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Ability to characterize the heat transfer in flowing gases is important for a wide range of applications involving
micro- and nanoscale devices. Gas flows away from the continuum limit can be captured using the Boltzmann
equation, whose analytical solution poses a formidable challenge. An efficient and accurate numerical simulation
of the Boltzmann equation is thus highly desirable. In this article, the linearized Boltzmann Bhatnagar-Gross-
Krook equation is used to develop a hierarchy of thermal lattice Boltzmann (LB) models based on half-space
Gaussian-Hermite (GH) quadrature ranging from low to high algebraic precision, using double distribution
functions. Simplified versions of the LB models in the continuum limit are also derived, and are shown to be
consistent with existing thermal LB models for noncontinuum heat transfer reported in the literature. Accuracy
of the proposed LB hierarchy is assessed by simulating thermal Couette flows for a wide range of Knudsen
numbers. Effects of the underlying quadrature schemes (half-space GH vs full-space GH) and continuum-limit
simplifications on computational accuracy are also elaborated. The numerical findings in this article provide
direct evidence of improved computational capability of the proposed LB models for modeling noncontinuum
flows and heat transfer at small length scales.
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I. INTRODUCTION

Rapid advances in nanofabrication over the last few decades
have attracted tremendous interest in the field of micro- and
nanoscale fluid flows and heat transfer. Fluids—in particular,
gases—within micro- and nanoelectromechanical systems are
often noncontinuum by nature, and deviate significantly from
classical continuum predictions [1,2]. Such deviations can be
captured through use of the Boltzmann equation and its kinetic
model, e.g., the Boltzmann Bhatnagar-Gross-Krook (BGK)
equation [3]. Analytical solution of the Boltzmann equation
presents significant challenges and it is thus natural to turn to
numerical simulations as a viable and practical approach.

The lattice Boltzmann (LB) method is an established
numerical scheme for solving the Boltzmann BGK equation
[4,5]. Due to this intrinsic link to the kinetic theory of gases,
the LB method has been applied to investigate a large number
of micro- and nanoscale fluid flows and heat transfer where the
gas mean free path λ is comparable to the device dimension
L [5–24], i.e., the finite Knudsen number Kn = λ/L. The LB
method was originally applied to simulate flows in the contin-
uum limit, where an exact weakly compressible formulation
exists. The method has also been applied to noncontinuum
flows, first through introduction of kinetic boundary conditions
[6] and an effective mean free path [8]. These early models
adopted low-order discrete particle velocity sets and have been
demonstrated to exhibit reasonable accuracy in simulating slip
flows (i.e., 0.01 < Kn < 0.1), but suffer from significant errors
when applied to transition (0.1 < Kn < 10) and free molecular
(Kn > 10) flows. In recent LB studies, growing effort has
been paid to constructing high-order LB models using large
algebraic precision (AP) quadrature schemes [5,10–15] and the
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entropic LB formulation [16]. High-order LB models derived
from full-space Gaussian Hermite (FGH) quadrature [11–13]
are found to describe unbounded flows in the transition flow
regime well [12]. For flows bounded by flat walls, however,
these models display oscillatory variation in accuracy between
even orders and odd orders of quadrature [11]. This unusual
behavior is due to discontinuity of the distribution function
prescribed by the Maxwell diffusive boundary condition using
half-space moments [13]. Conventionally, such an issue has
been studied in the context of discrete velocity models in the
kinetic theory of gases, where the half-space moment approach
was proposed to compute integrals in the diffusive boundary
condition through use of half-space quadrature [25–31]. It
is found that such an approach achieves good accuracy and
fast convergence. The half-space moment approach is also
applicable to complex geometries given that a body fitted
coordinate system can be easily accommodated in simulation;
see Ref. [32]. In line with these developments, a LB model
based on half-space Gaussian Hermite (HGH) quadrature
was proposed most recently [14]. In comparison to conven-
tional FGH quadrature–based LB models, improvement in
computational accuracy and convergence of this model have
been observed for simulating noncontinuum isothermal flows
bounded by flat walls [14].

The majority of the above progress has been focused on
micro- and nanoscale flows under isothermal conditions. In
comparison, little work has been done on the LB method for
heat transfer at small length scales. Two approaches were
developed to incorporate heat transfer effects into the LB
framework: the multispeed approach [17–20,33–36] and the
double distribution function (DDF) approach [21–24,37–40].
The multispeed approach is based on the Boltzmann equation,
which defines a single-particle distribution function and uses
its second-order velocity moment to describe the temperature
field. To capture thermal effects, such a multispeed LB
model employs a larger discrete particle velocity set with
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multiple speeds and an equilibrium distribution with higher-
order velocity moments. Sofonea et al. [17–20] applied the
multispeed approach to simulate micro- and nanoscale heat
transfer, specifically thermal transpiration [18]. Interestingly,
they used Gauss-Legendre and Gauss-Laguerre quadrature to
construct discrete particle velocities in spherical coordinates
[19,20]. The resulting multispeed models exhibit reasonable
accuracy and fast convergence when applied to transition and
ballistic flows and also heat transfer problems. However, the
formulation of these LB models is complex (e.g., Ref. [20]
adopts a Shakhov collision term for problems with a variable
Prandtl number), which limits its general implementation. In
contrast, the DDF approach adopts two different distribution
functions, together with two relaxation times, to describe the
evolution of the velocity and temperature fields, respectively.
In so doing, temperature is expressed as the zeroth-order
moment of the temperature distribution function and the heat
transfer process is simply governed by its BGK-like equation
[40]. It has been shown that LB models based on the DDF
approach have a simple formulation and are applicable to
problems with different Prandtl numbers. Owing to these
features, the DDF approach is very popular in simulating
continuum heat transfer problems [37–40]. Some studies
extend these DDF LB models to simulate heat transfer at
small length scales while adding heuristic treatments to mimic
noncontinuum effects [21–24]. Nonetheless, such continuum-
based DDF LB models lack a rigorous theoretical foundation
for modeling noncontinuum heat transfer phenomena, and
accuracy of these LB models deteriorates significantly when
applied to heat transfer at moderate and large Knudsen
numbers. Importantly, no investigation has been conducted
to examine the applicability of DDF LB models for micro-
and nanoscale noncontinuum heat transfer when equipped
with high-order GH-based discrete particle velocity spaces. It
also remains unclear whether the accuracy of such LB models
can be improved under nonisothermal conditions if they are
constructed using HGH quadrature, rather than conventional
FGH quadrature.

