coupling
in each hierarchy level, until one reaches the coupling of order

zero [Fig. 1(a)]. Then, one follows the inverse process, the
so-called aggregation process, defining arbitrarily the initial
magnetizations at the external sites μ and ν of Fig. 1(a),
from which all site magnetizations will be calculated (to be
described below), considering the values of the couplings
assigned to each bond, already stored in the RG process. It
is important to mention that the number of couplings and
sites increases very rapidly, at each step of the generation
process of the present HL, so that the procedure requires a
high computational cost; as an example, in the present case,
the seventh hierarchy (N = 7) was the largest size studied,
with 127 = 35 831 808 couplings and 13 029 750 sites. If one
starts with initial distributions for the couplings very different
from the fixed-point distribution P ∗(Kij ), one needs to discard
iterations corresponding to the highest hierarchy levels, which
contain the large majority of the couplings (11/12 of the
couplings belong to the last generation). Consequently, for
the sake of computational cost, it becomes crucial that the
initial distribution should be very close to P ∗(Kij ).

Hence, we start the RG procedure with all bonds generated
at hierarchy level N assigned to coupling constants {Jij },
drawn from the probability distribution of Eq. (2), so as to
follow the usual decimation of the internal sites of a unit cell
[cf. Fig. 1(b)], leading to renormalized quantities associated
with the external sites. The corresponding RG equations may
be written in the general form [24,25]

K
′
μν = 1

4
ln

(Z−− Z++
Z−+ Z+−

)
, (3)

where ZSμSν
represent partition functions associated with the

Hamiltonian H for a given unit cell with the external spins
kept fixed (Sμ,Sν = ±1),

ZSμSν
= Tr{Si (i 
=μ,ν)} [exp(−βH)]. (4)

It should be mentioned that the recursion relation of Eq. (3) is
used in the present approach for computing the flux diagram
of Fig. 2, the fixed-point probability distribution, as well as the
critical temperature associated with the P-SG phase transition.

FIG. 3. (Color online) Basic unit cell showing the labeled in-
ternal sites to be used in the calculations, with μ and ν denoting
the external sites; �μν , hμ, and hν represent, respectively, effective
coupling and fields acting upon the external spins of the basic cell.
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SEBASTIÃO T. O. ALMEIDA AND FERNANDO D. NOBRE PHYSICAL REVIEW E 92, 022102 (2015)

Now we describe how one can calculate local magnetiza-
tions and correlations functions exactly on the HL considered;
this method is analogous to the one developed for random
Ising systems on HLs of the MK family, explained in detail
in Refs. [16,46]. The essential idea is illustrated in Fig. 3
and is based on the fact that the partition function of the
whole HL at its hierarchy level N may be expressed in terms
of quantities defined for a single unit cell, containing both
internal and external contributions of the cell. Particularly, the
effective interaction �μν between the external spins and the

effective fields hμ and hν acting on these spins are unknown
quantities, which carry the contributions of the rest of the
HL acting upon the basic cell, to be determined recursively.
These effective quantities arise when we perform the trace
over the spin variables of the remaining lattice by considering
the equivalence of the partition function of the Hamiltonian
for hierarchy level N and the one for the basic unit cell of
Fig. 3, with effective fields acting on the spins of its root sites,
in addition to an effective coupling between these spins.

Hence, the Hamiltonian of the whole HL may be written as

H′ = −�μνSμSν − hμSμ − hνSν − J12S1S2 − J23S2S3 − J34S3S4 − J41S4S1

−
4∑

j=1

(JμjSμSj + JjνSjSν) = −�μνSμSν − hμSμ − hνSν + H, (5)

where the internal spins were labeled according to Fig. 3, and H corresponds to the internal Hamiltonian of the basic unit cell.
The associated partition function is given by

Z = Tr({Si },Sμ,Sν ) exp (−βH′)

= Tr(Sμ,Sν ) exp[β(�μνSμSν + hμSμ + hνSν)]Tr({Si })

× exp

⎧⎨
⎩β

⎡
⎣J12S1S2 + J23S2S3 + J34S3S4 + J41S4S1 +

4∑
j=1

(JμjSμSj + JjνSjSν)

⎤
⎦

⎫⎬
⎭, (6)

and performing the trace over all spins variables, one obtains

Z = A(eX + eY ) + B(eV + eW ), (7)

where A = ∑16
i=1 exp(Ri) and B = ∑32

i=17 exp(Ri). The quantities Ri (i = 1, . . . ,32) depend only on the couplings {Kij },
presenting expressions of the type

