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We propose an exactly solvable multisite interaction spin-1/2 Ising-Heisenberg model on a triangulated
Husimi lattice for the rigorous studies of chaotic entanglement. By making use of the generalized star-triangle
transformation, we map the initial model onto an effective Ising one on a Husimi lattice, which we solve then
exactly by applying the recursive method. Expressing the entanglement of the Heisenberg spins, that we quantify
by means of the concurrence, in terms of the magnetic quantities of the system, we demonstrate its bifurcation
and chaotic behavior. Furthermore, we show that the underlying chaos may slightly enhance the amount of the
entanglement and present on the phase diagram the transition lines from the uniform to periodic and from the
periodic to chaotic regimes.

DOI: 10.1103/PhysRevE.92.022101 PACS number(s): 75.10.Jm, 05.45.−a, 03.65.Ud, 68.35.Rh

I. INTRODUCTION

Quantum entanglement, that stands for the intrinsic nonlo-
cal correlations inherent in the quantum theory, plays a crucial
role in the understanding of the fundamentals of quantum
physics as well as serves as the key resource for implementing
practical applications within the field of quantum technologies.
Specifically, entanglement is vital to diverse secure quantum
communication and teleportation schemes [1,2] and is at the
heart of quantum computation, quantum metrology, quantum
imaging [3–5], etc.

Various protocols, applicable to continuous- and discrete-
variable systems have been proposed recently, allowing one to
generate entanglement shared between quantum memories [6]
and encoded in states of light fields [7] or, alternatively, to
create systems of strongly entangled superconducting or cavity
QED qubits, quantum dots, highly excited Rydberg atoms
[8–10], etc. Meanwhile, solid-state systems and, particularly,
magnetic materials, are of significant importance in this respect
as they appear to be a source of entanglement too, even on a
macroscopic level [11,12]. Furthermore, entanglement turns
out to be a powerful tool here for the characterization of
quantum phase transitions as it encodes all the information
shared between subparts of a system that may fail to be
captured by means of ordinary correlation functions (this can
be the case in some exotic quantum ground states [13]). In
this respect, spin models are widely used to describe the
properties of such solid-state systems where intercoupled
(e.g., by means of the Heisenberg exchange interaction) spins
are nested in the sites of a specific lattice structure. The
entanglement features of various spin-lattice models of this
kind have been thoroughly studied recently [14–17], revealing,
particularly, a strong connection of magnetic properties and
entanglement [18–20] that allows one to witness the latter
experimentally (e.g., by means of heat capacity and magnetic
susceptibility measurements [11,21]).

Meanwhile, another intriguing question that we address in
this paper is the connection of quantum entanglement and
chaos. As is known, the latter also plays an important role
in various areas of research and particularly in the field of

quantum information. For instance, the uncontrolled inter-
actions between the qubits of a quantum computer, being
above some critical strength, induce chaotic behavior that
may break down the efficiency of the computer or bring about
exponential decay of the entanglement [22,23]. Consequently,
the complexity of error correction codes increases, and the
correction time, however, is independent of whether the system
is chaotic or not [24]. On the other hand, quantum chaos may
also ensue in specific quantum protocols, such as the Grover’s
search algorithm, or quantum Fourier transform, giving rise
to a peculiar combination of quantum signatures of chaos and
integrability [25]. Meanwhile, another suitable platform for
the combined studies of entanglement and chaotic behavior
is nonlinear dissipative oscillators [26] and so-called coupled
tops [27] where the underlying classical chaos may enhance
and determine the amount of the entanglement shared between
the coupled systems [28,29]. Moreover, quantum signatures
of chaotic behavior in a kicked top have been demonstrated
for trapped cesium atoms, showing that if prepared in the
chaotic sea, the electron and nuclear spins of the atoms get
rapidly entangled [30]. Finally, some other studies, e.g., for
the N -atom Jaynes-Cummings model, have also shown that
the entanglement rate is considerably enhanced for chaotic
initial conditions [31].

On our part we propose a specific spin-lattice model to
study the relation among its chaotic behavior, entanglement,
and magnetic properties. Specifically, the structure that we
consider is of recursive nature and consists of two nonequiva-
lent types of sites: the nodal ones that constitute a Husimi tree
and trimeric units that form embedded triangles [see Fig. 1(a)].
Being constructed in such a way, it is thus natural to call this
structure a triangulated Husimi tree and its deep interior a tri-
angulated Husimi lattice (THL) (we note that a similar system
has been proposed very recently in Ref. [32]). Next, taking
into account that the rigorous treatment of purely Heisenberg
models are mostly unattainable, we adopt here a spin-1/2
Ising-Heisenberg model on a THL such that the Ising spins are
nested on the nodal sites of the lattice, whereas the Heisenberg
variables are situated on the vertices of the embedded triangles.
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CHAKHMAKHCHYAN, GUÉRIN, AND LEROY PHYSICAL REVIEW E 92, 022101 (2015)

01
z

02
z

03
z

S01 S02

S03
01
z

02
z

03
z

(b)(a)

FIG. 1. (Color online) (a) The Ising-Heisenberg model on a triangulated Husimi lattice with coordination number q = 3. The red (gray)
circles denote the position of the Heisenberg �Ski

= {Sx
ki
,S

y

ki
,Sz

ki
} spins, and the black ones denote that of the Ising μz

ki
variables. The full

red lines label the Heisenberg-type exchange interaction between �Ski
spins of the kth triangle, whereas the dashed blue ones stand for the

Ising-type coupling of Sz
ki

and μz
kj

(i,j = 1–3); Sz
k1

μz
k3

, Sz
k2

μz
k1

, and Sz
k3

μz
k2

interactions are shown only for the central triangle. There is also
a three-site exchange coupling μz

k1
μz

k2
μz

k3
, that is not shown in this figure. (b) The effective Ising model on a Husimi lattice which the above

Ising-Heisenberg model is mapped onto. The dashed blue lines label the two-site interactions, whereas the full black arrowed ellipse stands for
the three-site interaction (shown only for the central triangle). The green dot-dashed lines show how the system is cut apart for employing the
recursive method (see Sec. II B for details).