In this article, we directly tackle these problems and develop
a hierarchy of thermal DDF LB models from the linearized
Boltzmann BGK equation to simulate noncontinuum flows
and heat transfer at the small length scales. This hierarchy
is formulated using HGH quadrature ranging from low to
high AP. We apply the proposed LB models to simulate
thermal Couette flows for a wide range of Knudsen numbers.
Through use of high-accuracy direct numerical solutions of
the linearized Boltzmann BGK equation [41] as benchmarks,
we show the dependence of LB accuracy on HGH quadrature
order. We also compare the LB models proposed in this article
with (i) those of FGH quadrature–based DDF LB models
[13,15] and (ii) simplified DDF LB models in the continuum
limit to demonstrate the strength of the LB models proposed
here.

The article is organized as follows. In Sec. II, we first derive
a linearized thermal kinetic model based on the linearized
Boltzmann BGK equation through use of the DDF approach.
We then construct its LB algorithms using finite-difference
schemes to discretize time and physical space while HGH
quadrature is used to discretize particle velocity space in
Sec. III. Two simplified versions of the resulting linearized LB

algorithm in the continuum limit are also presented in Sec. III.
Diffusive boundary conditions on solid boundaries compatible
to DDF LB simulation are derived in Sec. IV. In Sec. V, we
apply the proposed HGH-based LB algorithms, together with
the diffusive boundary conditions, to simulate thermal Couette
flows from continuum and slip, through to transition flow
regimes. The present numerical results are compared to those
using (i) discrete particle velocities based on FGH quadrature
and (ii) simplified models in the continuum limit.

II. LINEARIZED DDF THERMAL KINETIC MODEL

In this section, we use the DDF approach to derive a
thermal kinetic model based on the linearized Boltzmann BGK
equation.

A. Linearized Boltzmann BGK equation

The linearized Boltzmann BGK equation describes the
evolution of a perturbation h to the distribution function f

from the global Maxwellian f 0, i.e., h = f

f 0 − 1, in phase
space with time due to gas particle streaming and collision
[3]:

∂h

∂t
+ c · ∂h

∂r
= − 1

τ
(h − heq), (1)

where t , r, c and τ represent time, spatial coordinate, particle
velocity, and the relaxation time, respectively. The Maxwellian
of a gas at a global equilibrium with constant density ρ0, zero
velocity u = 0, and constant temperature T0 is

f 0 = ρ0

(2πRT0)D/2
exp

(
− c2

2RT0

)
, (2)

where R is the gas constant and D is the dimensionality of
physical space. heq is a perturbation to local equilibrium f eq ,
which is defined as heq = f eq

f 0 − 1. It can also be formulated
by

heq = δρ

ρ0
+ c · u

RT0
+

(
c2

2RT0
− D

2

)
δT

T0
, (3)

where δρ, u, and δT are the fluid density, velocity, and
temperature perturbations, which are specified by the moments
of h or heq ,

δρ =
∫

f 0hdc =
∫

f 0heqdc, (4a)

ρ0u =
∫

f 0hcdc =
∫

f 0heqcdc, (4b)

δT = 1

ρ0DR

∫
f 0hc2dc − δρ

ρ0
T0

= 1

ρ0DR

∫
f 0heqc2dc − δρ

ρ0
T0, (4c)

The linearized Boltzmann BGK equation, Eq. (1), is valid
for all Knudsen numbers. However, this equation characterizes
gas relaxation toward local equilibrium by a single time scale
τ . Macroscopically, the equation only describes heat transfer
at a Prandtl number, Pr = 1.
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B. DDF kinetic model

We use the DDF approach to enable solution at arbitrary
Pr numbers [38,40]. This approach utilizes the property that
momentum and energy carried by gas particles relax towards
local equilibrium at different rates [42]. We therefore introduce
two distinct relaxation times τf and τT , corresponding to
two perturbation functions hf and hT , to characterize particle
momentum and energy relaxation, respectively. Mathemati-
cally, this results in two linearized equations similar in form
to the BGK equation. The first describes particle mass and
momentum transport,

∂hf

∂t
+ c · ∂hf

∂r
= − 1

τf

(
hf − h

eq

f

)
, (5)

and the second accounts for particle energy transport,

∂hT

∂t
+ c · ∂hT

∂r
= − 1

τT

(
hT − h

eq

T

)
, (6)

where h
eq

f is the same as in Eq. (3) and

h
eq

T = c2

DR
heq = T0

[
δρ

ρ0

c2

DRT0
+ c · u

RT0

c2

DRT0

+
(

c2

2RT0
− D

2

)
δT

T0

c2

DRT0

]
. (7)

Using the two perturbation functions, hf and hT , the fluid
density, velocity, and temperature perturbations are specified
by

δρ =
∫

f 0hf dc, ρ0u =
∫

f 0hf cdc,

(8)

δT = 1

ρ0

∫
f 0hT dc − δρ

ρ0
T0.