R1 =K23 + K34 − K12 − K41 − Kμ2 − K2ν − Kμ3 − K3ν − Kμ4 − K4ν + K1ν + Kμ1, (8)

with other {Ri} differing from the expression above through distinct combinations of + and − signs; moreover, the arguments of
the exponentials of Eq. (7) are given by

X = β(�μν − hμ − hν), (9)

Y = β(�μν + hμ + hν), (10)

V = β(hμ − �μν − hν), (11)

W = β(hν − �μν − hμ). (12)

The local magnetizations and pair-correlation functions associated with the spins of Fig. 3 may be calculated in the standard
way,

〈Sμ〉 = Z−1Tr[Sμ exp(−βH)]

= Z−1[A(−eX + eY ) + B(eV − eW )], (13)

〈Sν〉 = Z−1[A(−eX + eY ) + B(−eV + eW )], (14)

〈SμSν〉 = Z−1[A(eX + eY ) − B(eV + eW )], (15)

〈Si〉 = Z−1[ϒi(e
X − eY ) + �i(e

V − eW )] (i = 1,2,3,4), (16)

〈SiSμ〉 = Z−1[−ϒi(e
X + eY ) + �i(e

V + eW )] (i = 1,2,3,4), (17)
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〈SiSν〉 = Z−1[−ϒi(e
X + eY ) − �i(e

V + eW )] (i = 1,2,3,4), (18)

〈SiSi+1〉 = Z−1[ϒ4+i(e
X + eY ) + �4+i(e

V + eW )] (i = 1,2,3), (19)

〈SiSi−3〉 = Z−1[ϒ4+i(e
X + eY ) + �4+i(e

V + eW )] (i = 4), (20)

〈SiSi+2〉 = Z−1[ϒ8+i(e
X + eY ) + �8+i(e

V + eW )] (i = 1,2), (21)

where 〈 〉 denote thermal averages. The quantities ϒi and �i (i = 1, . . . ,10) are also expressed in terms of exponentials of {Ri}
(like A and B), i.e., they depend only on the couplings {Kij }, presenting lengthy expressions, e.g.,

ϒ1 = −eR1 + eR2 − eR3 + eR4 − eR5 − eR6 + eR7 + eR8 − eR9 + eR10 − eR11 + eR12 − eR13 − eR14 + eR15 + eR16 , (22)

�1 = eR17 − eR18 − eR19 + eR20 + eR21 − eR22 + eR23 − eR24 + eR25 − eR26 + eR27 − eR28 + eR29 − eR30 − eR31 + eR32 , (23)

with other {ϒi} and {�i} differing from the expressions above through distinct combinations of + and − signs. The equations
above may be manipulated to yield

〈Si〉 = −1

2

(
ϒi

A
+ �i

B

)
〈Sμ〉 − 1

2

(
ϒi

A
− �i

B

)
〈Sν〉 (i = 1,2,3,4), (24)

〈SiSμ〉 = −1

2

(
ϒi

A
+ �i

B

)
〈SμSν〉 − 1

2

(
ϒi

A
− �i

B

)
(i = 1,2,3,4), (25)

〈SiSν〉 = −1

2

(
ϒi

A
− �i

B

)
〈SμSν〉 − 1

2

(
ϒi

A
+ �i

B

)
(i = 1,2,3,4), (26)

〈SiSi+1〉 = 1

2

(
ϒ4+i

A
− �4+i

B

)
〈SμSν〉 + 1

2

(
ϒ4+i

A
+ �4+i

B

)
(i = 1,2,3), (27)

〈SiSi−3〉 = 1

2

(
ϒ4+i

A
− �4+i

B

)
〈SμSν〉 + 1

2

(
ϒ4+i

A
+ �4+i

B

)
(i = 4), (28)

〈SiSi+2〉 = 1

2

(
ϒ8+i

A
− �8+i

B

)
〈SμSν〉 + 1

2

(
ϒ8+i

A
+ �8+i

B

)
(i = 1,2). (29)

One should notice that Eqs. (24)–(29) express local magnetiza-
tions and two-spin correlation functions for the internal spins
of an arbitrary unit cell in terms of the magnetizations 〈Sμ〉
and 〈Sν〉, as well as the correlation function 〈SμSν〉, associated
with the external sites of the cell. In this way, by mapping
appropriately all unit cells and sites of the whole HL, one
can obtain all site magnetizations, as well as the correlation
functions defined above, using the recursion relations of
Eqs. (24)–(29). Hence, by fixing values for 〈Sμ〉, 〈Sν〉, and
〈SμSν〉, at hierarchy level zero, one obtains the quantities
on the left-hand side of Eqs. (24)–(29) for any hierarchy
level. Herein, we have used |〈Sμ〉| = |〈Sν〉| = |〈SμSν〉| = 1
at hierarchy level zero, although we have verified that for
sufficiently large hierarchy levels (typically N � 4), these
boundary conditions become irrelevant, i.e., other choices
yielded similar results.

