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Mechanical fluctuations suppress the threshold of soft-glassy solids: The secular drift scenario
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We propose a dynamical mechanism leading to the fluidization by external mechanical fluctuations of soft-
glassy amorphous material driven below the yield stress. The model is based on the combination of memory
effect and nonlinearity, leading to an accumulation of tiny effects over a long term. We test this scenario on
a granular packing driven mechanically below the Coulomb threshold. We provide evidence for an effective
viscous response directly related to small stress modulations in agreement with the theoretical prediction of a
generic secular drift. We propose to extend this result more generally to a large class of glassy systems.
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Introduction. Numerous amorphous materials such as con-
centrated suspensions, colloidal glasses, foams, and granular
materials share common global features in their mechanical
response to shear [1,2]. They are characterized by a yield
stress below which the material appears as a solid [3,4]. As
this behavior is shared by so many different materials, several
conceptual and theoretical frameworks have emerged [5–10]
to provide a quantitative basis for the phenomenology of
soft-glassy rheology (SGR) above and below the yield stress.
Even though many parallel approaches exist, sometimes at a
different level of description, they all share either explicitly or
implicitly the underlying idea that mesoscopic collective pro-
cesses triggered by thermal or mechanical activation contribute
to the material fluidity. The direct visualization of local plastic
events and the associated complex avalanching dynamics
is supported by many experimental [11–14] and numerical
[15–17] studies. In the solid phase corresponding to a strong
dynamical arrest, soft-glassy systems display aging properties
manifesting in a slow creep relaxation process [18–21]. Aging
properties stem from a remaining thermal activation providing
the possibility to cross enthalpic or entropic barriers and
progressively set the system into deeper local minima where
mechanical solidity is reinforced. The existence of external
mechanical noise was also proposed as a substitute for thermal
activation. In this sense, the behavior of these amorphous soft-
glassy solids is very close phenomenologically to molecular
glass formers obtained by thermal quenching [22]. However,
the idea that such mechanical noise truly acts as an effective
temperature is presently debated [23] and indeed deep differ-
ences in the way thermal noise and mechanical fluctuations
act in amorphous systems was recently pointed out [24].

In the solid-glassy phase, where the system never reaches
thermal equilibrium at the level of experimental times, in
addition to the presence of an elastic response, theories have to
account for the loss of ergodicity. This is done either by intro-
ducing a memory kernel in the soft-glassy rheology [8,21,25]
or by providing phenomenologically dynamical relations for
an effective fluidity parameter [10,19] suited to render the
rheological age of the system and its temporal evolution. Note
that the two approaches, not working at the same level of
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representation, are not necessarily contradictory and in some
simple cases explicit connections can even be made [26].

From a practical point of view, even far from the fluidization
thresholds, many situations show that vanishingly small
perturbations cannot be neglected in the presence of a bias.
Since such effects may be cumulated over long times, it
becomes problematic when a solid response is expected but
uncontrolled mechanical noise would eventually lead to a
significant creep. For example, the effect of mechanical noise
on soils is of major importance for the long-term stability
of structure foundations [27]. It may also play a determinant
role in the context of triggering earthquakes [28]. Controlled
mechanical fluctuations can also be used as an investigation
tool, for example, in superposition rheology [29]. In this
instance, understanding the system response to various forcing
of different forms and amplitudes, as well as the importance of
inherent apparatus wobbling noise, is crucial for an accurate
exploitation of the system dynamics. From a theoretical point
of view, it has been shown that aging in a glass spin model is
interrupted in the presence of a bias [30].

In this Rapid Communication we propose an alternative
conceptual picture to understand a fluidization process that a
soft-glassy materials may undergo in the solid phase under
external mechanical noise. This scenario differs from an
activated process and does not require the introduction of
an effective temperature. First, theoretical arguments are
presented to describe the solid phase where aging and shear
rejuvenation processes are both present. Second, an explicit
derivation is presented on a generic rheological model. Third,
we present experiments on granular packing sheared below
the Coulomb threshold and we show that the response to
small mechanical modulations is in agreement with the generic
predictions of the model. Finally, the result’s generality and its
application to soft-glassy materials are discussed.