A distinguishable feature of this model is that it can be
solved exactly by combining the generalized star-triangle
transformation [33,34] and the recursive method [35–41].
Even more, if three-site interactions between nodal Ising spins
are included, the model exhibits chaotic behavior (this is rather
different from the case studied in Ref. [32] where only two-site
interactions are considered in the absence of the external
magnetic field). Although this fact has been well known for
an Ising model on a simple Husimi lattice [37,39,40], it brings
about drastic changes in the properties of the Heisenberg
trimer of the THL. Namely, at sufficiently low temperatures, its
magnetization, and even more interestingly, the entanglement
(that we quantify by means of the concurrence [42]) exhibit
period-doubling bifurcations, chaotic behavior, and periodic
windows. It is worth noting, however, that the ground state
of the Heisenberg triangle remains rigid and that it is the
Ising sublattice (to which the triangles are coupled) that gives
rise to chaos. Furthermore, as is shown below, the spin-spin
entanglement of the triangle may be slightly enhanced by
means of the underlying chaotic behavior when compared to
the case of only three qubits in an external magnetic field.
Nevertheless, we point out that quantum correlations cannot
be induced solely by chaos and that these two are rather
interconnected: Chaos ensues when the entangled W state
becomes a ground state of the Heisenberg trimer.

Finally, we note that the Husimi structure, which we study
here, is a good approximation to more realistic models with
multisite interactions on ordinary lattices, being more reliable
than the standard Bethe and mean-field approaches [36,43].
Additionally, it can be used for the description of various
polymers, and particularly, of RNA-like molecules [44].
Meanwhile, triangulated lattices, in their turn, are also of
current great interest since they may describe real materials

(e.g., copper based coordination compounds Cu9X2(cpa)6 ·
nH2O; X = F,Cl,Br [20,45]) and turn out to be an efficient
ground for the understanding of specific mechanisms of quan-
tum ordering at low temperatures [33]. Consequently, along
with the aforementioned features, these arguments reinforce
our interest in the studies of exactly solvable Ising-Heisenberg
models on triangulated Husimi structures.

The paper is organized as follows: In Sec. II we introduce
the multisite interaction spin-1/2 Ising-Heisenberg model on
a THL and show its exact solution by means of the generalized
star-triangle transformation and the recursive approach. In
Sec. III we discuss the magnetic and entanglement properties
of our model and reveal their chaotic natures. Finally, we draw
our conclusions in Sec. IV.

II. MODEL

We consider a recursive structure that is formed by a basic
triangular unit bearing Ising variables on its vertices and
Heisenberg-type spins situated on its bonds, which, in their
turn, form an embedded triangle. Taking this building block as
the zeroth shell, we construct the next one by connecting q − 1
such units on each site of the bigger triangle and continue this
process to develop higher-generation shells. Eventually we end
up with a structure that can be called a triangulated Husimi tree
since the Ising spins of this system constitute a regular Husimi
tree with a coordination number q [Fig. 1(a)]. Note that the
number of sites both at the surface and inside the tree grows
exponentially and for that reason we consider the properties
of the system in its deep interior (for more details on this see,
e.g., Ref. [46]), i.e., on a triangulated Husimi lattice.

The definition of the spin-1/2 Ising-Heisenberg model on
the above structure is now straightforward. The corresponding
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Hamiltonian reads

H =
N�−1∑
k=0

Hk,

Hk = −J3μ
z
k1

μz
k2

μz
k3

−
∑
(i,j )

[
J

xy

H

(
Sx

ki
Sx

kj
+ S

y

ki
S

y

kj

) + J zz
H Sz

ki
Sz

kj

]

− JIH
(
μz

k1
+ μz

k2
+ μz

k3

)(
Sz

k1
+ Sz

k2
+ Sz

k3

)

− HI

q

(
μz

k1
+ μz

k2
+ μz

k3

) − HH
(
Sz

k1
+ Sz

k2
+ Sz

k3

)
. (1)

HereHk denotes the Hamiltonian of the kth triangle (N� being
the number of these triangles), �Ski

= {Sx
ki
,S

y

ki
,Sz

ki
} stands for

Heisenberg spin-1/2 operators, whereas μz
ki

stands for that of
the Ising ones (i = 1–3). The first term in Hk corresponds
to the three-site interaction of a strength J3 between nodal
Ising spins, JIH is the strength of the Ising-to-Heisenberg
coupling, whereas J

xy

H and J zz
H are the interaction strengths of

the Heisenberg exchange coupling on the (x,y) plane and the
z direction, respectively (equivalently, this interaction can be
defined as of a strength J ≡ J zz

H with the anisotropy parameter
� ≡ J

xy

H /J zz
H ). The system is also subject to external magnetic

fields HI (note that each Ising spin belongs simultaneously to q

triangles) and HH, acting upon the Ising- and Heisenberg-type
variables, and directed along the z axis [see also Fig. 1(a)].