From the expressions above, one can compute important
physical quantities, such as the Edwards-Anderson (EA) order
parameter,

qEA = 1

Ns

∑
i

[〈Si〉2]J , (30)

and the internal energy per spin,

u = − 1

Nb

⎡
⎣∑

〈ij〉
Jij 〈SiSj 〉

⎤
⎦

J

, (31)

where Ns and Nb denote, respectively, the total number of sites
and bonds of the HL, whereas [ ]J represent sample averages
over different configurations of the couplings {Jij }. The results
obtained from these quantities are presented and discussed in
the next section.

III. RESULTS

Near the critical point, the EA order parameter of Eq. (30)
is expected to behave like

qEA ∼ |ε|β (ε = T/Tc − 1), (32)

where β represents the standard critical exponent associated
with the order parameter [4–7], and Tc is the SG critical
temperature. For sufficiently large sizes, close to Tc, one
expects also the scaling form,

qEA ≈ L−β/ν q̃EA(εL1/ν), (33)
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FIG. 4. (Color online) Data of the Edwards-Anderson order parameter [cf. Eq. (30)] for the Ising SG on a Wheatstone-bridge HL with
D ≈ 3.58 with different hierarchy levels N . (a) The order parameter qEA is represented vs (T − Tc)/Tc; (b) a data collapse is exhibited, from
which the best-collapse values for the critical exponents β and ν, as well as of the critical temperature Tc, are obtained; the inset shows an
enlargement of the critical region.

where L = 2N for this HL, and q̃EA(x) represents a scaling
function that approaches a constant when x → 0.

In Fig. 4 we exhibit data for qEA of HLs with increasing hi-
erarchy levels N (4 � N � 7); it should be mentioned that the
highest hierarchy level considered was N = 7, corresponding
to a HL with Ns = 13 029 750 and Nb = 127 = 35 831 808.
For each hierarchy level N , averages over 400 independent
realizations of the disorder were performed, considering the
stretched exponential of Eq. (2) as the initial distribution for the
couplings. In Fig. 4(a), qEA is represented versus (T − Tc)/Tc,
showing the well-known finite-size effects. In Fig. 4(b), a
good data collapse is obtained for both the critical region
(see inset) and also out of criticality; in order to compute
the critical temperature and exponents, we used an algorithm
that performs an automatic search for the best-fitting values of
the corresponding finite-size-scaling data [47], leading to

ν = 2.50(4), β = 0.82(4),
kTc

J
= 0.95(2). (34)

The results obtained herein agree well with numerical
simulations carried out for Ising SGs on the cubic lattice; in-
deed, the critical temperature above coincides with (kTc/J ) =
0.951(9) (Gaussian distribution) [30], within the error bars.
Moreover, with regard to the exponent ν, recent Monte
Carlo simulations on the cubic lattice, considering different
probability distributions for the couplings, yielded essentially
a universal value, ν ≈ 2.5 [30,41–43]. In fact, considering
the error bars, our estimate coincides with the most recent
result from extensive numerical simulations, ν = 2.562(42)
(bimodal distribution) [43]. To our knowledge, the critical ex-
ponent β has not been estimated directly in recent simulations
on the cubic lattice; however, using standard scaling relations
for the results of Refs. [30,41–43], we verified that typically
β ≈ 0.78, which coincides with our estimate (within the error
bars), computed for the probability distribution of Eq. (2) that
was considered herein as the fixed distribution. The agreement

of our results on the tridimensional Wheatstone-bridge HL
with those obtained from numerical simulations on the cubic
lattice is quite impressive, which reinforces the argument that
this HL represents a good approximation of a cubic lattice.
However, it should be mentioned that recent estimates of the
exponent ν on the same HL, calculated by considering the
usual RG linearization procedure, yielded ν = 3.25(66) [48]
and ν = 3.04(9) [44], which present large discrepancies with
respect to the value of Eq. (34). We consider the present
estimate to be more reliable, obtained by means of a direct
calculation of the SG order parameter of Eq. (30), using the
site magnetizations {〈Si〉} computed exactly for the whole
HL through the method described above. It is possible that
these significant discrepancies may be associated with the
linearization procedure used in Refs. [44,48] to obtain ν; as
argued in Ref. [49], such a truncation may lead to expressive
errors for SG systems.

