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Particle-density fluctuations and universality in the conserved stochastic sandpile
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We examine fluctuations in particle density in the restricted-height, conserved stochastic sandpile (CSS). In
this and related models, the global particle density is a temperaturelike control parameter. Thus local fluctuations
in this density correspond to disorder; if this disorder is a relevant perturbation of directed percolation (DP), then
the CSS should exhibit non-DP critical behavior. We analyze the scaling of the variance V� of the number of
particles in regions of �d sites in extensive simulations of the quasistationary state in one and two dimensions.
Our results, combined with a Harris-like argument for the relevance of particle-density fluctuations, strongly
suggest that conserved stochastic sandpiles belong to a universality class distinct from that of DP.
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Sandpile models have attracted great interest in both
their self-organized [1–5] and conserved versions [6–13].
The conserved sandpile has the same local dynamics as the
corresponding driven sandpile, but a fixed number of particles.
It is characterized by an order parameter (the activity density)
that is coupled to a conserved field (the particle density)
whose evolution is arrested in regions without activity [14].
The critical behavior of conserved stochastic sandpiles (CSS)
has been studied extensively using both particle models
[15–21] and continuum representations [22,23], leading to the
conclusion that these models belong to a universality class
called conserved directed percolation (CDP), distinct from
directed percolation (DP). The existence of the CDP class was
nevertheless questioned by Basu et al. [24], who claim that the
one-dimensional CSS belongs to the DP class.

The claim of DP-like critical behavior in the conserved
stochastic sandpile rests on two assertions: (1) at long times,
and on large length scales, the particle density becomes
uniform, so that the propagation of activity occurs as in DP;
and (2) the use of random initial conditions leads to incorrect
estimates of the critical point and of critical exponents [24].
These results were reexamined by Lee [25,26], who presented
numerical evidence favoring non-DP scaling in the CSS and
allied models in one and two dimensions.

In the present work we take a different approach, by
asking: If the propagation of activity in the CSS were DP-like,
would fluctuations in particle density represent a relevant
perturbation? This motivates our study of particle-density
fluctuations in the critical CSS. Scaling properties of such
fluctuations were recently reported by Hexner and Levine,
who find that they are characterized by universal critical
exponents [27]. Here, using a Harris-Luck-like argument along
with results for DP subject to diffusive disorder, we obtain a
criterion for relevance. Our numerical results for the growth
of particle-number fluctuations with length scale, which are in
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general agreement with those of [27], imply that this disorder
should in fact be relevant, leading to the conclusion that, if
CSS critical behavior were DP-like, it would be unstable
to the fluctuations generated by its own dynamics, leading
to a contradiction. The observed particle-number fluctuations
represent the stationary dynamics of the CSS and are not col-
ored by the initial configuration: random, natural, and uniform
initial configurations all lead to indistinguishable results for
particle-density fluctuations and other quasistationary (QS)
properties. In what follows, we define the model, discuss the
theoretical background related to particle-number fluctuations,
and then report simulation results for the particle-number
variance and correlation function, closing with a summary
of our results.

We study a conserved stochastic sandpile, related to
Manna’s model [28], called the restricted-height sand-
pile [18,20,21,29]. The model is defined on a d-dimensional
lattice of Ld sites, with periodic boundaries; the configuration
is specified by the number of particles, zi = 0, 1, or 2, at each
site i. Sites with zi = 2 are active, while those with zi � 1,
are inactive. No site may harbor more than two particles in the
restricted CSS.

The temporal evolution consists of a series of toppling
events, in which two particles attempt to hop from an active
site to one or more of its nearest neighbors. The target
sites for the two particles are chosen independently, with
equal probabilities, from the set of nearest neighbors. If
a particle attempts to jump to a site already bearing two
particles, it returns to the toppling site. The evolution follows
a continuous-time Markovian dynamics in which each active
site has a transition rate of unity to topple. At each step of
the evolution, one of the Na currently active sites is chosen at
random to topple; the time increment associated with each step
is �t = 1/Na . In this way, each active site waits, on average,
one time unit before toppling.