A. The generalized star-triangle transformation
and the effective Hamiltonian

To solve the above defined model exactly we employ the
generalized star-triangle (Y -�) transformation [32–34], that
allows one to map the initial Ising-Heisenberg model on a
THL onto an effective Ising model on a Husimi lattice. For
that, owing to the fact that the triangular Hamiltonians Hk are
commutative with one another, i.e., [Hk,Hl] = 0, we partially
factorize the partition function of the initial system to partition
functions of triangular Hamiltonians (we work in units such
that the Boltzmann constant kB is unity),

Z =
∑
{μki

}

N�−1∏
k=0

Trk exp(−Hk/T )

=
∑
{μki

}

N�−1∏
k=0

Zk

(
μz

k1
,μz

k2
,μz

k3

)
. (2)

Here T is the temperature, Trk denotes the trace over the
degrees of freedom of the three Heisenberg spins of the
kth triangle, whereas the subsequent summation runs over
all the possible configurations of the nodal Ising spins
Zk(μz

k1
,μz

k2
,μz

k3
) having the form

Zk

(
μz

k1
,μz

k2
,μz

k3

)

= exp

[
J3

T
μz

k1
μz

k2
μz

k3
+ HI

qT

(
μz

k1
+ μz

k2
+ μz

k3

)]
W (μk).

(3)

In this equation μk = ±3/2,±1/2 are the eigenvalues of the
total Ising spin operator of the kth triangle μz

k = μz
k1

+ μz
k2

+

μz
k3

of a specific spin configuration, and W (μk) is given as

W (μk) = 2 cosh

(
HH + JIHμk

2T

)

×
[

exp

(
J

xy

H

T
− J zz

H

4T

)
+ 2 exp

(
−J

xy

H

2T
− J zz

H

4T

)]

+ 2 cosh

[
3(HH + JIHμk)

2T

]
exp

(
3J zz

H

4T

)
. (4)

Having brought the partition function to the form of Eq. (3), we
apply the generalized star-triangle transformation for mapping
the initial Ising-Heisenberg model onto an effective Ising one,

Z
(
μz

k1
,μz

k2
,μz

k3

)

= exp

[
J3

T
μz

k1
μz

k2
μz

k3
+ HI

qT

(
μz

k1
+ μz

k2
+ μz

k3

)]
W (μk)

= A exp

[
J eff

3

T
μz

k1
μz

k2
μz

k3
+ J eff

2

T

(
μz

k1
μz

k2
+ μz

k2
μz

k3
+ μz

k1
μz

k3

)

+ H eff

qT

(
μz

k1
+ μz

k2
+ μz

k3

)]
. (5)

As the above expression should hold true for any configuration
of Ising spins, it results in a set of four equations (the
initial eight ones corresponding to 23 = 8 configurations of
the three nodal spins are reduced to just four due to a
threefold degeneracy of μk = 1/2 and μk = −1/2 states).
Eventually, these equations determine unambiguously the
mapping parameters through the following expressions:

A = [W (3/2)W (−3/2)]1/8[W (1/2)W (−1/2)]3/8,

J eff
3 = J3 + T ln

(
W (3/2)

W (−3/2)

[
W (−1/2)

W (1/2)

]3)
,

J eff
2 = T

2
ln W (3/2)W (−3/2)W (1/2)W (−1/2),

H eff = HI + qT

4
ln

W (3/2)W (1/2)

W (−1/2)W (−3/2)
. (6)

Consequently, owing to Eq. (3) we rewrite the partition
function of the initial Hamiltonian of Eq. (1) as

Z
(
J3,J

xy

H ,J zz
H ,JIH,HI,HH,T ,q

)
= AN�Zeff

(
J eff

3 ,J eff
2 ,H eff,T ,q

)
, (7)

which maps the spin-1/2 Ising-Heisenberg model on a THL
onto a spin-1/2 Ising model on a simple Husimi lattice
with effective three- and two-site interactions in an effective
magnetic field. The corresponding Hamiltonian reads [see also
Fig. 1(b)]

Heff = −
N�−1∑
k=0

[
J eff

3 μz
k1

μz
k2

μz
k3

+ J eff
2

(
μz

k1
μz

k2
+ μz

k2
μz

k3
+ μz

k1
μz

k3

)

+ H eff

q

(
μz

k1
+ μz

k2
+ μz

k3

)]
. (8)

The distinguishable feature of this final model is the fact that
it can be solved exactly through the recursive method, that
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we present in the next subsection. We also make a note here
that for the values of parameters that we consider below, the
effective coupling J eff

2 always remains ferromagnetic.
Meanwhile, we express all the physical quantities of interest

in terms of the above defined effective parameters. Specifically,
denoting by f� and f eff

� the free energy per triangle of the
initial and effective models from Eq. (7) we find

f� = f eff
� − T ln A. (9)

Consequently, the single-site magnetization mI of the
nodal Ising spins reads (there are 3/q of them in each
triangle)

mI = −q

3

∂f�
∂HI

= −q

3

∂f eff
�

∂H eff

∂H eff

∂HI
= meff . (10)

In other words, mI is equal to the per-cite magnetization
meff of the effective model, which is, however, not the
case for the single-site magnetization mH of the Heisenberg
sublattice,

mH = −1

3

∂f�
∂HH

= −1

3

(
∂f eff

�
∂H eff

∂H eff

∂HH
+ ∂f eff

�
∂J eff

3

∂J eff
3

∂HH
+ ∂f eff

�
∂J eff

2

∂J eff
2

∂HH

)

+ T

3

∂ ln A

∂HH

= meff

q

∂H eff

∂HH
+ εeff

3

3

∂J eff
3

∂HH
+ εeff

2

3

∂J eff
2

∂HH
+ T

3A

∂A

∂HH
, (11)

where εeff
3 = 〈μz

k1
μz

k2
μz

k3
〉 and εeff

2 = 〈μz
k1

μz
k2

+ μz
k2

μz
k3

+
μz

k1
μz

k3
〉 are the three- and two-site spin-spin correlation

functions of the effective Ising model.
In what follows we are also interested in the nearest-

neighbor two-site correlation functions of the Heisenberg
spins. Note that as the magnetic field is directed along the
z axis, the correlations in the x and y directions are equal.