Equations (3) and (5)–(8) specify a linearized DDF kinetic
model for gas flows and heat transfer. It can be shown that
through use of the Chapman-Enskog procedure this model
recovers macroscopic linearized continuum equations for
Kn � 1; see Appendix A. Importantly, the resulting Prandtl
number, Pr = τf /τT , is specified using appropriate choices for
τf and τT .

III. LINEARZED DDF LB ALGORITHMS

Time, physical space, and particle velocity space of the
DDF thermal kinetic model are discretized to formulate the
corresponding LB algorithm. For simplicity and without loss
of generality, we consider two-dimensional problems in the
following discussion.

A. HGH-based DDF LB algorithms

Particle velocity space in Eqs. (5) and (6) is discretized
using HGH quadrature [43]. Unlike conventional FGH quadra-
ture, HGH quadrature involves nonzero abscissas only, so that
even-order discrete particle velocity spaces will be produced.
We specify discrete particle velocities using HGH quadrature
with AP = 3,5, and 7, to obtain a hierarchy of the HGH-based

discrete particle velocity spaces: D2Q16, D2Q36, and D2Q64;
see Appendix B for details.

For each discrete particle velocity space, Eqs. (5) and (6)
are rewritten as

∂hf,i

∂t
+ ci · ∂hf,i

∂r
= − 1

τf

(
hf,i − h

eq

f,i

)
, (9)

and

∂hT,i

∂t
+ ci · ∂hT,i

∂r
= − 1

τT

(
hT,i − h

eq

T ,i

)
, (10)

where hf,i and hT,i are perturbation functions corresponding to
the discrete particle velocity, ci , and the corresponding local-
equilibrium perturbations are

h
eq

f,i = δρ

ρ0
+ ci · u

c2
s

+
(

c2
i

2c2
s

− D

2

)
δT

T0
, (11)

h
eq

T ,i = T0

[
δρ

ρ0

c2
i

Dc2
s

+ ci · u
c2
s

c2
i

Dc2
s

+
(

c2
i

2c2
s

− D

2

)
δT

T0

c2
i

Dc2
s

]
,

(12)

where the sound speed cs = √
RT0.

Next, we discretize time and physical space in Eqs. (9)
and (10) using a finite-difference scheme [44]. This
yields evolution equations for the two discrete perturbation
functions,

Hn+1
f,i + �tci ·

(
∂hn

f,i

∂r

)
FD

=
(

1 − ωf

2

)
hn

f,i + ωf

2
h

eq,n

f,i ,

(13)
and

Hn+1
T ,i + �tci ·

(
∂hn

T,i

∂r

)
FD

=
(

1 − ωT

2

)
hn

T,i + ωT

2
h

eq,n

T ,i ,

(14)

where the subscript n represents the nth time layer and �t is the
time step. The dimensionless relaxation frequencies are ωf =
�t/τf and ωT = �t/τT . To remove implicitness of the finite-
difference scheme [44], two new functions are introduced in
Eqs. (13) and (14):

Hf,i = hf,i + ωf

2

(
hf,i − h

eq

f,i

)
,

(15)
HT,i = hT,i + ωT

2

(
hT,i − h

eq

T ,i

)
.

The terms (∂hn
f,i/∂r)FD and (∂hn

T,i/∂r)FD on the left-hand
side of Eqs. (13) and (14) are finite-difference approximations
of spatial gradients of the two perturbation functions. These are
evaluated using the second-order upwind scheme to gradients
on nodes in the bulk zone (away from solid boundaries),
whereas a hybrid scheme constituting first-order upwind and
central difference schemes is used for the nodes nearest to
solid boundaries [15]. In the fully discrete LB algorithm, the
fluid perturbations are

δρ = ρ0

∑
i

wihf,i = ρ0

∑
i

wiHf,i , (16a)

u =
∑

i

wihf,ici =
∑

i

wiHf,ici , (16b)
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δT =
∑

i

wihT,i − T0

∑
i

wihf,i

=
∑

i

wiHT,i − T0

∑
i

wiHf,i . (16c)

Equations (11)–(16), together with D2Q16, D2Q36, and
D2Q64, comprise a hierarchy of linearized HGH-based DDF
LB models for simulating micro- and nanoscale flows and
heat transfer. Extension from the proposed LB hierarchy to a
hierarchy based on FCH quadrature is straightforward—only
the discrete particle velocity spaces need to be replaced; e.g.,
D2Q16 is replaced by D∗

2Q16 [15]. Here, the superscript * is
used to distinguish full-space and half-space quadratures.

B. Simplified DDF LB algorithms in the continuum limit

LB algorithms developed in the previous section use h
eq

T ,i

involving high-order terms in particle velocity, i.e., Eq. (12),
which might cause numerical instability in computation [40].
Conventional LB studies usually simplify such a polynomial
to a low-order expression by assuming a very small Knudsen
number. Here, we present two simplified low-order LB models
for the above-specified LB algorithms in the continuum limit
(Kn � 1).