In conserved sandpiles, the global particle density, p =
N/Ld , serves as a temperaturelike control parameter [6].
Below the critical value, pc, the system eventually reaches
an absorbing configuration (Na = 0). For p > pc, by contrast,
the activity continues indefinitely (Na > 0), in the infinite-size
limit. The order parameter associated with the phase transition
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is the activity density, given by the fraction of active sites,
ρ = Na/L

d . Although activity must continue indefinitely
if p > 1, pc is in fact well below unity. For the models
studied here, the best estimates for the critical density are
pc = 0.929 780(7) (d = 1 [18]), and 0.711 268 7(2) (square
lattice [21]). (Figures in parentheses denote the uncertainty in
the final digit or digits).

In a coarse-grained or continuous description, the evolution
of the activity density ρ(x,t) in a CSS is similar to that of
directed percolation, except that ρ is coupled to a conserved
field (the excess particle density) ζ (x,t) which evolves
diffusively in the presence of activity and is frozen in its
absence [7,8,13]. If ζ were somehow made uniform and time
independent, the scaling behavior of the CSS would be that
of DP. So, indeed, argued Basu et al. [24], in justifying their
assertion of DP scaling in the conserved sandpile: at long
times, the particle density is sufficiently uniform that the
coupling of the order parameter to this field is unimportant.
Here we examine this assertion by asking, “Is DP stable
to the particle-density fluctuations generated by the CSS?”
If so, DP-like behavior remains a possibility for the CSS;
if not, DP-like behavior in the CSS is impossible. Let N�

be the number of particles in a hypercube of �d sites. The
departure from uniformity is characterized by V� ≡ var[N�].
If v� = V�/�

d tends to zero rapidly enough as � → ∞, then
variations in the particle density will not affect the critical
behavior. In finite-sized systems, of course, VL = 0 due to
particle conservation. We are therefore interested in how V�

scales for 1 � � � L. We shall see that in this regime, V�

follows an approximate power law, V� ∼ �φ , in the critical
CSS. Since φ < d, the particle fluctuations are said to be
“hyperuniform,” in the sense that they grow more slowly
than does the variance of a sum of �d independent random
variables [27,30].

To frame the issue clearly, we note that in the CSS, the
global particle density plays the role of a temperaturelike pa-
rameter at an absorbing-state phase transition [6,7], analogous
to the creation rate λ in the contact process (CP), which belongs
to the DP universality class [31]. In the clean CP, λ is the same
at each site; a contact process with fixed, random values λi at
each site i corresponds to the CP with quenched disorder in
the temperaturelike control parameter. The fluctuation of the
local particle density, V�/�

d , likewise corresponds to disorder
in the temperaturelike parameter of the CSS.

In order to assess how rapidly fluctuations in the temper-
aturelike parameter must decay with the region size � to be
irrelevant, we recall several established results. First, quenched
uncorrelated disorder (V� ∼ �d ) is relevant for DP [32,33].
Second, uncorrelated disorder that relaxes diffusively is also
relevant to DP, as observed in the contact process with
mobile vacancies (CPMV) [34]. In this model, fluctuations
in the vacancy density correspond to diffusing disorder in the
temperaturelike parameter of the CP, similar to particle-density
fluctuations in the CSS. In the CPMV, V� ∼ �d on short scales,
since each diffusing entity moves independently, but VL = 0
on a lattice of Ld sites, due to conservation of the number of
diffusing entities. Finally, we note that disorder that is uncorre-
lated in space and time is an irrelevant perturbation of DP [35].

In the CSS, fluctuations in the particle density relax
diffusively. Diffusive relaxation in conserved sandpiles is

associated with particle-number conservation: since there is
no creation or annihilation of particles, changes in the particle
density occur via particle transfer, i.e., the toppling events
discussed above. Since these events transfer particles from a
given site to one of its nearest neighbors, relaxation of the
particle configuration is diffusive and local, in active regions.
We note that fluctuations relaxing via rapid, long-range
diffusion of the background field are likely to be irrelevant
to DP, since they will then be essentially uncorrelated in both
space and time, despite there being a global conservation law.