Therefore, the per-pair spin-spin correlation functions read

εxx = εyy

= −1

3

∂f�
∂Jxy

= −1

3

(
∂f eff

�
∂H eff

∂H eff

∂Jxy

+ ∂f eff
�

∂J eff
3

∂J eff
3

∂Jxy

+ ∂f eff
�

∂J eff
2

∂J eff
2

∂Jxy

)

+T

3

∂ ln A

∂Jxy

= meff

q

∂H eff

∂Jxy

+ εeff
3

3

∂J eff
3

∂Jxy

+ εeff
2

3

∂J eff
2

∂Jxy

+ T

3A

∂A

∂Jxy

. (12)

Similarly, the two-site spin-spin correlation function in the z

direction is given as

εzz = −1

3

∂f�
∂Jzz

= −1

3

(
∂f eff

�
∂H eff

∂H eff

∂Jzz

+ ∂f eff
�

∂J eff
3

∂J eff
3

∂Jzz

+ ∂f eff
�

∂J eff
2

∂J eff
2

∂Jzz

)

+ T

3

∂ ln A

∂Jzz

= meff

q

∂H eff

∂Jzz

+ εeff
3

3

∂J eff
3

∂Jzz

+ εeff
2

3

∂J eff
2

∂Jzz

+ T

3A

∂A

∂Jzz

. (13)

B. Exact solution of the effective model by means
of the recursive method

As mentioned previously, the effective Ising model on a
Husimi lattice, defined by the Hamiltonian (8), can be solved
exactly through the recursive method. The latter takes into
account the specific—recursive—structure of the lattice, that
can be cut apart at the central unit (the central triangle for
the case of a Husimi lattice), being divided into q identical
branches [Fig. 1(b)]. Consequently, the partition function is
expressed in terms of the partition functions of each of those
branches [35,37–40],

Zeff =
∑

μ01 ,μ02 ,μ03

exp

[
J eff

3

T
μ01μ02μ03 + J eff

2

T

(
μ01μ02 + μ02μ03 + μ01μ03

)

+ H eff

qT

(
μ01 + μ02 + μ03

)]
gq−1

n

(
μ01

)
gq−1

n

(
μ02

)
gq−1

n

(
μ03

)
, (14)

where the summation runs over the eigenvalues μ0i
= ±1/2 of the Ising μz

0i
spin operators (i.e., over the possible spin

configurations), gn(μ0i
) standing for the contribution to the partition function of each of the q − 1 branches that contain n

shells. Next, we repeat the cutting-apart procedure once again, and, e.g., for gn(μ01 ) we find

gn

(
μ01

)= ∑
μ12 ,μ13

exp

[
J eff

3

T
μ01μ12μ13 + J eff

2

T

(
μ01μ12 + μ12μ13 + μ01μ13

) + H eff

qT

(
μ01 + μ12 + μ13

)]
g

q−1
n−1

(
μ12

)
g

q−1
n−1

(
μ13

)
. (15)

Eventually, this procedure results in a recursive relation for xn = gn(1/2)/gn(−1/2) (see, e.g., Refs. [39,40,47]),

xn = f (xn−1), f (x) =
x2(q−1) exp

( J eff
3

4T
+ 3H eff

qT

) + 2xq−1 exp
(− J eff

2
T

+ 2H eff

qT

) + exp
( J eff

3
4T

− J eff
2
T

+ H eff

qT

)
x2(q−1) exp

(− J eff
2
T

+ 2H eff

qT

) + 2xq−1 exp
( J eff

3
4T

− J eff
2
T

+ H eff

qT

) + 1
. (16)

022101-4



CHAOTIC SPIN-SPIN ENTANGLEMENT ON A RECURSIVE . . . PHYSICAL REVIEW E 92, 022101 (2015)

Although xn does not have a direct physical meaning, the mapping f (x) describes the properties of the system. Specifically, the
above defined single-site magnetization mI as well as the three- and two-site correlation functions εeff

3 and εeff
2 of spins situated

deep inside the tree (where the surface effects are negligible) can be expressed straightforwardly in terms of xn,

meff = 1

2

x
q
n eH eff/qT − 1

x
q
n eH eff/qT + 1

,

εeff
3 = 1

8

x
3(q−1)
n exp

( J eff
3

4T
+ 3H eff

qT

) − 3x
2(q−1)
n exp

(− J eff
2
T

+ 2H eff

qT

) + 3x
q−1
n exp

( J eff
3

4T
− J eff

2
T

+ H eff

qT

) − 1

x
3(q−1)
n exp

( J eff
3

4T
+ 3H eff

qT

) + 3x
2(q−1)
n exp

(− J eff
2
T

+ 2H eff

qT

) + 3x
q−1
n exp

( J eff
3

4T
− J eff

2
T

+ H eff

qT

) + 1
,

εeff
2 = 1

4

3x
3(q−1)
n exp

( J eff
3

4T
+ 3H eff

qT

) − 3x
2(q−1)
n exp

(− J eff
2
T

+ 2H eff

qT

) − 3x
q−1
n exp

( J eff
3

4T
− J eff

2
T

+ H eff

qT

) + 3

x
3(q−1)
n exp

( J eff
3

4T
+ 3H eff

qT

) + 3x
2(q−1)
n exp

(− J eff
2
T

+ 2H eff

qT

) + 3x
q−1
n exp

( J eff
3

4T
− J eff

2
T

+ H eff

qT

) + 1
. (17)

In other words, in the limit n → ∞ the mapping f (x)
determines the state of the system, and particularly, the
canonical ensemble averages of all physical quantities that we
are interested in here. Consequently, Eqs. (10)–(13) along with
Eqs. (16) and (17) provide the exact solution of the spin-1/2
Ising-Heisenberg model on a THL.

