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Resistive thrust production can be as crucial as added mass mechanisms for inertial
undulatory swimmers
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In this Rapid Communication, we address a crucial point regarding the description of moderate to high
Reynolds numbers aquatic swimmers. For decades, swimming animals have been classified in two different
families of propulsive mechanisms based on the Reynolds number: the resistive swimmers, using local friction
to produce the necessary thrust force for locomotion at low Reynolds number, and the reactive swimmers, lying
in the high Reynolds range, and using added mass acceleration (described by perfect fluid theory). However,
inertial swimmers are also systems that dissipate energy, due to their finite size, therefore involving strong
resistive contributions, even for high Reynolds numbers. Using a complete model for the hydrodynamic forces,
involving both reactive and resistive contributions, we revisit here the physical mechanisms responsible for
the thrust production of such swimmers. We show, for instance, that the resistive part of the force balance is as
crucial as added mass effects in the modeling of the thrust force, especially for elongated species. The conclusions
brought by this work may have significant contributions to the understanding of complex swimming mechanisms,
especially for the future design of artificial swimmers.
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Every fluid dynamicist has opened, at least once, a book
addressing the mechanics of swimming. Although the problem
has been studied by experimental biologists for almost a
century [1], and formalized later by the pioneer works of
Taylor [2] and Lighthill [3], it remains a very active field
for experimental and theoretical physics and biology (see,
e.g., recent reviews by [4–6]). Behind the elegant undulatory
kinematics that leads to motion, it is Newton’s third law that
allows the estimation of the net thrust force produced by the
animal. Basically, the local force applied by the fluid to the
body in reaction to the body movements has two components:
a resistive component due to local friction at the fluid-solid
interface and a reactive (inertial) component coming from
the amount of fluid accelerated away from the swimmer’s
body. The presence of these two contributions has brought
scientists to make a distinction between different swimming
mechanisms, depending on the animal body size or the nature
of the fluid. For instance, swimmers at small scales are in the
low-Reynolds domain where viscosity prevails over inertial
effects. The swimming theory associated to those regimes is
thus only based on local friction and is referred to as resistive
theory [7,8]. On the other hand, Lighthill [9,10] and Wu [11],
established a potential flow theory for inertial swimmers (high-
Reynolds domain) where viscous contributions are neglected,
relying on a slender-body approximation that allows one
to integrate the reactive lateral forces along the coordinate
following the spinal cord of the fish.

The existence of these two models has led to a virtual
frontier between two groups of swimmers in terms of the
Reynolds number: the first being based on dissipation (small
scale swimmers rely on the anisotropy of the friction drag
components normal and tangential to each body section),
and the second, used by large swimmers, based on inertial
momentum transfer. In other words, thrust production would
be based in the first case on local transversal velocities, and
in the second case, on local transversal accelerations. At low
Reynolds numbers, the locomotion problem is fully solved

once the expression for the local drag is integrated. On the
contrary, in the inertial regime, an additional model for the
global drag experienced by the swimmer is needed to close
the locomotion problem (see, e.g., [12–15]). However, recent
works have shown that, in order to give an accurate description
of real swimmers [16–18], the local balance of forces normal
to the body section needs an extra term accounting for the local
dissipation due to lateral body motion. This term is referred
to as “quadratic drag” and expresses the effect of viscosity
for these inertial regimes [2], which determines the large flow
separations occurring on finite size geometries [19] such as
those involved in animal swimming. This resistive contribution
is a form drag that depends on the local velocity, and has a
component in the swimming direction that can produce thrust.

In the present work we propose to use such a local model
for the normal forces, involving both reactive and resistive
contributions, to revisit the crucial question of the physical
mechanism responsible for thrust production in moderate to
high Reynolds number fishlike swimmers. The problem is
posed in a general form as done by Eloy [16], for instance.
However, here we use real fish kinematics from the literature to
close the locomotion problem, thus avoiding the introduction
of a skin friction model. The swimmers are characterized
through their geometrical aspect ratio ĥ defined as ĥ =
max[h(s)]/L, with L the total length of the swimmer and
h(0 < s < L) the local height as a function of the curvilinear
coordinate s [see Fig. 1(a)]. The latter will be considered as
a constant h(s) = H for the following analysis, where the
swimmers are modeled by infinitely thin rectangular foils.
The swimming kinematics is characterized by the deformation
of the spinal cord whose local position can be described by
the x(s,t) ,y(s,t) coordinates, dependent on the curvilinear
coordinate s and time t [see Fig. 1(b)]. During the imposed
swimming motion, each slice of the swimmer is subjected
to local forces corresponding to both reactive and resistive
contributions. Considering the inextensibility of the spinal
cord, and using a second-order nonlinear approach as in
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[16,17,20], the reactive and resistive forces per unit surface
can be written as