If the diffusion rate in the CSS were uniform in space and
time, the fluctuations in particle density would be similar to
those of the temperaturelike parameter in the CPMV [34]. In
the CSS, however, the diffusion rate is proportional to the
activity density [20,21,36,37], which is highly nonuniform
at criticality. Regions with higher particle density, being
more active, tend to transfer particles to neighboring regions
having a lower particle density, which tend to be less active,
or inactive. As a result, V� grows more slowly than for
independent fluctuations. This is the origin of hyperuniformity
in sandpiles [27].

We now develop a Harris-like criterion [38,39] for the
relevance of particle-number fluctuations following V� ∼ �φ .
Consider a system exhibiting a continuous phase transition at
p = pc, where p is a temperaturelike control parameter, and
pc is the critical value for the disorder-free system. Letting
� = p − pc, we have as usual ξ ∼ |�|−ν⊥ for the correlation
length in the neighborhood of the transition, where ν⊥ is a
critical exponent. Now suppose that the variance of the particle
number over regions of size � scales as �φ ; this means that the
standard deviation of � over regions of length � scales as
u� ∼ �φ/2−d . Since the pure system is correlated over regions
of length ξ , the width of the probability distribution of � is uξ .
If uξ/� tends to zero with �, disorder is irrelevant, and vice
versa. Thus, since uξ/� ∼ ξφ/2−d+1/ν⊥ , disorder is relevant if

φ > 2

(
d − 1

ν⊥

)
. (1)

For uncorrelated disorder (φ = d) the above relation reduces
to Harris’ criterion: disorder is relevant if dν⊥ < 2. Our scaling
analysis is equivalent to that of Luck [40], who defines a wan-
dering exponent ω via the relation v� ≡ V�/�

2d ∼ �−d(1−ω).
Thus we have φ = 2dω, so that Eq. (1) is equivalent to Luck’s
criterion, ω > 1 − 1/(dν⊥), for the relevance of correlated
disorder. Using the known values ν⊥ = 1.096 854(4) and
0.734(4) for DP in one [41] and two [42] spatial dimensions,
respectively, the criterion yields φ > 0.1766 and φ > 1.271
for particle-number fluctuations to be relevant in one and two
dimensions.

The above Harris-like argument holds for quenched dis-
order. In Ref. [34], however, it is argued that if quenched
disorder is relevant in a given system, then diffusive disorder
is also relevant provided that, in the pure system, the dynamic
critical exponent satisfies z = ν‖/ν⊥ < 2, where the exponent
ν‖ governs the divergence of the correlation time τ via τ ∼
|�|−ν|| . The reason is that the disorder configuration affecting
a correlated region of the activity field has a relaxation time
τd ∼ ξ 2, whereas the relaxation time of the activity follows
τ ∼ ξz. Thus if z < 2, as the system approaches the critical
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FIG. 1. (Color online) Stationary correlation function |h(�)| in
the one-dimensional CSS at criticality for system sizes L = 2000,
5000, 10 000, 20 000, 40 000, and 80 000. Upper inset: |h(�)| in the
one-dimensional critical CSS, system size L = 20 000, for random
(×), natural (points), and uniform (circles) initial configurations.
Lower inset: |h(�)| in the two-dimensional CSS at criticality, system
sizes L = 128,256,...,4096.

point, the ratio τd/τ → ∞, so that the disorder is effectively
quenched on large scales [34]. The condition z < 2 holds for
DP in dimensions d < 4. Note as well that in the CSS, in which
diffusion is conditioned on activity, relaxation of the disorder
is slower than for disorder that diffuses independently of the
activity field, so that the tendency toward effectively quenched
disorder is even stronger than in the CPMV. The above
observations lead us to expect particle-density fluctuations to
be relevant if the inequality of Eq. (1) is satisfied.

We found it useful to study the particle-number correlation
function, h(j ) ≡ cov(zi,zi+j ) = 〈zizi+j 〉 − p2. As shown in
Appendix A,

V� = �h(0) + 2
�−1∑
k=1

(� − k)h(k), (2)

where h(0) ≡ var[zi] � pc(1 − pc) + O(L−β/ν⊥). We further
show that if h(r) ∼ r−ψ , then the exponent governing the
growth of the particle-number variance obeys the scaling
relation φ + ψ = 2d in d dimensions.