C. Pairwise entanglement of the Heisenberg trimer

In this subsection we turn to characterizing the entan-
glement properties of the Heisenberg trimers of the THL.
To quantify the amount of quantum correlations that the
Heisenberg spins of each triangle share, we use below the
concurrence [42] as a computable entanglement measure of a
bipartite mixed state. For this purpose we require the reduced
density matrix of a pair of Heisenberg spins (i.e., qubits),
taking into account that due to the cyclic symmetry that each
Heisenberg triangle possesses, the entanglement of any of
its pairs is identical. We also note that as the neighboring
Heisenberg triangles are coupled to one another by means of
Ising-type (diagonal) interaction, they are not entangled with
each other.

In order to express the reduced density matrix of a pair
of triangular qubits (that we denote by ρ12), in terms of the
above defined magnetization mH and the spin-spin correlation
functions εxx, εyy , and εzz, we right it down in the Hilbert-
Schmidt basis [48],

ρ12 = 1

4

⎛
⎝I ⊗ I + 2

3∑
i=1

(aiσi ⊗ I + biI ⊗ σi)

+
3∑

i,j=1

tij σi ⊗ σj

⎞
⎠. (18)

Here I is a 2×2 identity matrix, and σi’s are the standard
Pauli matrices, related to the spin operators as Sx = 1

2σ1, Sy =
1
2σ2, and Sz = 1

2σ3. Following the well-known procedure
we express the coefficients of the above decomposition
through the single-site magnetization and spin-spin correlation
functions,

a3 = b3 = mH, t11 = 4εxx,

t22 = 4εyy, t33 = 4εzz, (19)

whereas all the other coefficients are equal to zero. As a result,
the reduced density matrix of a pair of qubits reads

ρ12 =

⎛
⎜⎜⎜⎝

1
4 + εzz + mH 0 0 0

0 1
4 − εzz 2εxx 0

0 2εxx
1
4 − εzz 0

0 0 0 1
4 + εzz − mH

⎞
⎟⎟⎟⎠,

(20)

that is a special case of the so-called X state [49]. Its
concurrence as known takes the following form:

C(ρ12) = 2 max
[
2|εxx | −

√(
1
4 + εzz − mH

)(
1
4 + εzz + mH

)
,0

]
.

(21)

Note that this final expression for the pairwise entanglement of
the triangulated Husimi lattice is exact and takes into account
the specific recursive structure of the system.

III. BIFURCATION AND CHAOTIC BEHAVIOR
OF THE MAGNETIZATION AND ENTANGLEMENT

Having the exact solution of the spin-1/2 Ising-Heisenberg
model on a THL we proceed to the discussion of its magnetic
and entanglement properties.

In what follows we are mainly interested in the case
of isotropic antiferromagnetic Heisenberg interactions, i.e.,
J

xy

H = J zz
H ≡ JH < 0, and the three-site interaction J3 is also

considered to be of antiferromagnetic character (J3 < 0).
Nevertheless, we choose the Heisenberg interactions to be
dominant (J3/JH < 1), which reinforces our assumption of
having an alternating sequence of Ising and Heisenberg
variables (for weaker interactions the fluctuations in the
transverse direction are expected to be reduced in the presence
of a magnetic field directed along the z axis, which may give
rise to spin-spin coupling of Ising, rather than of Heisenberg
character). Additionally, we assume the ferromagnetic Ising-
to-Heisenberg coupling to be weak by fixing the corresponding
ratio to JIH/JH = −0.01 (as already mentioned, the effective
two-site Ising interaction J eff

2 always remains ferromagnetic
here). Furthermore, we set the magnetic fields acting upon
the Ising and Heisenberg spins equal: HH = HI ≡ H . Finally,
we note that the initial [Eq. (1)] as well as the effective
[Eq. (8)] systems possess a particular symmetry, namely,
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FIG. 2. (Color online) (a) The single-site magnetization mH of
the Heisenberg (red curve) and mI of the Ising (blue curve) sublattices
versus the magnetic field HH = HI ≡ H . Here JIH/JH = −0.01,

J3/JH = 0.5, T /|JH| = 1, and q = 3 (J xy

H = J zz
H ≡ JH); (b) the same

but for T/|JH| = 0.1.

their properties remain unchanged under the replacement
J3 → −J3 and H → −H (below we consider the region of
positive magnetic fields).

A. Magnetization

We start with the magnetic properties at relatively high
temperatures where the system possesses usual properties as
shown in Fig. 2(a)—both for Ising- and Heisenberg-type spins
the magnetization goes monotonically to saturation with the
increase in the strength of the magnetic field. Nevertheless,
as the temperature is decreased we find the appearance of
magnetization plateaus of the Heisenberg trimer at 1/6 of
the saturation value, that corresponds to the ground states
|ψ〉 = 1√

3
(|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉) for H > 0 and |ψ〉 =

1√
3
(|↓↓↑〉 + |↓↑↓〉 + |↑↓↓〉) for H < 0 (note that these states

are highly entangled W states to which we return in the next
subsection).