To obtain a low-order expression of h
eq

T ,i , we return to the
DDF kinetic model and rewrite Eq. (7),

h
eq

T = h
eq

T ′ + R1 + R2 + R3, (17)

where

h
eq

T ′ = T0

[
δρ

ρ0
+ δT

T0
+ c · u

RT0
+

(
c2

2RT0
− D

2

)
δT

T0

]
, (18)

R1 = δρ

ρ0

(
c2

DRT0
− 1

)
T0, (19)

R2 = c · u
RT0

(
c2

DRT0
− 1

)
T0, (20)

R3 =
(

c4

2DR2T 2
0

− c2

RT0
+ D

2

)
δT . (21)

For incompressible flows in the continuum limit, removal of
R1, R2, and R3 from Eq. (17) causes a negligible change in ther-
mal conductivity, as we now demonstrate. The expression for
thermal conductivity is k = D/2τT ρ0R

2T0 and not the original
k = (D + 2)/2τT ρ0R

2T0; see Appendix C. Numerically, this
change in the prefactor of k does not cause any issues in the LB
simulation because it can be easily compensated by modifying
the relaxation time τT . We therefore obtain a simplified discrete
local-equilibrium perturbation as a replacement of h

eq

T ,i , i.e.,

h
eq

T ′,i = T0

[
δρ

ρ0
+ δT

T0
+ ci · u

c2
s

+
(

c2
i

2c2
s

− D

2

)
δT

T0

]
.

(22)
We name the LB algorithm consisting of Eqs. (11), (13)–

(16), and (22) as Model SLB-I for convenience.
Equations (11) and (22) have been further simplified in

the literature to simulate micro- and nanoscale heat transfer
[21–24]. For example, the model in Ref. [23] (we term this

SLB-II) uses local-equilibrium perturbations (in the linear
form) as

h
eq

f ′′,i = δρ

ρ0
+ ci · u

c2
s

, (23)

and

h
eq

T ′′,i = T0

[
δρ

ρ0
+ δT

T0
+ ci · u

c2
s

]
, (24)

which neglect second-order terms in particle velocity in h
eq

f,i

and h
eq

T ′,i . Since both simplified models (SLB-I and SLB-II) are
theoretically derived in the continuum limit, their application
to noncontinuum problems is questionable. In Sec. V, we
examine the numerical accuracy of these simplified algorithms
for noncontinuum flows and heat transfer, and compare their
results to those obtained by the LB algorithm developed in the
previous section.

IV. DIFFUSIVE BOUNDARY CONDITION
AT SOLID WALLS

We employ the diffusive condition proposed by Maxwell to
specify the wall boundary condition. Its original form in terms
of the full (nonlinear) distribution function f is [6]

f (rb,c) =
∫

(c′−ub)·n<0 |(c′ − ub) · n|f (rb,c′)dc′∫
(c′−ub)·n>0 |(c′ − ub) · n|f eq(rb,c′|ρb,ub,Tb)dc′

× f eq(rb,c|ρb,ub,Tb), (c − ub) · n > 0, (25)

where n is the inward unit vector normal to the wall, and ρb, ub,
and Tb are the fluid density, wall velocity, and temperature at
the position r = rb, respectively. To ensure compatibility with
the linearized LB algorithms in Sec. III, Eq. (25) is linearized
and expressed in terms of h. For a flat wall moving tangentially,
i.e., ub · n = 0, Eq. (25) becomes

h(rb,c) = heq(rb,c) − 1

ρ0

√
2π

RT0

[∫
c′ ·n<0

(c′ · n)f 0h
(
rb,c′)dc′

+
∫

c′·n>0
(c′ · n)f 0heq(rb,c′)dc′

]
, c · n > 0. (26)

For consistency with the DDF approach, Eq. (26) is
rewritten in terms of hf and hT . For a specified discrete particle
velocity space, we then obtain

hf,i = h
eq

f,i −
√

2π

RT0

[∑
c′

i ·n<0
wi ′(c′

i · n)hf,i ′

+
∑

c′
i ·n>0

wi ′(c′
i · n)heq

f,i ′

]
, ci · n > 0, (27)

and

hT,i = h
eq

T ,i − c2
i

DR

√
2π

RT0

[∑
c′

i ·n<0
wi ′(c′

i · n)hf,i ′

+
∑

c′
i ·n>0

wi ′(c′
i · n)heq

f,i ′

]
, ci · n > 0. (28)

Equations (27) and (28) are the required diffusive boundary
conditions on solid walls that are compatible with the lin-
earized DDF LB model proposed in Sec. III A. The boundary
conditions for SLB-I and SLB-II are identical to Eqs. (27) and
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uwall

Twall=T0+ ΔT

uwall

Twall=T0– ΔT

x

y

z

FIG. 1. Schematic of geometry of thermal Couette flow. Origin
of the coordinates system is at the center between the plates.

(28), but the used local-equilibrium perturbations for SLB-I
are h

eq

f,i and h
eq

T ′,i whereas for SLB-II these variables are h
eq

f ′′,i
and h

eq

T ′′,i , respectively.

V. NUMERICAL SIMULATION AND DISCUSSION

In this section, we apply the above-specified linearized
DDF LB models to simulate thermal Couette flows, ranging
from continuum, slip, through to transition flow regimes.
Figure 1 gives a schematic of thermal Couette flow, where
two parallel plates separated by a distance L move in
opposite directions along their planes with identical speed
uwall. Uniform temperatures are applied to each plate with
different magnitudes: the top plate has a temperature T0 + �T

while the temperature of the bottom plate is T0 − �T , where
�T represents a departure to the wall temperature from the
global equilibrium temperature T0.
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D2Q16
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FIG. 2. (Color online) Dimensionless streaming velocity fields (U = u/uwall) of thermal Couette flows for different Knudsen numbers.
Solid circle (black): high-accuracy linearized BGK solution [41]; dashed line (blue): D2Q16; dash-dotted line (red): D2Q36; dotted line (green):
D2Q64.
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Clearly, thermal Couette flow is an ideal problem where
its shear (velocity field) and thermal (temperature distribu-
tion) effects completely decouple. However, as the first and
fundamental canonical problem, we chose this flow in our
simulations because high-accuracy direct numerical solutions
to the Boltzmann BGK equation can be obtained using the
methodology of Ref. [41]. These high-accuracy solutions [41]
are used as benchmarks to precisely assess the performance of
the LB method for noncontinuum flows and heat transfer at a
wide range of Knudsen numbers. More simulations associated
with shear-thermal coupling noncontinuum phenomena, such
as thermal transpiration, are left for future work. To be specific,
three assessments are performed in this article:

(1) Examine the accuracy of the HGH-based LB hierarchy,
D2Q16, D2Q36, and D2Q64, for gas heat transfer ranging from
continuum to transition flow regimes;

(2) Explore the influence of quadrature scheme (HGH vs
FGH) on the accuracy of the LB simulations;

(3) Verify the continuum-limit simplification by compar-
ison of SLB-I and SLB-II to the proposed LB model using
h

eq

T ,i given by Eq. (12) and the above-mentioned high-accuracy
solutions [41].

LB simulations for thermal Couette flows with Knudsen
numbers ranging from 0.005 to 5 across continuum and slip
to transition regimes are performed. To nondimensionalize the
results, we set the plate separation L = 1, reference density
ρ0 = 1, plate speed uwall = 1, equilibrium temperature T0 = 1,
and temperature perturbation �T = 0.1. The discrete diffusive
boundary conditions in Sec. IV are specified at the solid
walls while periodic boundary conditions are applied in the
x direction. All LB simulations are performed on a uniform
120 × 120 grid with the Mach number M = 0.16 and the
Courant-Friedrichs-Lewey number 0.03 � CFL � 0.1. The
convergence reaches when |UN+15 000 − UN | � 10−4, where
UN represents the velocity at the N th time step. To allow
for comparison with the high-accuracy direct solutions of the
linearized Boltzmann BGK equation, which involves only a
single relaxation time [41], the Prandtl number, Pr, is set to 1.0
in simulation.

A. Numerical results for HGH-based linearized LB hierarchy

Figure 2 shows the streamwise velocities (component in
the x direction) as a function of y, obtained using the
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FIG. 3. (Color online) Dimensionless temperature distribution (θ = T/T0) of thermal Couette flows for a range of Knudsen numbers;
details as in Fig. 2.
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proposed linearized HGH quadrature–based LB models at
Kn = 0.005,0.05,0.5, and 5, respectively. Due to the intrinsic
symmetry in the flow, numerical results for the top half
of the channel, i.e., 0 � Y � 1, are presented, where the
dimensionless distance Y = 2y/L. From Figs. 2(a) and 2(b),
we observe that velocity fields in the continuum and slip
regimes given by the HGH quadrature–based LB models are
in good agreement with high-accuracy direct solutions of
the linearized Boltzmann BGK equation [41]. For transition
flows, computational accuracy of the proposed models varies
predominantly with the AP of the underlying HGH quadrature.
We observe in Figs. 2(c) and 2(d) that the higher the AP,
the higher the accuracy of the model. In particular, we note
in Fig. 2(c) that the half-space D2Q36 and D2Q64 models
recover the nonlinear velocity profile in the Knudsen layer for
a transition flow at a moderate Kn. None of the conventional
FGH quadrature–based LB models obtain such a nonlinear
profile; see Fig. 4 for a detailed comparison. These findings
are consistent with previous HGH quadrature-based LB results
for isothermal Couette flows [14]. It remains to be seen whether

the temperature profiles display a similar variation in accuracy
as the discrete particle velocity space is increased.

The corresponding temperature profiles for a range of
Knudsen numbers are given in Fig. 3. In the continuum
(Kn = 0.005) and slip (Kn = 0.05) regimes, we observe that
the thermal LB models accurately predict the temperature
distribution, apart from the low-order D2Q16 model; see
Figs. 3(a) and 3(b). This is because the quadrature AP of
D2Q16 is too small (AP = 3) to allow for accurate evaluation
of the high-order moments in the particle velocity space of h

eq

T .
It is known that these moments are dominant in continuum and
slip (near-continuum) flows [5].

Interestingly, Figs. 3(c) and 3(d) show that results using
D2Q16 substantially improve when flow is in the transition flow
regime. They also show that both D2Q36 and D2Q64 display
good accuracy at moderate Knudsen numbers. Importantly, we
find that accuracy of the temperature distributions obtained
using the proposed HGH quadrature–based LB hierarchy
varies monotonically as the discrete particle velocity space
expands with increasing quadrature AP. Again, the D2Q64
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LB model, corresponding to the highest AP in the hierarchy,
exhibits the best accuracy. Temperature distributions in Fig. 3
together with the velocity profiles in Fig. 2 demonstrate that
linearized DDF LB models developed from higher-AP HGH
quadrature are capable of simulating flows and heat transfer in
continuum, slip, and transition regimes.

B. Effect of quadrature scheme—HGH vs FGH

Conventionally, the particle velocity space is specified
through use of FGH quadrature [45]. FGH quadrature is also
used to calculate half-space moments in the Maxwell diffusive
boundary condition. However, it has been observed previously
that discretizing the boundary condition in this way causes
numerical inaccuracy in LB simulation of noncontinuum
isothermal flows, especially in the Knudsen layer near the walls
[11,13]. Most recently, the concept of discretizing particle
velocities using HGH quadrature has been proposed to rectify
this issue [14]. In this section, we will examine use of FGH and
HGH quadratures for heat transfer problems ranging from the
continuum to transition regimes. Numerical accuracy of the
LB models based on both quadrature rules for thermal Couette

flows are again assessed using high-accuracy direct solutions
of the linearized Boltzmann BGK equation [41].

