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Lattice Boltzmann method for diffusion-limited partial dissolution of fluids
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A lattice Boltzmann model for two partially miscible fluids is developed. By partially miscible we mean that,
although there is a definite interfacial region separating the two fluids with a surface tension force acting at
all points of the transition region, each fluid can nonetheless accept molecules from the other fluid up to a set
solubility limit. We allow each fluid to diffuse into the other with the solubility and diffusivity in each fluid
being input parameters. The approach is to define two regions within the fluid: one interfacial region having
finite width, across which most of the concentration change occurs, and in which a surface tension force and
color separation step are allowed for and one miscible fluid region where the concentration of the binary fluids
follows an advection-diffusion equation and the mixture as a whole obeys the Navier-Stokes incompressible
flow equations. Numerical examples are presented in which the algorithm produces results that are quantitatively
compared to exact analytical results as well as qualitatively examined for their reasonableness. The model has
the ability to simulate how bubbles of one fluid flow through another while dissolving their contents as well
as to simulate a range of practical invasion problems such as injecting supercritical CO2 into a porous material
saturated with water for sequestration purposes.
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I. INTRODUCTION

Two fluids that come into contact to create an interface
with a surface tension can also partially mix due to molecules
diffusing from one fluid into the other across the interface.
Such diffusive mixing occurs until both fluids are at their
solubility limit with regard to molecules from the other fluid. A
range of theories and simulation methods has been developed
to study such partially miscible fluid systems (see, e.g., [1–9]).

Of note are methods based on the Cahn-Hilliard (or Landau)
free energy [10,11]. This free energy contains a key term of
the form −k∇c̃ · ∇c̃/2 that was first introduced by van der
Waals [2] as being responsible for a finite-thickness transition
layer between the fluids and for surface tension. Here k is a
constant and c̃ = (ρB − ρR)/ρ is the local order parameter (or
color field) for the phase separation. The color field is set by the
mass densities ρB and ρR of each fluid component and the total
fluid density ρ. Minimization of the Cahn-Hilliard free energy
produces a chemical potential μ = −ac̃ + bc̃3 − k∇2c̃,
where a, b, and k are taken to be positive. The gradient of
this chemical potential produces a flux that enters into the
conservation law controlling the composition of the fluid.
The term involving parameter a allows for normal solute
diffusion, the term involving b creates the phase separation
and corresponds to an antidiffusion, and the term involving
k provides stability and gives finite thickness to the transition
layer. The parameters a, b, and k in the Cahn-Hilliard free
energy independently set the surface tension, solubility, and
interface width. By adding a cubic order-parameter term to the
free energy (which corresponds to a quadratic order-parameter
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term in the above μ), nonsymmetric solubilities in the two
phases can be allowed for. Minimization of the free energy
also gives a fluid pressure tensor at any place where either the
color or density has a gradient and that adds to the viscous
stresses in the Navier-Stokes equations to account for surface
tension.

Swift et al. [4] (see also [9,12]) developed a lattice
Boltzmann algorithm that connects to a Cahn-Hilliard style
of free energy and allows the associated phase separation,
solute transport, and fluid flow to emerge in the macroscopic
limit. Nadiga and Zaleski [5] also used a Cahn-Hilliard ther-
modynamic foundation to perform finite-difference modeling
of the associated macroscopic flow and density variations of a
liquid-vapor two-phase fluid.

In the present work, we develop an alternative lattice
Boltzmann algorithm that is not tied to the Cahn-Hilliard
formalism. This approach uses four input parameters to control
the phase separation. These parameters set the two solubilities
of each phase, the interfacial thickness and the surface tension.
The model represents a relatively minor, but nonetheless
nontrivial, change to many existing lattice Boltzmann models
for either purely immiscible flow (see, e.g., [13,14] and
references therein) or purely miscible advective diffusion (see,
e.g., [15–18]). It corresponds to a well-defined physics of phase
separation that is quite analogous to how the Cahn-Hilliard
approach creates phase separation through antidiffusion. How-
ever, by working with a finite-width transition layer between
the bulk phases, we only need to calculate the color field and
the gradient of the color field at nodes in a limited region,
in and around the transition layer. This region is always a
smaller fraction of the total nodes being modeled. In contrast,
a Cahn-Hilliard approach requires the color, the gradient of
the color, and the Laplacian of color to be calculated at every
fluid node in the system.