The above picture, is, however, well known, and we do not
go into more details in this respect. Instead, we consider the
properties of the system at even lower temperatures where
due to the specific lattice structure it exhibits a doubling
bifurcation—the mapping f (x) instead of a stable fixed point
converges now to a stable two-periodic cycle. Consequently,
the Ising mI magnetization possesses two values, alternating
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FIG. 3. (Color online) (a) The single-site magnetization mH of
the Heisenberg (red curve) and mI of the Ising (blue curve) sublattices
versus the magnetic field HH = HI ≡ H . Here JIH/JH = −0.01,

J3/JH = 0.5, T /|JH| = 0.05, and q = 3 (J xy

H = J zz
H ≡ JH). The in-

set shows the details in the area of a period doubling of the
magnetization mH; (b) the same but for T/|JH| = 0.02 (the inset
shows the details of the chaotic behavior of the magnetization mH).

from shell to shell, which can be interpreted as single-
site magnetizations of two emerging sublattices [Fig. 3(a)].
Although this behavior has been studied quite in detail for a
simple Ising model on a Husimi lattice [37,39,40], it results in
a novel feature that we find here. Namely, the Heisenberg mH

magnetization bifurcates as well that is due to the consistency
of the both subsystems. In other words, despite the ground
state of the Heisenberg trimer being rigid, its environment
(i.e., the Ising-type spins that constitute the Husimi lattice)
brings about drastic changes in its thermodynamic properties,
resulting in a sublattice structure of the Heisenberg system as
shown in the inset of Fig. 3(a) (note also that this doubling
bifurcation appears in the area of the formation of the
above mentioned plateau at mH = 1/6). More interestingly,
as we continue decreasing the temperature, we find further
doubling bifurcations both for the Heisenberg and for the Ising
magnetizations—new bubbles are formed as parts of the old
ones, resulting in 2m periodic phases (m = 2,3, . . .) with a
more complicated sublattice structure.

Finally, for ultimately low temperatures the system under-
goes a transition to a chaotic phase where the magnetization
pattern does not repeat itself anymore. We emphasize again
that the full period-doubling cascade and the chaotic behavior
appear not only for the Ising magnetization, but also for the
Heisenberg one, which will consequently have a crucial impact
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on the entanglement behavior as well. Moreover, the chaos
ensues in the vicinity of the incipient magnetization plateau at
mH = 1/6, i.e., where the above mentioned highly entangled
W state is the ground state of the Heisenberg trimer.

Furthermore, the chaotic regime contains p-periodic win-
dows (p = 3,5, . . .) with p2m-periodic phases. Particularly
a wide three-periodic window is plainly distinguishable in
Fig. 3(b). Note also that the transition from and to chaos
at both edges of the window takes place by means of a
tangent bifurcation—behavior that is quite different from that
of usual polynomial mappings, such as the logistic one. This
peculiar feature of maps describing spin-lattice models has
been discussed in our previous works (note that the Q-state
Potts model on a Bethe lattice exhibits similar behavior versus
the temperature T and for noninteger values of Q < 2) [39,40].

Meanwhile, to show explicitly the appearance of chaos
and to distinguish more rigorously between long-periodic
phases and truly chaotic behavior, we consider the Lyapunov
λ(x) exponent. The latter tells one whether an infinitesimal
perturbation in initial conditions has an infinitesimal effect
[λ(x) < 0—periodic behavior] or leads to a totally different
trajectory [λ(x) > 0], that would correspond to a chaotic
regime [note that at a bifurcation point λ(x) = 0]. The
Lyapunov exponent is defined as

λ(x) = lim
m→∞

1

m
ln

∣∣∣∣df
(m)(x)

dx

∣∣∣∣, (22)

where f (m)(x) stands for the mth iteration of the mapping f (x).
As Fig. 4 shows, the system indeed exhibits chaos, that

corresponds to the areas where λ(x) > 0. Additionally, the
above mentioned tangent bifurcations, corresponding to a
transition from a chaotic phase to a periodic window, are also
seen here [the periodic windows are the inclusions of negative
Lyapunov exponent inside the chaotic phase; cf. Fig. 3(b)].
Finally, the model possesses a variety of superstable cycles
with λ(x) = −∞ [50]: As was shown in Ref. [39], at these
points a specific change occurs in the symbolic dynamics of
the mapping (16).

0.0 0.1 0.2 0.3 0.4 0.5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

H JH

λ
x

FIG. 4. (Color online) The Lyapunov exponent λ(x) of the map-
ping f (x) [Eq. (16)] versus the magnetic field HH = HI ≡ H . Here
JIH/JH = −0.01, J3/JH = 0.5, T /|JH| = 0.02, and q = 3 (J xy

H =
J zz

H ≡ JH) [the values of the parameters are the same as in Fig. 3(b)].

B. Entanglement

Before starting the analysis of the entanglement prop-
erties of the Heisenberg trimer of the THL, we note that
a system of three qubits has been already studied from
different perspectives and in various environments, including,
e.g., external [51], or effective magnetic fields (that may
describe a specific lattice structure [20]), incident [9], or
cavity light field dressing [52], etc., and therefore is quite
well understood by now. Nevertheless, the recursive structure,
bringing about chaotic behavior that we present below, has not
been considered yet. Therefore, we do not stop much in detail
on the analysis of the ground-state features of the trimer of
the THL but proceed, instead, to the studies of its periodic and
chaotic entangled regimes.