Model. Models aiming at describing yield-stress fluids and
amorphous materials in the solid phase need to account for two
fundamental features in their dynamics [6,10]: (i) aging of the
system with time and (ii) rejuvenation due to shear rate γ̇ . That
rejuvenation can be seen microscopically as a local structural
reorganization induced by the strain. When an amorphous
material is submitted to a cyclic load, after a complete cycle,
the system is not back at its initial state [10], which means that
the rate of evolution of the variable describing the state of the
system has an even dependence on the shear rate γ̇ . Because of
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the different time scales at play in the dynamics (typical time
of reorganization compared to the aging time), the description
of glassy materials depends on the observation time scale.
Choosing this scale can be problematic in creep experiments
as the system exhibits no intrinsic time scale. In the presence
of stress fluctuations, the macroscopic variables measured are
averaged quantities giving the mean long-term behavior. If
the system is submitted to stress variations of typical amplitude
δ, which is very small compared to the yield stress σD , and
display a characteristic time τvib, a pertinent observation
time is given by the number of perturbations of amplitude
δ necessary to accumulate an equivalent stress of order σD:
Tobs = σD

δ
τvib. Because of the positive nonlinear dependence

of the rejuvenation term, one can expect a dynamical stack of
those perturbations, giving rise, after a time of order Tobs, to
an equivalent stress of order σD .

Fluidization as a secular drift. In order to demonstrate sim-
ply how this mechanism works, we build on the macroscopic
rheological model proposed by Derec et al. [10] to understand
the rheology of soft-glassy materials. This model was used to
analyze aging and nonlinear rheology of pastes [19] and also
creeping processes in granular matter [13,20,31]. This generic
model introduces a macroscopic phenomenological variable,
the fluidity defined as the inverse time scale characterizing the
material viscoelastic response. To provide a comprehensive
analytical understanding of how a steady fluidity can appear
below the dynamical yield stress σD , we first study the response
on the simplest nontrivial form of the model

.
σ = G

.
γ − f σ, (1)

ḟ = −af 2 + rγ̇ 2, (2)

where σ is the applied shear stress, γ̇ is the shear rate,
G is the shear elastic modulus, and f (t) is the fluidity.
Dimensionless parameters a and r represent, respectively,
aging and shear-induced rejuvenation processes and for clarity
and simplicity we consider them as constant. The stationary
solutions of those equations depend on the value of the stress
compared to the dynamical yield threshold σD = G

√
a/r .

For a constant σ < σD , the fluidity f , as well as the shear
rate γ̇ , decreases to 0 as the inverse of time, thus leading
to a logarithmic creep process. We consider the case of a
mean imposed stress σ0 below the threshold σD combined
with a modulation of small amplitude δ � σ0, leading to an
imposed stress σ (t) = σ0 + δ sin(ωt). By construction, the
present fluidity model has no time scale. When imposing
a modulation, one can study the in-phase and out-of-phase
responses [10] over a time of the order of τvib = 2π

ω
. Here

we aim at understanding the long-term behavior, given by the
number of cycles of amplitude δ necessary to build up an
equivalent stress of order σD: Tobs = τvib/ε, with ε = δ/σD .
The equations are adimensionalized using the following scales:
1/εω for time, σD for stress, and γ0 = σD/G for deformation.
The adimensionalized variables are written with a tilde, thus
yielding the equations ˙̃σ = ˙̃γ − f̃ σ̃ and ˙̃f = −a(f̃ 2 − ˙̃γ 2),
with σ̃ = σ̃0 + ε sin( t̃

ε
), which gives

˙̃γ = cos

(
t̃

ε

)
+ f̃ σ̃0 + εf̃ sin

(
t̃

ε

)
. (3)

Dynamically, one obtains a two-time system with T = t̃ the
time of observation corresponding to creep (slow time) and
the modulation time τ = t̃/ε (fast time). A multiple-scale
perturbation analysis can be done [32] using d

dt̃
= 1

ε
∂
∂τ

+ ∂
∂T

and searching for a solution of the form f̃ (τ,T ) = f̃ (0)(τ,T ) +
εf̃ (1)(τ,T ) + · · · . We then obtain, for (1 − σ̃ 2

0 ) = O(1),

1

ε

∂f̃ (0)

∂τ
+ ∂f̃ (1)

∂τ
+ ∂f̃ (0)

∂T
+ O(ε)

=−a

[
− 1−cos 2τ

2
+(

1−σ̃ 2
0

)
(f̃ (0))2 + 2f̃ (0)σ̃0 sin τ +O(ε)

]
.