Now, in order to calculate additional critical exponents from
the estimates of Eq. (34), one has to make use of standard
scaling relations, as well as of the hyperscaling relation, 2 −
α = Dν. It should be mentioned that for HLs, the dimension
D to be used in this relation is far from a trivial subject;
this question has been addressed for pure systems (mostly for
the Ising and q-state Potts ferromagnets on MK lattices) by
several authors (see, e.g., Refs. [3,50–55]), who argued that one
should use the fractal dimension D in such a relation. Since
there is no similar analysis for SG systems, herein we have
calculated these exponents by using both the fractal dimension
D = D ≈ 3.58 as well as the spatial dimension D = d of the
unit cell of Fig. 1(b). In fact, the total number of sites Ns that
appears in Eq. (30) is given by [3,50]

Ns = bd−1{[(d − 1)bd−2(b − 1)2 + bd ]N − 1}
(d − 1)bd−2(b − 1) + (1 + b + b2)

+ 2 (35)

for a given hierarchy level N , whereas b = 2 and d = 3 for the
present HL. The resulting exponents are presented in Table I,
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TABLE I. Critical exponents calculated in the present work for the Ising SG on the tridimensional Wheatstone-bridge HL, considering
the probability distribution of Eq. (2) as the fixed-point distribution, are compared to results from other works. The exponents β and ν were
estimated from the data collapse of the EA order parameter (see Fig. 4), whereas η, γ , and α were obtained from scaling and hyperscaling
relations. In the hyperscaling relation 2 − α = Dν, we used both the fractal dimension of the HL, D = D = 3.58, as well as its spatial
dimension D = d = 3 for comparison. The estimates of Ref. [18] were obtained by applying the present method to a D = 3 MK hierarchical
lattice, whereas those of Refs. [30,42,43] resulted from numerical simulations on a cubic lattice.

ν β η γ α

Present work (D = 3.58) 2.50(4) 0.82(4) −0.93(7) 7.32(13) −6.96(4)
Present work (D = 3) 2.50(4) 0.82(4) −0.34(7) 5.86(25) −5.50(4)
MK (D = 3) [18] 1.8(1) 0.63(3)
Cubic lattice [30] 2.44(9) −0.37(5)
Cubic lattice [42] 2.45(15) 0.77(5) −0.375(10) 5.8 −5.4(5)
Cubic lattice [43] 2.562(42) 0.782(10) −0.3900(36) 6.13(11) −5.69

and since the estimates of Eq. (34) are in very good agreement
with those obtained from numerical simulations of Ising SGs
on the cubic lattice, the results for γ , η, and α consideringD =
d = 3 yield a better agreement with those of Refs. [30,41–43].
In Table I we present our results, together with those of
Refs. [30,42,43], obtained from numerical simulations on
a cubic lattice, as well as those of Ref. [18], computed
by applying the present method to a D = 3 MK HL. One
notices that the tridimensional Wheatstone-bridge HL leads to
critical-exponent estimates that are much closer to those of the
cubic lattice, when compared with the previous ones for the
D = 3 MK HL.

The present method also allows the calculation of quantities
that depend on nearest-neighbor-spin correlations 〈SiSj 〉, like
the internal energy of Eq. (31). Through use of a numerical
derivation of the curve of the internal energy (see the inset
of Fig. 5) with respect to the temperature, one may obtain the
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kBT/J
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FIG. 5. (Color online) The specific heat per spin, calculated from
a numerical differentiation of the internal energy of Eq. (31) with
respect to the temperature, at hierarchy level N = 7, is exhibited
in dimensionless variables. The dashed line is a guide to the eye,
showing the expected tendency to zero temperature; the blue arrow
indicates the critical temperature of Eq. (34). In the inset, we present
the corresponding internal energy per spin in the temperature range
in which the specific heat was computed.

specific heat per spin, c = du/dT . In Fig. 5 we present c versus
temperature, calculated from the internal energy at hierarchy
level N = 7. Due to numerical difficulties at low temperatures,
we did not succeed in computing the specific heat appropriately
for (kT /J ) < 0.2; the dashed line is a guide to the eye, showing
the expected approach to zero temperature. The specific heat of
Fig. 5 exhibits the standard smooth rounded maximum around
the critical region, characteristic of a negative exponent α, in
agreement with experimental verifications [4,5].