Having the exact formula for the concurrence C(ρ12) of
a pair of qubits from the Heisenberg trimer, expressed in
terms of the magnetization and spin-spin correlation functions
[Eq. (21)], we plot it in Fig. 5 as a function of the magnetic
field HH = HI ≡ H . As Fig. 5(a) shows, the overall behavior
of the concurrence at relatively high temperatures, and weak
Ising-to-Heisenberg coupling is quite analogous to that of a
simple system of just three qubits in an external magnetic
field: The figure compares the pairwise entanglement of a pure
Heisenberg trimer (dashed red curve) with that of our model
(full blue curve). This similarity becomes evident from the fact
that the coupling to the rest of the system, and particularly,
to the Ising spins that constitute the Husimi lattice, happens
by means of the weak JIH interaction. Meanwhile, as for the
broad maximum at around C(ρ12) = 1/3, it appears due to
the ground W state |ψ〉 = 1√

3
(|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉), that

passes to a saturated nonentangled state |↑↑↑〉 [the thermal
effects smooth here the abrupt jump from C(ρ12) = 1/3
to C(ρ12) = 0]. Note, however, that as the JIH/JH ratio is
increased, the transition from the W to the saturated state is
shifted to smaller values of H since the Ising-to-Heisenberg
coupling can be interpreted as an additional magnetic field of
a strength JIHμk (μk = ±3/2,±1/2), acting upon the qubits
[see also the Hamiltonian (1)].

Nevertheless, the features of our model at sufficiently low
temperatures are strikingly different from the above picture.
Namely, the entanglement of the Heisenberg trimer bifurcates
as the temperature is decreased, even when the Ising-to-
Heisenberg coupling is weak [see Fig. 5(b) and its details
in the area of period doubling in Fig. 5(c)]. This means that
the concurrence C(ρ12) has now two values that interchange
one with another from shell to shell. In other words, we find
here a rise in two sublattices with different values of pairwise
entanglement. Moreover, the breaking up into sublattices with
respect to the entanglement is identical to that with respect to
the magnetization mH: The upper branch of mH in Fig. 3(a)
corresponds to the upper branch of C(ρ12) in Fig. 5(c). It
is also worth noting that the bifurcation occurs in the weak
magnetic field region where the magnetic entanglement is
induced (the ground state at H = 0 is not entangled, and
quantum correlations build up here due to the inclusion of
the magnetic field [53]).

Meanwhile, at ultimately low temperatures, in the same
manner as for the magnetizations mI and mH, the concurrence
exhibits more and more phases with higher 2m periods
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FIG. 5. (Color online) The concurrence of a pair of qubits from
a Heisenberg trimer versus the magnetic field. The full blue curves
correspond to the concurrence C(ρ12) of our model, given by Eq. (21)
(HH = HI ≡ H, J

xy

H = J zz
H ≡ JH), whereas the dashed red curves

stand for the concurrence of a simple Heisenberg trimer with two-site
isotropic interactions of a strength JH in an external magnetic field
H (cf. Ref. [51]). Here JIH/JH = −0.01, J3/JH = 0.5, q = 3, and
(a) T/|JH| = 0.09; (b) T/|JH| = 0.05; (c) enlargement of the period
doubling zone shown in (b).

(m = 2,3, . . .), and eventually, one reaches the regime of
chaotic entanglement (Fig. 6). This means that in the entire
system (deep inside the Husimi tree) the sequence of the values
of the concurrence does not repeat itself and is, in other words,
incommensurate. We also note that the above chaotic behavior
appears solely due to the specific—recursive—structure of the
THL and due to the presence of three-site interactions in the
initial (1), and therefore, in the effective Ising (8) model (as is
known, the Ising model on a Husimi lattice with only two-site
interactions does not exhibit chaos [37,54]). Moreover, the
region of the chaotic entanglement is directly related to
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2
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FIG. 6. (Color online) (a) The concurrence of a pair of qubits
from a Heisenberg trimer versus the magnetic field. The full blue
curve corresponds to the concurrence C(ρ12) of our model, given by
Eq. (21) (HH = HI ≡ H, J

xy

H = J zz
H ≡ JH), whereas the dashed red

curve stands for the concurrence of a simple Heisenberg trimer with
two-site isotropic interactions of a strength JH in an external magnetic
field H . Here JIH/JH = −0.01, J3/JH = 0.5, T /|JH| = 0.02, and
q = 3; (b) enlargement of the chaotic zone shown in (a).

the strength of the three-site interactions—the stronger these
interactions, the wider the chaotic region.

On the other hand, we note that purely thermal entangle-
ment, i.e., entanglement that arises at H = 0, only due to
the thermal mixing of the eigenstates of the system, exhibits
neither period doubling nor chaotic behavior. In other words,
chaos ensues only in the presence of the external magnetic field
where an entangled state appears in the ground-state structure.
Furthermore, chaos does not induce entanglement by itself
but may enhance (or reduce) its amount from shell to shell.
Specifically, as shown in Fig. 6(b), the chaotic entanglement is
dominantly stronger than that of just three qubits in an external
magnetic field (compare the full blue and dashed red curves
therein).

Furthermore, an important observation is that the Lyapunov
λ(x) exponent [Eq. (22)], that describes the system’s chaotic
behavior, characterizes both the magnetic and the entangle-
ment quantities (e.g., the magnetization and the concurrence)
of the present model. More precisely, as already mentioned in
Sec. II B, the properties of the system in the thermodynamic
limit are defined by the mapping (16) as particularly are the
per-site magnetizations mH and mI as well as the pairwise
entanglement of the Heisenberg trimer, expressed in terms
of C(ρ12). Therefore the λ(x) exponent of the mapping (16),
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FIG. 7. (Color online) The phase transition lines from the uni-
form phase to a two-periodic one (the upper curve) and from periodic
to chaotic regimes (the lower curve). The full period-doubling
cascade takes place in the shaded area between these two curves.
Below the lower curve the chaotic entanglement ensues, which
may be interrupted with periodic windows. Here JIH/JH = −0.01,

J3/JH = 0.5, and q = 3 (J xy

H = J zz
H ≡ JH).

plotted in Fig. 4, confirms and quantifies the above discussed
chaotic behavior of the spin-spin entanglement, shown in
Fig. 6. Moreover, the inclusion of λ(x) < 0 regions inside
the chaotic regime and λ(x) = −∞ points in Fig. 4 reveal
the existence of periodic windows and superstable cycles of
the entanglement in the present model (similar to that of the
magnetization as discussed in the previous subsection).