fma = −M(h)(ÿ + 2Uẏ ′ + U 2y ′′)n, (1)

fd = − 1
2ρCd |ẏ + Uy ′|(ẏ + Uy ′)n, (2)

where M(h) represents the local added mass accelerated
during swimming, n and t are the unity vectors normal and
tangential to the fish surface, respectively [see Fig. 1(b)], and
the dot and prime symbols are time and space derivatives,
respectively. In addition, ρ is the fluid density and Cd is a
drag coefficient weighing the nonlinear resistive term. Cd is
associated to the dynamic stalls at each swimming cycle that
result from the large transversal local velocities and the finite
geometry of the fish section. The lateral Reynolds numbers
involved in the cases studied in this work range from 2000 to
30 000, for which a constant value of Cd ∼ 2 can be accurately
used [16,21]. As evoked above, the consideration of the
resistive component to accompany the classical potential flow
model is a major point for the description of fish swimming
mechanics. This point will be the core of the forthcoming
discussion in this work, where we examine the role of both the
acceleration of added mass and the quadratic hydrodynamic
resistance in the production of thrust. The projection of Eqs. (1)
and (2) in the swimming direction (in this case −ex) gives
the contribution of these forces to the thrust. They read,
respectively,

tma = −M(h)(ÿ + 2Uẏ ′ + U 2y ′′)y ′, (3)

td = − 1
2ρCd |ẏ + Uy ′|(ẏ + Uy ′)y ′. (4)

In order to compare these two terms for a given swimmer
(defined by its kinematics and aspect ratio), the knowledge of
both Cd and M(h) are needed. We have estimated the precise
value of the added mass coefficient M(h) for the present
rectangular foils by studying the impulse response of elastic
plates of different aspect ratios in water. M(h) is then deduced

FIG. 1. Schematic diagrams of (a) an elongated fish of length
L where the function h(s) describes its span varying along the
longitudinal coordinate, and (b) the y(s) function describing the
undulation of the spinal cord of the fish.

through the modification of the relaxation frequency of the
plate, which changes with the fluid loading (see Appendix).
For slender body swimmers (̂h < 0.4), we have confirmed the
linear dependence of M(h) on the aspect ratio, as reported
in previous works [16,20]. Thus, we shall consider the added
mass coefficient as

M(h) = π

4
ρh. (5)

Having established the appropriate expressions for Cd and
M(h), the role of the reactive [Eq. (3)] and resistive [Eq. (4)]
terms in the dynamical balance that governs the locomotion
problem is therefore determined by the swimming kinematics.
In the following, we will consider kinematics extracted
from real swimmers both for anguilliform and carangiform
archetypal species [1,22,23]. The specific extracted kinematic
parameters are the beating amplitude A (as a function of the
spinal-cord coordinate s), the instantaneous wave speed of the
bending wave vϕ , and the instantaneous swimming speed U .
These parameters are used to calculate the spatial and time
derivatives of y(s,t) which are inserted in the expressions for
tma and td [Eqs. (3) and (4)]. Figure 2 shows contours of
the normalized temporal mean of the global added mass and
resistive generated thrusts:
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FIG. 2. (Color online) (a) and (c) Mean global thrust ratio as
a function of the aspect ratio ĥ over one oscillating period for
anguilliform and carangiform swimmers, respectively. Inset: profiles
of the body deformation. (b) and (d) Normalized mean local thrust
ratio as a function of the curvilinear coordinate S over one oscillating
period, for anguilliform and carangiform swimmers, respectively,
where 〈̂tma〉 = 〈tma/

∫ L

0 tmads〉 and 〈̂td〉 = 〈td/
∫ L

0 tdds〉.
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for two examples of an anguilliform and carangiform swim-
mer: an eel [taken from the data of Gray’s work [1]; see
inset in Fig. 2(a)] and a mackerel [extracted form Videler
and Hess [22]; see inset in Fig. 2(c)]. These two characteristic
kinematics have been used to analyze the resistive vs reactive
contributions (that we will hereafter also refer to as the drag
and added mass contributions) to the thrust production as
a function of the aspect ratio of the swimmer. Figure 2(a)
shows the ratio of the mean generated global thrusts over one
oscillation cycle, for varying aspect ratios for a given slip ratio
U/vϕ ∼ 0.55 (extracted from Gray’s work). By definition, the
resistive contribution is independent of H , thus giving a single
longitudinal distribution for all aspect ratios. The reactive
contribution, though, is span dependent and tends to amplify
with ĥ [as M(h); see Appendix]. As seen in Fig. 2(a), both
the added mass and drag contributions balance for an aspect
ratio ∼0.13. Below this critical value, the drag effects tend
to overcome the added mass contribution. Conversely, added
mass effects are dominant for aspect ratios over 0.13. In the
particular case of the example shown in Fig. 2, kinematics
are taken from a swimming butterfish [1] with aspect ratio
ĥ ∼ 0.055. Figure 2(b) shows the thrust generated by each
section of fish along the curvilinear coordinate s. It can be seen
that both drag and added mass thrust are mostly generated near
the end of the animal’s body.