We study the restricted CSS using quasistationary simu-
lations, which permit arbitrarily long evolution times [43].
(Details on simulation times and preparation of initial con-
ditions are provided in Appendix B). The particle density
p = N/Ld is set as close to the critical value pc as possible.

Figure 1 shows simulation results for |h(�)| in one and
two dimensions, averaged over intervals that grow ∝e�, so
that they are uniformly spaced in ln� (logarithmic binning).
In one dimension, the correlation function decays roughly
as a power law for ln � 3 (� � 20), until � � L/4. [The
periodic boundaries imply that h(�) must be symmetric about
the point � = L/2, where it takes its minimum value]. In two
dimensions, apparent power-law decay holds even for small
�. The decay exponent ψ is approximately 1.40(2) in one
dimension (1D), and 2.35(4) in two dimensions (2D). These
values reflect the behavior at small �: corrections to scaling
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FIG. 2. (Color online) Particle-number variance V� over strips of
size � in the one-dimensional CSS at criticality. The curves have
been shifted by subtracting V1 from each result. System sizes as
in Fig. 1. Inset: particle-number variance V� over squares of side �

in the two-dimensional CSS at the critical point, system sizes L =
128,256,...,4096. Curves have been shifted by subtracting V1 from
each result. The dashed lines correspond to the power laws, V� ∼
�φ , reported in [27], with φ = 0.575(25) in one dimension and φ =
1.55(3) in 2D.

and finite-size effects make it difficult to obtain a precise value,
which, in any case, is not required for the present discussion.
Although the correlations decay algebraically, their amplitude
is quite small; for � = 20, |h(�)| is already of order 10−4. The
correlation function is negative for � > 1, as might be expected
from particle number conservation. In one dimension, there is
a minimum in |h(�)| for � � 10. This minimum reflects details
in the local transfer dynamics in one dimension and does not
affect the large-� scaling behavior of V�; it is not observed in
2D.

In one dimension, we use the simulation data for h(�) to
calculate the particle-number variance V� via Eq. (A1). In
two dimensions, V� is calculated directly from the number
of particles in squares of side � = 2,4,8,...,L/2; statistics are
taken for all L2 possible positions of the squares.

The results for V� for different lattice sizes are quite similar,
for � < L/4, as shown in Fig. 2, in both one dimension (main
graph) and two dimensions (inset). [In this plot the initial value
V�=1 = h(0) is subtracted from each curve]. The variance
grows roughly as a power law with the size of the region,
but with an apparent exponent, φ(�), which decreases with
increasing �. Fits to the 1D data on the region 3 < ln � < 4,
the beginning of the apparent power-law regime, yield values
for φ that grow systematically with system size, leading to
the estimate: φ(0) � 0.60(2). In two dimensions, for small
�, we find V� ∼ �φ , with an exponent φ(0) = 1.71(1) (here
the fitting interval is 2 � � � 10). (Thus the scaling relation
φ + ψ = 2d is satisfied to within uncertainty). In the interest
of comparing our results with those of [27], we plot in Fig. 2
the power laws reported by these authors; they are generally
consistent with our results, although deviations from simple
power laws are evident.

In 1D, the maximum variance, VL/2, grows systematically
with system size, following VL/2 ∼ Lφ with φ = 0.483(2).
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FIG. 3. (Color online) Scaling plot of particle-number variance
in the one-dimensional CSS at criticality using scaling variables V ∗ ≡
V�/L

0.483 and x ≡ �/L. System sizes (lower to upper at left) L =
20 000, 40 000, and 80 000. Upper inset: scaling plot for the two-
dimensional CSS, using V ∗ ≡ V�/L

1.60, with L = 512, 1024, 2048,
and 4096. Lower inset: effective growth exponent φ(x) versus x in
one dimension. The dashed line denotes the value of φ above which
particle-density fluctuations are relevant.