(4)

From the leading order O( 1
ε
), one obtains ∂f̃ (0)

∂τ
= 0, so

f̃ (0)(τ,T ) = f̃ (0)(T ); the envelope is a function of the slow
time only. The order O(1) gives

∂f̃ (1)

∂τ
= −df̃ (0)

dT
+ a

[
1

2
− (

1 − σ̃ 2
0

)
(f̃ (0))2

]

− a

[
2f̃ (0)σ̃0 sin τ − cos 2τ

2

]
. (5)

The term − df̃ (0)

dT
+ a[ 1

2 − (1 − σ̃ 2
0 )(f̃ (0))2] on the right-hand

side of Eq. (5) does not depend on τ , so its integration would
give a term proportional to τ , which would lead to a failure of
the expansion over a long time. This term, called the secular
term because its effect is seen only after a very long time, thus
needs to be canceled for the perturbation analysis to hold (see,
e.g., [32]). This leads to the differential equation

∂f̃ (0)

∂T
= a

[
1

2
− (

1 − σ̃ 2
0

)
(f̃ (0))2

]
. (6)

This equation corresponds to the normal form of a saddle-node
bifurcation ẋ = μ − x2. For μ > 0 the solution +√

μ is the
only stable stationary solution. The dimensional expression
of the stationary value for the mean fluidity f ∗ is thus f ∗ =

ωδ/σD√
2(1−σ 2

0 /σ 2
D)

, which is finite for nonvanishing values of δ, the

stress modulation, even when σ0 � σD . Consequently, even
far below the yield threshold, the long-term behavior tends
to create a liquidlike response, with constant mean strain rate
γ̇ (0) = f ∗

G
σ0 corresponding to a finite effective viscosity

η = G/f ∗ = G

√
2

(
1 − σ 2

0

σ 2
D

)
σD

ωδ
. (7)

Note that this viscous response is linearly related to the inverse
of the stress modulation rate (Rσ = 2ωδ/π ). In the Appendix
we numerically show that secular drift is a robust result that can
be applied to a large class of macroscopic rheological models,
the essence of the phenomenon being indeed captured by the
previous simple case. We also show that the secular drift does
not depend on the nature of the stress modulations (see the
results for random forcing in the Appendix).

Stress modulation experiments. The generic theoretical
outcomes are now tested experimentally on a granular packing
under a confinement pressure that sets a scale for the Coulomb
dynamical yield stress. Granular materials are often seen as
rigorously athermal. Indeed, in most numerical approaches,
granular contacts are modeled as elastic repulsive forces
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(a)

(b)

FIG. 1. (Color online) (a) Experimental setup. (b) Imposed stress
during an experiment: stress ramp to reach mean stress σ0, constant
stress during tw , and stress modulation characterized by a frequency
fσ and an amplitude δ.

and a Coulomb solid friction threshold. Consequently, for
infinitesimal deformations around a reference state, a granular
packing should possess a true elastic response and displays
no aging [33]. Note, however, that in the limit of very
small if not zero friction the establishment of a linear elastic
response under finite shear is questionable [34]. Moreover,
for real granular materials, the actual pressures at contact are
generically high and contacts may creep plastically. Therefore,
the contact status will be intrinsically coupled to a thermally
activated process [35]. In addition, the contact status can also
be extremely sensitive to the ambient mechanical noise. In
fact, real granular packing in the solid phase displays aging
and shear rejuvenation that can be modeled directly by Eq. (2)
[20]. Moreover, the fluidity variable f (t) was identified exper-
imentally (for shear stresses not too close to the yield stress)
as the rate of occurrence of local rearrangements called “hot
spots” [13], thus providing an explicit experimental connection
with more mesoscopic theories describing structural relaxation
processes. As a consequence, experiments on granular packing
in the solid phase can be considered to be of general relevance
to the class of soft-glassy materials that display similar
phenomenology [36].

An experimental key point here is to achieve shear stress
modulations around a nominal value without introducing un-
controlled mechanical perturbations. Besides residual external
noise, which is always present, even in quiet environments, a
substantial source of mechanical noise comes from motorized
elements. This is why we designed the experimental system as
an Atwood machine. The setup is shown in Fig. 1(a). It consists
of a shear cell (radius R = 5 cm and height H = 10 cm)

FIG. 2. (Color online) Strain as a function of time for three
experiments performed at σ0 = 1100 Pa, δ = 7.5 Pa, and various
oscillations frequencies. The oscillations start at t = 1500 s (gray
area).

filled with glass beads of density ρ = 2500 kg/m3 and mean
diameter d = (200 ± 30) μm. A well-defined packing fraction
φ = 0.605 ± 0.005 is obtained by a procedure described
elsewhere [20].