In the same manner, results in Fig. 2(c) show the kinematics
of a typical carangiform swimmer (mackerel) extracted from
Videler and Hess [22]. Here, the slip ratio is ∼0.81. Compared
to the anguilliform case, we observe that thrust is almost
completely generated by added mass effects in the whole range
of physical aspect ratios (between 0.05 and 0.4 [24]). Similar
to the anguilliform swimmer, thrust is also mostly produced at
the end of the animal’s body [Fig. 2(d)].

The simple comparison of these two real cases brings an
observation worthy to be underlined: the physical mechanism
at the origin of thrust production in inertial swimmers
can be very different depending on the driving kinematics
(anguilliform vs carangiform) and on the aspect ratio (long vs
short animals). In particular, the resistive term which is usually
associated with low-Reynolds-number swimmers can be as
large or even dominate over the added-mass-based reactive
mechanisms. It has to be noted that, without being explicitly

discussed, this observation has already been reported in recent
studies [16].

Concerning the swimming kinematics, the slip ratio U/vϕ

and the amplitude distribution along the undulating body
seem to be determinant for the selection of thrust production
mechanisms. The remainder of the present work is devoted
to studying the sensitivity of our model swimmers to these
parameters.

First, in order to explore the dependency of the generated
global thrust on the aspect and slip ratios, we assume that
the deformation profiles remain constant regardless of the
swimming and body wave speeds. Fundamentally, kinematics
parameters are in some cases interdependent (see, for instance,
discussion in [25]); however, this hypothesis allows one
to pinpoint insightful underlying mechanisms. Results are
shown in Fig. 3. The presented phase diagrams allow one
to identify drag driven and added mass driven propulsion
areas for both anguilliform and carangiform kinematics. For
the case of anguilliform swimmers, small slip ratio values
increase the dominance of drag forces in thrust production
even for relatively high aspect ratios. This drag dominance
diminishes as the slip ratio increases, until drag propulsion is
no longer possible for slip ratios ∼0.92. In general, eels and
other anguilliform swimmers lie in the rage of aspect ratios
0.05 < ĥ < 0.07, body wavelengths λ/L ∼ 0.6, and slip ratios
0.5 < U/vϕ < 0.75 [1,24,25,30]. Although the kinematics can
vary as a function of the slip ratio, anguilliform swimmers
remain in regions where thrust is generated by a comparable
contribution between lateral drag and added mass effects (for
high slip ratios). In contrast, the carangiform kinematics phase
diagram is mostly dominated by added mass thrust production
[Fig. 3(b)]. However, a region of drag dominated propulsion
is observed for small slip and small aspect ratios. Generally
carangiform swimmers have aspect ratios around 0.25, body
wavelengths λ/L ∼ 1, and have slip ratios much larger than
those of anguilliform swimmers, ∼0.83 [22,30].

It is relevant to mention that carangiform swimmers stay in
regions of the kinematic phase space where drag-based thrust
production is around zero, avoiding regions where lateral drag
will start to produce negative thrust.

Another important difference between the anguilliform
and carangiform kinematics presented concerns the amplitude

(a) (b) (c)

h

α

0

0.1

0.2

0.3

0.4

0 1 2 3 4
0

0.2

0.4

0.6

0.8

Tma

added mass
driven propulsion

drag
driven propulsion

x̃

ỹ
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FIG. 3. (Color online) Phase diagrams of drag-driven and added-mass-driven propulsion as a function of the aspect ratio and slip ratio
for (a) anguilliform kinematics and (b) carangiform kinematics; and in (c) as a function of the growth rate α of the local body deformation
amplitude (see text). The dashed line represents the 〈Tma〉 = 〈Td〉 in the phase space. Experimental data is obtained from Gray [1], Tytell [26],
and Hess [27] for anguilliform swimmers, and Bainbridge [28], Webb [23], Videler [29], and Videler [22] for caranguiform swimmers.
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distribution along the body. While for the anguilliform swim-
mer the amplitude has almost a linear increment from the
head up to the tail, in the carangiform swimmer the lateral
displacements of the first part of the body are almost negligible
and it is mainly based on the rear half of the moving body.
However, both anguilliform and carangiform swimmers in
nature adopt varied kinematics (diverse amplitude distributions
along the body), differing from the two particular cases
presented previously. Several models addressing the global
description of anguilliform kinematics have been proposed in
the literature [25,30]. Following [25], we consider that the
amplitude distribution of the swimmer is given by

A(s) = Are
α(s−1), (6)

where Ar is the amplitude of the displacement at the tail tip
of the swimmer and α represents the growth rate of the local
amplitude all along the body (i.e., the head to tail amplitude
ratio). Figure 3(c) shows the regions dominated by either the
added mass or the drag contributions to propulsion in an (α,̂h)
plane and underlines another important effect of the kinematics
on the swimming mechanisms: for swimmers using small
head to tail amplitude ratio α < 1 [as sketched in the left
insert of Fig. 3(c)], the thrust will be mainly produced by
the local drag (i.e., owing to energy dissipation rather than
inertia). Increasing α gives more weight to the contribution of
added mass mechanisms, which continues to increase as the
kinematics tends to that of a carangiform swimmer.