This motivates us to seek a scaling form for V�; in one
dimension, we find that the data for the three largest sizes
follow,

V� = LφV ∗(�/L). (3)

The scaling function V ∗ is plotted in Fig. 3. While there is
a good data collapse, we note that the exponent used to obtain
the data collapse, 0.483, is considerably smaller than the value
φ(0) = 0.60(2) describing the growth of V� on short scales.
Thus the scaling function is not a simple power law: it exhibits
significant variations in slope (on logarithmnic scales) well
before the maximum at x ≡ �/L = 1/2. A similar scaling
is found in two dimensions, using φ = 1.60(2) (see upper
inset of Fig. 3). Our analysis confirms the scaling of particle-
density fluctuations with system size, which in turn permits us
to assess the relevance of such fluctuations to critical behavior.
In the infinite-size limit, we have V� ∼ �φ(0), and since φ(0) >

0.1766, the particle-number variance grows rapidly enough
with � to be relevant by the criterion of Eq. (1). In fact, the
lower inset of Fig. 3 shows that φ(x) exceeds the value required
for relevance over most of the range of variation of x. The same
conclusion holds in two dimensions: the effective exponent
φ(x) remains well above the threshold for relevance (φ =
1.271) for 0 < x < 1/2.

According to Basu et al. [24], the nature of the initial
configuration has an important influence on the scaling
properties of the CSS. We therefore repeat the study of h(�)
for natural and uniform initial configurations, generated as
described in Appendix B. The results for h(�) are identical (see
Fig. 1, inset). Thus the observed particle-density correlations
(and fluctuations) are generated by the dynamics of the system,
and do not reflect the initial distribution, just as was verified by
Lee [24–26]. We further verify that the QS values of the activity
density ρ and of the moment ratio m = 〈ρ2〉/ρ2 obtained using

different kinds of ICs agree to within uncertainty. For example,
for L = 80 000 and N = 74 382, we find QS activity densities
of ρ = 0.015 89(8) and 0.015 93(8) for random and natural
ICs, respectively; the corresponding values of the moment
ratio are m = 1.150(3) and 1.153(3). In two dimensions, we
again verify that the results for V�, and for the QS activity
density ρ and the moment ratio m are the same, whether we
use random, natural or uniform ICs.

In summary, we study particle distribution statistics in
a restricted-height conserved stochastic sandpile in one and
two dimensions, focusing on the particle number variance
on regions of increasing size. Our results show that the
growth in the variance is sufficiently rapid for particle-
density fluctuations to be a relevant perturbation of directed
percolation. This means that if the critical behavior were
DP-like, the fluctuations in particle density, generated by
the dynamics of the sandpile itself, would alter the critical
behavior. We thus have quite general reason for believing
that the CSS does not belong to the DP universality class.
Our argument depends on Harris’ criterion for the relevance
of disorder. Although the validity of this criterion is well
established for DP, we note that several apparent violations
of the criterion have been observed in phase transitions to an
absorbing state [44], including the CSS [25,26] and kinetic
Ising cellular automata in the parity-conserving class [45].
Understanding these observations is an important subject for
future study.
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System of the International Institute of Physics, UFRN, Natal,
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APPENDIX A: PARTICLE-NUMBER VARIANCE
AND CORRELATIONS

To begin, we recall the relation between particle-number
fluctuations and the associated correlation function. Con-
sider the one-dimensional CSS. Denoting stationary averages
by 〈· · · 〉, we have 〈zi〉 = p. Define the correlation func-
tion h(j ) ≡ cov(zi,zi+j ) = 〈zizi+j 〉 − p2. Then, since N� =∑�

i=1 zi , we have

V� =
〈

�−1∑
i=0

�−1∑
j=0

zizj

〉
− (p�)2

=
�−1∑

k=−(�−1)

(� − |k|)〈z0zk〉 − (p�)2

= �
〈
z2

0

〉 + 2
�−1∑
k=1

(� − k)〈z0zk〉 − (p�)2

= �h(0) + 2
�−1∑
k=1

(� − k)h(k). (A1)
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Thus the particle number variance can be obtained from the
occupancy correlation function h(j ).