Shear is obtained by applying a torque on a four-blade vane
(R0 = 1.27 cm, H0 = 2.54 cm) using a mass m suspended
from a pulley (vane penetration h = 5 cm) [see Fig. 1(a)]. A
torque probe measures the applied torque T and the angle of
rotation of the vane α is measured by an induction probe. We
define the mean stress and the mean strain as σ = T

2πR2
0H0

and

γ = αR0
R−R0

, respectively. Under the conditions of the present
experiment, the Coulomb threshold is determined at a value
σY = 2300 Pa. When a constant stress σ0 smaller than the yield
stress is applied on the granular packing, a creep behavior is
observed with a logarithmic dependence of the strain with time
(red curve of Fig. 2). This behavior was studied in [20] and the
fluidity model discussed previously describes accurately the
observed response.

By variation of Archimede’s forces, a modulation of the
applied torque is obtained by vertical oscillatory displacements
of a mass m hanging partially in a water tank. The protocol
[Fig. 1(b)] is then (i) stress ramp at constant stress rate
(σ̇ = 5 Pa/s) up to the desired mean stress value σ0, (ii) apply
constant shear σ0 for tw = 1500 s, and (iii) modulate the stress
around σ0 for at least 2 h. The modulations are triangular
oscillations of amplitude δ and frequency fσ . Figure 2 shows
typical deformations for two experiments performed at the
same mean stress (σ0 = 1100 Pa) and oscillation amplitude
(δ = 7.5 Pa) but for various oscillation frequencies. During the
constant stress phase, a slow increase of the deformation γ (t)
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FIG. 3. (Color online) Steady-state strain rate γ̇∞ as a function
of modulation stress rate Rσ for four different values of mean
stress σ0. The straight lines are linear fits. The inset shows the
normalized viscosity η∗ = η/

√
1 − σ 2

0 /σ 2
D as a function of Rσ with

σD = 1240 Pa.

is observed corresponding to the beginning of the logarithmic
creep. Then, when submitted to oscillations, the system will
transit to a linear creep regime characterized by a constant
mean strain rate γ̇∞, which increases with the oscillation
frequency. The slope of this linear creep allows us to define
an effective viscous response η = σ0/γ̇∞. Figure 3 shows the
values obtained for the mean strain rate γ̇∞ as a function of
the modulation stress rate Rσ = 2ωδ/π for a given value of
the applied mean stress σ0. The observed linear dependences
are in agreement with the normalization parameters chosen.
Indeed, the finite viscosity that we expect to arise from the
modulation should vary as η ∝ 1

δω
[see Eq. (7)], leading to a

strain rate γ̇∞ ∝ ωδ. The applied mean stress σ0 corresponds
to an applied shear stress far enough from the dynamical
threshold. Experimentally, when this limit is approached one
observes a strong increase of the strain rate. The results
are then much less reproducible and may be quite sensi-
tive to uncontrolled external perturbations. A collapse of
the measurements done at different imposed stress σ0 can
be obtained by plotting η∗ = η/

√
1 − σ 2

0 /σ 2
D as a function of

the modulation stress rate Rσ (inset of Fig. 3), in agreement
with Eq. (7).

Conclusion. In this Rapid Communication we presented
a fluidization pathway that could apply to a large class of
soft-glassy materials arrested dynamically in the solid phase.
The mechanism requires two generic features: memory effects
and nonlinear flow-induced rejuvenation. Under external shear
stress and below the yield stress, small fluctuations around the
mean shear accumulate tiny irreversible strains over a long
time and lead to secular drifts [32] that can be viewed as an
effective viscous response. Even though the derivation was
explicitly done on a simple macroscopic rheological model,