We perform FGH quadrature–based LB simulations using
the same numerical settings as in Sec. V A, but now with
discrete particle velocity spaces replaced with D∗

2Q16, D∗
2Q36,

and D∗
2Q64 [15]. Figure 4 shows the velocities obtained for

Knudsen numbers ranging from 0.005 to 5, compared with (i)
the numerical results of HGH quadrature–based LB models
(Fig. 2), and (ii) high-accuracy direct solution of the Boltz-
mann BGK equation [41]. As shown in Figs. 4(a) and 4(b), the
two LB hierarchies well describe gas flows in the continuum
and slip regimes. Numerical results for both FGH and HGH
are in good agreement with direct solutions, illustrating that
quadrature effects exert a negligible effect on the velocity
fields for small Kn. Nonetheless, differences among the LB
models in these two hierarchies are evident for larger Knudsen
number. Figures 4(c) and 4(d) show that accuracy of the
LB models in each hierarchy increases monotonically as
the discrete particle velocity space expands. Importantly, a
comparison between the two hierarchies demonstrates that the
HGH quadrature–based hierarchy displays superior accuracy
to its FGH quadrature–based counterpart. This is particularly
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noticeable at higher Kn: In Fig. 4(d) (Kn = 5.0), even the
lowest-order HGH quadrature–based model D2Q16 exhibits
greater accuracy than the highest-order model D∗

2Q64 in the
present FGH quadrature–based hierarchy.

The corresponding temperature distributions obtained using
these two LB hierarchies are given in Fig. 5, together with
high-accuracy solutions of the Boltzmann BGK equation
[41]. Interestingly, the FGH quadrature–based D∗

2Q16 achieves
better accuracy for the temperature in the continuum and
slip regimes than the corresponding HGH quadrature–based
D2Q16. This phenomenon is due to the fact that D∗

2Q16

is derived from a FGH quadrature at AP = 7, enabling the
evaluation of high-order moments of h

eq

T accurately in contin-
uum and slip problems. However, the situation reverses in the
transition regime, where the proposed HGH quadrature–based
LB hierarchy gives greater accuracy than the conventional
FGH quadrature–based models; see Figs. 5(c) and 5(d). This
demonstrates that boundary effects described by half-space
moments are dominant in transition regime heat transfer at
finite Knudsen numbers. Numerical results in Figs. 4 and 5

demonstrate that the HGH quadrature–based LB hierarchy
proposed in this article possesses superior capability to LB
models based on conventional FGH quadrature for simulating
noncontinuum flows and heat transfer.

C. Effects of the continuum-limit simplification

Finally, we compare results obtained using the proposed
LB models with h

eq

T ,i given by Eq. (12), and the simplified
models formulated in the continuum limit, i.e., models SLB-I
and SLB-II. All LB simulations adopt D2Q36 as the discrete
velocity space, because the difference between these results
and that using D2Q64 is small; results for D2Q16 are very
different by comparison. Interestingly, the velocity fields
obtained by the simplified models are found to be very similar
to those derived using the proposed linearized LB model (in
Fig. 2). The agreement in the streamwise velocity among the
three models indicates that the modification of h

eq

f ′′,i in Eq. (23)
does not substantially diminish accuracy in the velocity fields.
This observation can be explained by the fact that shear and
thermal effects decouple in thermal Couette flows.
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Figure 6 gives a comparison of temperature distributions
obtained using (i) SLB-I, SLB-II; (ii) the current LB model
with h

eq

T ,i given by Eq. (12); and (iii) high-accuracy direct
numerical solutions of the linearized Boltzmann BGK equa-
tion [41]. The temperature profiles obtained using the three
LB models are in close agreement for small-Kn thermal
flows, e.g., Kn = 0.005 in Fig. 6(a) and Kn = 0.05 in
Fig. 6(b); all numerical results are in good agreement with
the high-accuracy solution of the linearized Boltzmann BGK
equation. However, deviations in the temperature distributions
are observed when simulations are extended to transition
heat transfer. Figures 6(c) and 6(d) show that accuracy of
the simplest model, SLB-II, which is used conventionally,
deteriorates strongly in this regime. SLB-I maintains good
accuracy at moderate Knudsen numbers, but overestimates
the temperature profiles in thermal flows with large Knudsen
numbers. In contrast, the current linearized LB models exhibit
superior accuracy to these simplified models over the whole
transition flow regime from moderate to large Knudsen
numbers. The results in Fig. 6 demonstrate that direct use of
the DDF LB formulations developed for continuum flows and
heat transfer (i.e., SLB-I and SLB-II) provides poor accuracy
for Knudsen numbers larger than unity. These numerical
simulations, together with those of Secs. V A and V B, show
that accuracy of the LB method depends not only on the
underlying quadrature order, but also on use of a high-order
local temperature perturbation, i.e., h

eq

T ,i .

VI. CONCLUSIONS

A hierarchy of linearized thermal LB models, ranging from
D2Q16 to D2Q64, was developed to simulate noncontinuum
heat transfer over a wide range of Knudsen numbers. The
models are derived from the linearized Boltzmann BGK
equation and adopt two perturbation functions and relaxation
times to describe fluid flow and heat transfer, respectively. In
contrast to previous studies, the proposed LB models utilize
local-equilibrium perturbations having high-order terms in
particle velocity, and discretize particle velocity spaces based
on half-space GH quadrature.