Our simulation results show that at the critical point, the
correlation function follows an approximate power law, h(r) ≈
r−ψ . The exponent φ governing the growth of V� is related to
ψ as follows. Since the total particle number is fixed, we have

VL = Lh(0) + 2
L−1∑
k=1

(L − k)h(k) = 0. (A2)

Due to the periodic boundary condition, we have h(L − j ) =
h(j ), which allows us to write

L−1∑
k=1

(L − k)h(k) =
L/2∑
k=1

(L − k)h(k) +
L−1∑

k=L/2+1

(L − k)h(k)

=
L/2∑
k=1

(L − k)h(k) +
L/2−1∑
k=0

kh(k)

= L

L/2−1∑
k=1

h(k) + L

2
h(L/2). (A3)

Equation (A2) then implies the sum rule,

2
L/2−1∑
k=1

h(k) + h(L/2) = −h(0). (A4)

Using Eqs. (A1) and (A4) we may write

V�

�
= h(0) + 2

�−1∑
k=1

h(k) − 2

�

�−1∑
k=1

kh(k)

= −h(L/2) − 2
L/2−1∑
k=�

h(k) − 2

�

�−1∑
k=1

kh(k). (A5)

We note that h(0) ≡ var[zi] = Prob[zi = 1] + 4 Prob[zi =
2] − p2. But finite-size scaling implies that Prob[zi = 2] =
ρ � AL−β/ν⊥ at the critical point (A is a critical amplitude),
and using Prob[zi = 1] + 2 Prob[zi = 2] = p, we find that at
the critical point h(0) tends to pc(1 − pc) with a correction
term ∝L−β/ν⊥ .

Suppose that for 1 � k � L, the correlation function
follows h(k) � −hk−ψ , where h > 0. Approximating the
sums in Eq. (A5) by integrals, we find, for k sufficiently large,
but k � L, that

V� ∼ �2−ψ, (A6)

so that φ = 2 − ψ . Extending the argument to a d-dimensional
hypercubic lattice yields φ = 2d − ψ .

APPENDIX B: SIMULATION DETAILS

In one dimension we study rings of 2000, 5000, 10 000,
20 000, 40 000, and 80 000 sites, calculating averages over a
set of five to ten realizations. In two dimensions we study
systems of L2 sites, with L = 128, 256, 512, 1024, 2048,
and 4096; the number of realizations ranges from 90, for the
smallest system, to 4, for the largest.

In one dimension, even for the largest systems studied,
the activity density reaches a stationary value after about 107

time units. We nevertheless discard the first 109 time units and
perform averages over the subsequent interval of 2 × 109 units.
In two dimensions we use 6 × 108 time units for relaxation,
and calculate QS averages over 109 units.

We employ QS simulations, which permit arbitrarily long
evolution times [43]. This method probes the quasistation-
ary probability distribution by restarting the evolution in a
randomly chosen active configuration whenever the absorbing
state is reached. A list of Nc such configurations, sampled from
the evolution, is maintained. The list is renewed by exchanging
one of the saved configurations with the current one at rate pr .
In one dimension we use Nc = 500, and pr = 8/L. In two
dimensions, due to memory limitations, we use Nc = 10, and
pr = 0.1. In both cases, during the relaxation phase, we use a
value of pr that is ten times greater, to eliminate the vestiges
of the initial configuration from the list.

Random initial configurations (ICs) are generated by
inserting N particles randomly on a ring of L sites or a
square lattice of L × L sites, subject to the restriction zi � 2.
“Natural” ICs are generated by running the process until it
reaches an absorbing configuration, and then performing Ld

diffusion events, in which a particle is chosen at random
and made to hop to a nearest-neighbor site i, provided this
does not result in zi > 2. The diffusion events provide activity
without significantly altering particle-number fluctuations on
large scales. In one dimension, uniform ICs are prepared
by placing a single particle at each site, and then vacating
every kth site, with k = [L/(L − N )]. (Square brackets denote
the integer part). If necessary, a few additional particles are
removed from uniformly spaced sites to achieve the desired
particle number. We follow a similar procedure to generate
uniform initial conditions in two dimensions. The resulting
configurations are highly uniform but inactive; to generate
an initial population of active sites, we perform Ld diffusion
events as in the preparation of natural ICs.
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