the existence of a secular term yielding a finite material
fluidity is a generic feature resulting from any model mixing
aging and nonlinear rejuvenation process [36]. The underlying
mechanism at work is in principle very different from a thermal
activation or any equivalent mechanism accounting for stress
fluctuations as an effective temperature [30,37]. In the latter
case, the amplitude of the fluctuations must help to overcome
a barrier or a threshold. In our case, fluidization stems from
a dynamical bifurcation of the rheological equations as a
very general feature of a dynamical system hosting processes
working at very different time scales. It would be interesting
to see how in more sophisticated SGR models with memory
kernels accounting for aging [8] the equation’s dynamics
solved for similar driving conditions would also give a secular
drift. Evidence and a quantitative assessment of the effect
were provided for a granular packing submitted to controlled
stress modulations below the Coulomb threshold. We related
quantitatively the effective viscosity to the inverse of the stress
modulation rate and have shown that the viscosity decreases
significantly when approaching the dynamical threshold. Note
that, in spite of resemblances, this phenomenon is a priori
different from another fluidization process occurring when
a granular packing is placed in contact with a fluidized
shear band [38,39]. In the latter case, theoretical analysis
and numerical simulations show that the induced creeping
process comes from a nonlocal stress relaxation from the
flowing part to the material bulk [40–43]. The generality of
the scenario of mixing two generic features of a glassy system
makes it suitable to be tested experimentally on many other
practical situations such as colloidal glasses, pastes, clays,
and even glass-former molecular systems, which actually may
turn out to be of practical importance to assess the stability and
reliability of structures strained externally in their environment
over very long time scales. Finally, an important question
remains about the plastic relaxation modes involved in the
material strain in the context of this scenario (localized or
extended). This is left for future work [44].
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APPENDIX: NUMERICAL SIMULATIONS

1. Comparison of models

In Ref. [10], a general form for the equation governing the
fluidity is proposed, coming from a Landau-type expansion

∂f

∂t
= −a

(
1 −

( |σ |f
|γ̇ |

)λ |γ̇ |ν−ε

f ν

)
f α, (A1)

where the higher orders of f in the expansion have being
dropped because we work in the pasty phase where f is
small. We also only study the cases when ε = 0 because we
want to study a yield-stress fluid (see [10]). The analytical
study presented in our Rapid Communication treats the case
(α,λ,ν,ε) = (2,0,2,0). Nevertheless, the underlying mecha-
nism that leads to a subthreshold rejuvenation of the fluidity
originates from the |γ̇ |ν−λ term (ε = 0), so when ν �= λ,
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FIG. 4. (Color online) Fluidity as a function of time ob-
tained from the numerical integration of Eq. (A1) for differ-
ent sets of exponents and subjected to a sinusoidal perturbation
(σ0 = 0.7,δ = 0.05).

the subthreshold fluidization should always be observed. We
demonstrate this by using numerical integrations for different
sets of exponents. Figure 4 shows the evolution in time of f for
four set of (α,λ,ν) keeping ε = 0. We set a = 1 and impose a
sinusoidal stress (σ0 = 0.7,δ = 0.05).

We obtain a finite fluidity whenever ν �= λ. In contrast,
when ν = λ [red curve in Fig. 4, case (α,λ,ν) = (2,1,1)],
the creep remains logarithmic in the presence of small
perturbations because the equation becomes

∂f

∂t
= −a(1 − |σ |)f α

and we have always |σ (t)| � 1 as the perturbation is well
below the threshold. Consequently, no fluidization can be
observe as the perturbation is not strong enough to pull the
system over the threshold. Varying a or σ does not affect
the general behavior of the system as long as σ (t) remains
below 1.

FIG. 5. (Color online) Results of numerical simulation using
noise instead of a regular oscillation as a perturbation for a = 0.1
and an initial fluidity of f0 = 10 s−1: strain rate in the steady state
divided by the standard deviation of the stress rate σ ( ˙̃σ ) as a function
of the imposed mean stress normalized by σD .

2. Response to random forcing

We also test numerically the response of the model pre-
sented to a stress modulated by random fluctuation. We found
that such modulation has the same overall effect as a regular
perturbation. Figure 5 shows the results of the numerical
integration of Eqs. (1) and (2) using σ (t) = σ0 + ξ (t), where
ξ (t) is a noise presenting a uniform frequency distribution
between 0 and fc and whose standard deviation equals δσ .
A subthreshold fluidization is recovered for all the set of
parameters we have tested. By normalizing the strain rate
obtained in the steady state by the standard deviation of the
stress rate σ ( ˙̃σ ), we obtain a collapse of the data for σ0 � σD .
One can note the collapse perfectly in our analytical solution

γ̇∞ = �̇σ0/σD√
1 − σ 2

0 /σ 2
D

in which �̇ is a characteristic stress rate. Here �̇ corresponds
to the standard deviation of the stress rate for sinusoidal
modulations (ωδ/

√
2) and random modulations, respectively.
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