Finally, for more details, in Fig. 7 we show the transition
line between the phase without sublattice structure (uniform
phase) and the two-periodic one on one hand and the transition
line between periodic and chaotic regimes on the other hand.
More precisely, the upper line in Fig. 7 corresponds to the first
bifurcation point, and up to the lower line (the shaded region)
one has the full 2m (m = 1–3, . . .) period-doubling cascade
with periodic entanglement behavior. Meanwhile below the
lower line the system exhibits aperiodic chaotic entanglement,
that, however, may be interrupted with p-periodic windows
(p = 3,5, . . .).

IV. CONCLUSION

We proposed a multisite interaction spin-1/2 Ising-
Heisenberg model on a triangulated Husimi lattice to study the
effects of chaos and bifurcation on the system’s entanglement
features. We used the generalized star-triangle transformation
to map the initial model onto an effective Ising one on a
simple Husimi lattice, which we then solved by means of
the recursive method. An exact formula was obtained for the
concurrence to quantify the pairwise spin-spin entanglement
of the embedded Heisenberg triangles, expressed through the
system’s single-site magnetization and spin-spin correlation
functions.

We have shown that at relatively high temperatures and
weak Ising-to-Heisenberg coupling, the model exhibits quite
usual magnetic behavior and its entanglement properties are
analogous to that of just three intercoupled qubits. However,
one finds drastic changes in the properties of the system as
the temperature T is decreased. Namely, period doubling of

per-site Ising and Heisenberg magnetizations appears such that
the corresponding values interchange one with another from
shell to shell (this corresponds to a bifurcation point of the
mapping that describes our model). We interpret this behavior
as a rise in a sublattice structure, that affects the system’s
entanglement properties, too: The concurrence now exhibits
period doubling as well, and each of the two values of the
entanglement is related to a particular magnetic sublattice. In
other words, here every branch of the concurrence corresponds
to a specific branch of the Ising and Heisenberg single-site
magnetizations.

On the other hand, with the further decrease in the
temperature, we find a full period-doubling cascade and
eventually a transition to a chaotic phase where the sequence
of the entanglement (and magnetization) values is aperiodic
and does not repeat itself. Importantly, this behavior appears
due to the inclusion of three-site interactions—the system is
always periodic when only pair interactions are taken into
account. It is also interesting to note that chaos ensues in the
region of incipient magnetic and concurrence plateaus, that
correspond to the entangled W ground state. Additionally,
chaotic behavior is absent if the system exhibits only thermal
entanglement (in the absence of the magnetic field), i.e., if
its ground state is separable, which, therefore, along with
the above argument, points to a connection of ground-state
entanglement and chaos. Moreover, although chaos does not
induce entanglement by itself, it however may slightly enhance
the latter (somewhat similar results, namely, entanglement
enhancement for chaotic initial conditions have been also
indicated, e.g., in Ref. [31], although within distinct mech-
anisms for the chaos development). It is important to note,
however, that both for 2m-periodic (m = 1,2, . . .) and for the
chaotic regimes the ground state of the Heisenberg trimer is
rigid, whereas the Ising sublattice, that is (weakly) coupled
to the Heisenberg triangles, induces the underlying complex
behavior. Consequently, at sufficiently low temperatures the
entanglement (as well as the magnetization) of the Heisenberg
spins exhibits a rich phase structure, including the above
mentioned 2m-periodic phases, chaos, and p-periodic windows
(p = 3,5, . . .) as well as various superstable cycles, that we
have also confirmed by the studies of the Lyapunov λ(x)
exponent. The above transitions between periodic phases occur
through doubling bifurcations, whereas back and forth transi-
tions from chaos to periodic windows happen through tangent
bifurcations, that we plan to study in more detail in our future
works.

Finally, we emphasize that for the explicit studies of the
chaotic behavior of the above spin model and specifically, the
chaotic pairwise entanglement of its Heisenberg trimer, we
have mainly used the Lyapunov exponent approach. The latter
allows one to differentiate rigorously between periodic and
chaotic regimes and to measure the strength of the emerging
chaos. In this respect, our choice of the Lyapunov exponent
characteristics has been particularly reinforced by the fact
that the properties of the present spin model (and its state
in the thermodynamic limit) are defined by a one-dimensional
recursive mapping. As is known, in such a case the Lyapunov
λ(x) exponent serves as a strong tool for the analysis of the
inherent chaotic (as well as periodic) regimes [39,40,55], and
moreover, for the model that we studied here, it characterizes

022101-9
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the chaotic behavior not only of the system’s magnetic, but
also of its entanglement features. Nevertheless, it is worth
noting that for a deeper understanding of the relation between
entanglement and chaos, apart from the Lyapunov exponent
studies, one would necessitate here additional analysis, as, e.g.,
the estimation of the ergodicity of wave functions and level
spacing statistics, quantum purity of the emerging mixed X

states, etc. (see, e.g., Refs. [22,23,26]): An important issue
that we will address in our future work.
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[10] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko,
P. Grangier, and A. Browaeys, Phys. Rev. Lett. 104, 010502
(2010).

[11] A. M. Souza, M. S. Reis, D. O. Soares-Pinto, I. S. Oliveira,
and R. S. Sarthour, Phys. Rev. B 77, 104402 (2008); T. G.
Rappoport, L. Ghivelder, J. C. Fernandes, R. B. Guimarães,
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