On the other hand, the SG susceptibility defined as [4,5]

χSG = 1

Ns

∑
ij

[(〈SiSj 〉 − 〈Si〉〈Sj 〉)2]J (36)

requires the computation of correlations among all possible
pairs of spins of the HL, and it cannot be calculated within the
present method. The equation above may be expressed as

χSG = �
(1)
SG + �

(2)
SG + · · · , (37)

�
(1)
SG = 1

Ns

∑
〈ij〉

[(〈SiSj 〉 − 〈Si〉〈Sj 〉)2]J , (38)

�
(2)
SG = 1

Ns

∑
〈〈ij〉〉

[(〈SiSj 〉 − 〈Si〉〈Sj 〉)2]J , (39)

where �
(1)
SG carries the contribution to χSG from the nearest-

neighbor pairs of spins of the HL, �
(2)
SG does the same for

second nearest-neighbor pairs of spins, and so on. Hence,
within the present method one can compute �

(1)
SG, representing

the sum of all nonlinear correlations due to nearest-neighbor
pairs of spins; it is important to stress that we can compute
�

(2)
SG only partially, considering second-nearest-neighbor pairs

of spins inside a given unit cell [cf. Eqs. (24)–(29)]. In Fig. 6
we present �

(1)
SG versus (T − Tc)/Tc for different hierarchy

levels, showing an increase with the size of the system, as
expected. One notices that out of criticality this quantity
presents the usual behavior of χSG with temperature [4,5],
although close to Tc, where correlations among all pairs of
spins become important, �

(1)
SG does not indicate the expected

divergence of χSG ∼ (|T − Tc|/Tc)−γ , with the exponent γ

given in Table I. However, for a given L it shows a maximum
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FIG. 6. (Color online) The dimensionless quantity �
(1)
SG, defined

in Eqs. (37) and (38), is exhibited vs (T − Tc)/Tc for different
hierarchy levels. In the inset, we present the dimensionless distance of
the maximum of each curve from the critical temperature of Eq. (34),
a(L) = [T̃ (L) − Tc]/Tc vs L−1 (L = 2N ); the dashed line is a guide
to the eye. Within our numerical accuracy, T̃ (L) should coincide with
Tc for a hierarchy level around N = 10.

at a temperature T̃ (L), which becomes more pronounced for
increasing hierarchy levels N ; moreover, the inset suggests
that the position of T̃ (L) converges to the correct critical
temperature of Eq. (34), i.e., T̃ (L) → Tc, for increasing L.
Within the numerical accuracy of Eq. (34), T̃ (L) should
coincide with Tc for a hierarchy level around N = 10.

IV. CONCLUSIONS

Nearest-neighbor interaction Ising spin-glass models, de-
fined on a hierarchical lattice of the Wheatstone-bridge family
characterized by a fractal dimension D ≈ 3.58, have been
shown recently to represent a good approach for Ising spin
glasses on a cubic lattice. Herein we have worked out a method
for calculating exactly site magnetizations and correlations

between pairs of nearest-neighbor spins for spin models
defined on this hierarchical lattice. Such a procedure was
introduced previously for the Ising ferromagnet [45] and
spin glasses [16], defined on hierarchical lattices of the
Migdal-Kadanoff family, and it has been extended for the
above-mentioned hierarchical lattice of the Wheatstone-bridge
family in the present work.

The method was achieved by determining exact recursion
relations involving site magnetizations, mi = 〈Si〉, as well
as nearest-neighbor correlations, 〈SiSj 〉 (〈 〉 denote thermal
averages), on this lattice. From these, one can compute
averages over the coupling constants [..]J , leading to important
quantities such as

∑
i[〈Si〉2]J and [

∑
〈ij〉 Jij 〈SiSj 〉]J , directly

related to the Edwards-Anderson order parameter and the
internal energy, respectively. Considering extrapolations to the
thermodynamic limit for the order parameter, such as a finite-
size scaling procedure, we have obtained directly the critical
temperature and critical exponents β and ν, associated with the
transition between the spin-glass and paramagnetic phases.
Using a symmetric stretched exponential as the fixed-point
distribution for the couplings, we have estimated β = 0.82(5)
and ν = 2.50(4), which are in good agreement with the most
recent results from extensive numerical simulations on a cubic
lattice. These estimates represent a substantial improvement
with respect to previous ones, obtained on a Migdal-Kadanoff
hierarchical lattice of fractal dimension D = 3 [18].

Furthermore, we have also computed the specific heat,
which exhibited the standard smooth rounded maximum
around the critical region, in agreement with experimental
verifications. The present results give further support that
nearest-neighbor interaction Ising spin-glass models, defined
on a hierarchical lattice of the Wheatstone-bridge family
characterized by a fractal dimension D ≈ 3.58, represent a
good approach for such models on a cubic lattice.
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