Accuracy of the proposed linearized thermal LB hierarchy
was examined by simulating thermal Couette flows in the
continuum, slip, and transition flow regimes. Our numerical
simulations demonstrate that the proposed LB models well
describe continuum and slip heat transfer, and can achieve
reasonable accuracy in the transition regime. The results reveal
that the accuracy of the HGH quadrature–based LB models
increases monotonically with increasing AP. Importantly, use
of HGH quadrature is found to improve LB accuracy substan-
tially for noncontinuum problems as compared to conventional
FGH quadrature. The numerical results in this article also show
that the continuum-limit simplification, which has been widely
used in the previous DDF LB studies, does not enable accurate
simulation of noncontinuum heat transfer. Large errors are
exhibited in the corresponding LB simulation of transitional
heat transfer, although it has a simple low-order formulation.
In contrast, the HGH quadrature–based linearized DDF LB
method developed here provides a more accurate framework
for modeling heat transfer from continuum to transition flow
regimes.
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APPENDIX A: DERIVATION OF THE LINEARIZED
NAVIER-STOKES EQUATIONS FOR FLOWS

AND HEAT TRANSFER USING THE LINEARIZED DDF
KINETIC MODEL

In this Appendix, we derive the linearized Navier-Stokes
equations for flows and heat transfer from the proposed
linearized DDF kinetic model. We first apply the Chapman-
Enskog multiscale expansion to the two perturbation functions,
temporal and spatial gradients,

hf = h
(0)
f + Knh

(1)
f + Kn2h

(2)
f + · · · , (A1)

hT = h
(0)
T + Knh

(1)
T + Kn2h

(2)
T + · · · , (A2)

∂

∂t
= Kn

∂1

∂t
+ Kn2 ∂2

∂t
+ · · · , (A3)

∂

∂r
= Kn

∂1

∂r
+ · · · . (A4)

We then substitute Eqs. (A1)–(A4) into Eqs. (5) and (6),
and obtain a series of equations for different orders of Knudsen
number,

Kn0: h
(0)
f = h

eq

f , (A5)

Kn1:
∂1h

(0)
f

∂t
+ c · ∂1h

(0)
f

∂r
= − 1

τf

h
(1)
f , (A6)

Kn2:
∂1h

(1)
f

∂t
+ ∂2h

(0)
f

∂t
+ c · ∂1h

(1)
f

∂r
= − 1

τf

h
(2)
f , (A7)

and

Kn0: h
(0)
T = h

eq

T , (A8)

Kn1:
∂1h

(0)
T

∂t
+ c · ∂1h

(0)
T

∂r
= − 1

τT

h
(1)
T , (A9)

Kn2:
∂1h

(1)
T

∂t
+ ∂2h

(0)
T

∂t
+ c · ∂1h

(1)
T

∂r
= − 1

τT

h
(2)
T . (A10)

We next compute the moments of h
(j )
f and h

(j )
T . With the

help of Eqs. (3), (7), and (8), we obtain∫
f 0h

eq

f dc = δρ,

∫
f 0h

(j )
f dc = 0, j = 1,2, . . . , (A11)

∫
f 0h

eq

f cdc = ρ0u,

∫
f 0h

(j )
f cdc = 0, j = 1,2, . . . ,

(A12)
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∫
f 0h

eq

f ccdc = δpI, (A13)∫
f 0h

eq

f cccdc = ρ0RT0u · �, (A14)

and

∫
f 0h

eq

T dc = δρT0 + ρ0δT ,

∫
f 0h

(j )
T dc = 0, j = 1,2, · · · ,

(A15)∫
f 0h

eq

T cdc = 5

3
ρ0T0u, (A16)∫

f 0h
eq

T ccdc = 5

3
δρRT 2

0 I + 10

3
ρ0RT0δT I, (A17)

where δp = δρRT0 + ρ0RδT , the second-rank isotropic ten-
sor I = δαβ , and the forth-rank isotropic tensor � = δαβδγη +
δαγ δβη + δαηδβγ . The symbol δαβ is the Kronecker delta
and the subscripts α,β,γ , and η represent the Cartesian
coordinates.

We recover the macroscopic equations at various order of
Kn from Eqs. (A6) and (A7), and (A9) and (A10), through
use of the Chapman-Enskog procedure. We multiply both the
sides of Eq. (A6) by f 0 and f 0c, respectively, and integrate
the obtained equations over the entire particle velocity space.
It follows that

∂1

∂t
δρ + ∂1

∂r
· (ρ0u) = 0, (A18)

∂1

∂t
(ρ0u) + ∂1

∂r
(δp) = 0. (A19)

Similarly, we adopt the same steps for Eq. (A9), but multiply
the equation only by f 0. With the help of Eqs. (A15) and (A16),

the temperature equation at order Kn is derived,

∂1

∂t
(ρ0cvδT ) = −p0

∂1

∂r
· u, (A20)

where p0 = ρ0RT0. The right side of Eq. (A20) represents the
compression work.

As to the macroscopic equations of order Kn2, we multiply
both sides of Eq. (A7) by f 0 and f 0c and Eq. (A10) by f 0,
respectively, and integrate the resulting equations over particle
velocity space. We then recover

∂2

∂t
δρ = 0, (A21)

∂2

∂t
(ρ0u) = μ

∂1

∂r
·
[

∂1u
∂r

+
(

∂1u
∂r

)T
]

− 2

3
μ

∂1

∂r

(
∂1

∂r
· u

)
,

(A22)

and

∂2

∂t
(ρ0cvδT ) = ∂1

∂r
·
(

k
∂1

∂r
δT

)
, (A23)

where the viscosity μ = τf ρ0RT0, heat capacity at constant
volume cv = 3R/2, and thermal conductivity k = 5

2τT ρ0R
2T0.