Thus, we have shown that introducing a local form drag
term to the model describing an idealized inertial swimmer
brings a much richer view of the thrust-producing mecha-
nisms than the description commonly used for moderate to
large Reynolds number swimmers. As evoked previously, the
distinction between resistive or reactive swimmers is usually
based on the Reynolds number. For very low Reynolds num-
bers, swimmers are effectively resistive swimmers just because
inertia is missing. In the inertial regime, this distinction is
based on both kinematics (through the ratio U/vϕ and α) and
body geometry (̂h). For instance, we have seen that slender
anguilliform swimmers use a combination of lateral drag
and added mass effects in order to generate thrust, with a
major resistive contribution for the most slender species. In
contrast, typical carangiform swimmers achieve propulsion
using mainly the added mass effect, which is predicted by
potential flow theories.

Overall, these results also have an important impact on
the design of artificial swimmers. For example, the magnetic
swimmers developed by Ramananarivo et al. [17], which
consist of passive flexible filaments (with ĥ ∼ 0.01) actuated
at one end, rely mainly on lateral drag forces to generate
thrust, although they swim at moderate Reynolds regimes.
As shown in Figs. 3(a) and 3(b), very slender swimmers
will indeed rely mostly on drag thrust generation despite
their swimming kinematics. Also, due to the nature of their
fluid-structure interactions (see, for example, [31]), artificial
swimmers based on passive flexible structures with imposed
pitching or heaving at one edge [12,13,17], tend in general to
have wave amplitude distributions with small, or even negative,
α values [see Eq. (6)]. As shown in Fig. 3(c), this can also

promote the generation of thrust based mainly on lateral drag
effects.

It is important to note that the conclusions brought with
this work are based on the introduction of the local form drag
term that accounts for local flow separation all along the body.
This contribution, due to tridimensional geometrical effects
(the finite size of a fish), cannot be neglected for a correct
description of inertial swimmers, but is generally absent in
most large Reynolds number swimming studies. We believe
that the results raised here may have significant implications
not only for the description of swimming in nature but also for
future conceptions of inertial artificial swimmers.

We gratefully acknowledge support by EADS Foundation
through project “Fluids and Elasticity in Biomimetic Propul-
sion.”

APPENDIX: EXPERIMENTAL DETERMINATION OF THE
ADDED MASS COEFFICIENT

To estimate the value of the added mass coefficient M(h),
we compare the free oscillations of flexible plates vibrating
in air and immersed in a water tank. The natural oscillating
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FIG. 4. (Color online) (a) Sketch of the experimental device.
Typical oscillations of the plate’s tip position as a function of time.
(b) Added mass as a function of the aspect ratio ĥ = H/L of a
rectangular foil.
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frequency of a cantilevered plate is given by

ωn = α

L2

√
EI

μ + M , (A1)

where E is the elastic modulus of the plate, I its moment
of inertia, μ its mass per unit length, and L its length. The
nondimensional coefficient α is determined by the mode of
deformation of the plate.

For the experiments performed in air the added mass term
is neglected, thus the added mass coefficient in water can be
determined as

M = μ

(
ω2

na

ω2
nw

− 1

)
, (A2)

where ωna and ωnw are the oscillation frequencies measured
in air and water, respectively.

The experimental results for M(h) are shown in Fig. 4
for aspect ratios ranging from 0.05 to 1. They correspond to
a quadratic dependence of the added mass with h for small
aspect ratio (in agreement with elongated body theory [9]) and
a subsequent linear dependance for moderate to large aspect
ratios that are consistent with previous results in the literature
[32,33]). A function M(h) is deduced empirically by fitting
the data, following [33], with the function

M(h) = πρhA0

4
[
1 + (

A0
h

)n]1/n
, (A3)

where A0 is the initial deformation amplitude at the edge of
the plate [xtip(t = 0) in Fig. 4(a)] and n = 5.

For the physical range of aspect ratios used in the present
work (0.05 < ĥ < 0.4), the value of the added mass coefficient
M(h) = π

4 ρh, generally used in elongated body theory, turns
out to be a good approximation.
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