Combining Eqs. (A18)–(A20) with Eqs. (A21)–(A23), respec-
tively, we obtain the linearized Navier-Stokes equations for
flows and heat transfer,

∂

∂t
δρ + ∂

∂r
· (ρ0u) = 0, (A24)

∂

∂t
(ρ0u) = − ∂

∂r
(δp) − 2μ

3

∂

∂r

(
∂

∂r
· u

)

+ ∂

∂r
·
{

μ

[
∂

∂r
u +

(
∂

∂r
u
)T

]}
, (A25)

TABLE I. Specifications of D2Q16, D2Q36, and D2Q64. cj is the discrete particle velocity and wj is the corresponding moment weight. a,
b, and c denote the velocity components in Cartesian coordinates; these are the products of the quadrature abscissas and

√
2cs . The subscript,

FS, denotes full symmetry.

D2Q16 cj =
⎧⎨
⎩

(±a, ± a), j = 1 − 4,

(±b, ± b), j = 5 − 8,

(a,b)FS, j = 9 − 16.

a = 0.42454cs,

b = 1.77119cs .

w1−4 = 1.306 × 10−1,

w5−8 = 1.922 × 10−2,

w9−16 = 5.009 × 10−2.

D2Q36 cj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(±a, ± a), j = 1 − 4,

(±b, ± b), j = 5 − 8,

(±c, ± c), j = 9 − 12,

(a,b)FS, j = 13 − 20,

(a,c)FS, j = 21 − 28,

(b,c)FS, j = 29 − 36,

a = 0.26948cs,

b = 1.19961cs,

c = 2.54527cs .

w1−4 = 6.333 × 10−2,

w5−8 = 5.003 × 10−2,

w9−12 = 6.087 × 10−4,

w13−20 = 5.629 × 10−2,

w21−28 = 6.208 × 10−3,

w29−36 = 5.519 × 10−3.

D2Q64 cj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(±a, ± a), j = 1 − 4,

(±b, ± b), j = 5 − 8,

(±c, ± c), j = 9 − 12,

(±d, ± d), j = 13 − 16,

(a,b)FS, j = 17 − 24,

(a,c)FS, j = 25 − 32,

(a,d)FS, j = 33 − 40,

(b,c)FS, j = 41 − 48,

(b,d)FS, j = 49 − 56,

(c,d)FS, j = 57 − 64.

a = 0.18919cs,

b = 0.88293cs,

c = 1.89864cs,

d = 3.19990cs .

w1−4 = 3.368 × 10−2,

w5−8 = 5.645 × 10−2,

w9−12 = 5.668 × 10−3,

w13−16 = 1.293 × 10−5,

w17−24 = 4.360 × 10−2,

w25−32 = 1.382 × 10−2,

w33−40 = 6.600 × 10−4,

w41−48 = 1.789 × 10−2,

w49−56 = 8.544 × 10−4,

w57−64 = 2.708 × 10−4
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and

∂

∂t
(ρ0cvδT ) = −p0

∂

∂r
· u + ∂

∂r
·
(

k
∂

∂r
δT

)
. (A26)

The Prandtl number Pr = μcp

k
= τf

τT
.

APPENDIX B: DISCRETE PARTICLE VELOCITY SPACES
BASED ON HALF-SPACE GAUSSIAN HERMITE

QUADRATURE

We present the three HGH-based discrete particle velocity
spaces in this Appendix. We denote each space by DmQn,
where m is the dimensionality of physical space and n is the
number of discrete particle velocities. Table I summarizes the
mathematical specifications of D2Q16, D2Q36, and D2Q64.

The interested readers can refer to Appendix A in Ref. [15]
for specification of the FGH-based discrete particle velocity
spaces.

APPENDIX C: SIMPLIFICATION OF heq
T IN THE

CONTINUUM LIMIT

In this Appendix, we prove h
eq

T given by Eq. (7) can be
simplified to h

eq

T ′ [Eq. (18)] in the continuum limit. Equation
(7) can be rewritten as

h
eq

T = h
eq

T ′ + R1 + R2 + R3,

where R1, R2, and R3 are given by Eqs. (19)–(21). When
applying the Chapman-Enskog procedure to recover the
continuum temperature equation, we find that only the zeroth-
to second-order moments of h

eq

T are specified. These low-order

moments in terms of R1, R2, and R3 are∫
f 0R1dc = 0,

∫
f 0R1cdc = 0,∫

f 0R1ccdc = 2

3
δρRT 2

0 I, (B1a)∫
f 0R2dc = 0,

∫
f 0R2cdc = 2

3
ρ0T0u,∫

f 0R2ccdc = 0, (B1b)∫
f 0R3dc = 0,

∫
f 0R3cdc = 0,∫

f 0R3ccdc = 4

3
ρ0RT0δT I. (B1c)

Only the second-order moments of R1 and R3, and the
first-order moment of R2, are nonzero. We show using a
Chapman-Enskog analysis that the second-order moments of
R1 and R3 are only related to thermal conduction in the
temperature continuum equation, Eq. (A26). In fact, removing
R1 and R3 from Eq. (17) only brings about a minor change
in thermal conductivity from k = (D + 2)/2τT ρ0R

2T0 to k =
D/2τT ρ0R

2T0. In simulations, such a change can be easily
compensated for by modifying the magnitude of τT . As for
R2, its nontrivial first-order moment recovers the compressible
work, which is negligibly small for incompressible flows.
Therefore, we can neglect R1, R2, and R3 in Eq. (17), and the
resulting low-order h

eq

T ′ still recovers the correct macroscopic
temperature equation for incompressible continuum heat
transfer. Its corresponding form in a discrete particle velocity
space is h

eq

T ′,i , which we used in the LB modeling in this article.
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