1539-3755/2015/92(1)/013306(14) 013306-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.013306


OLAV AURSJØ AND STEVEN R. PRIDE PHYSICAL REVIEW E 92, 013306 (2015)

Although many lattice Boltzmann models have treated
binary fluids that are totally miscible with no phase separation
at equilibrium (see, e.g., [15–18]), there appear to be only
two other studies not based on a Cahn-Hilliard free-energy
approach that treat problems of binary fluids that are only
partially miscible. Walsh and Saar [19] presented an interpo-
lated Boltzmann boundary condition at the fluid-fluid interface
that allows for surface-reaction kinetics in a two component
system. Specifically, the dissolution of one fluid into another
is modeled as a first-order chemical reaction occurring at the
fluid-fluid interface with particles from a pure fluid on one
side of the interface being transferred as solute into the binary
fluid on the other side until an equilibrium concentration is
attained at the interface. Treating both sides of the interface as
binary fluids having different concentrations of the two species
involved would require modification of the model. Chen and
Zhang [20] used a similar first-order reaction at the interface
between two fluids; however, their treatment does not allow
the interface position to relocate as mass passes across the
interface from one fluid to the other and thus does not appear
capable of modeling bubble evaporation.

One motivation for the present study is the dynamics that oc-
curs when supercritical CO2 is injected into a porous material
initially saturated with water. Such modeling has pertinence
to geological sequestration of CO2. At a temperature of 313 K
and a pressure of 7 MPa, initially pure supercritical CO2 and
pure water diffuse into each other up to a solubility of about
5% (scCO2 into water) and 2% (water into scCO2). In the
present modeling, we aim to capture the partial mixing and
flow of the two fluids without including the changing surface
tension [21,22] or the density changes observed when these
fluids mix.

Our approach is to require the concentrations of the two
fluids immediately adjacent to the fluid-fluid interfacial region
to always be at their solubility limit with respect to the solute
from the other fluid. The interface region is controlled to be
several lattice sites or more in thickness and is modeled using a
modified and altered form of the D’Ortona et al. [23] approach
and the Latva-Kokko–Rothman [24] approach to color sepa-
ration. This approach allows for both normal diffusion across
the interface and an antidiffusion that creates phase separation.
Surface tension is treated using the Brackbill et al. [25]
approach of modeling surface tension as a volume force acting
on the total fluid movement throughout the interfacial region.
Outside the interface region, the binary fluid is purely miscible
(no color separation step) with concentration obeying the
advection-diffusion equation with the fixed concentrations at
the edges of the interface region acting as effective boundary
conditions. Fluid mass of either type may pass in either
direction across the interface and the interface is allowed to
freely displace during the diffusion and flow dynamics.

II. GOVERNING CONTINUUM EQUATIONS

We consider the mixing and flow dynamics of an
isothermal binary fluid with composition-dependent prop-
erties. The state of the fluid mixture may be described
in terms of the mass density of the mixture ρ(x,t),
the velocity field u(x,t), the pressure p(x,t), and the concentra-
tion ϕ(x,t) of one of the two fluids present. The concentration

is here defined as the ratio of the mass density of one
component to the total mass density. Using the Einstein
summation convention, where Latin indices denote Cartesian
spatial components, the mass conservation and the momen-
tum conservation equations may be written, respectively, in
component form as

∂tρ + ∂i(ρui) = 0, (1)

ρ(∂tui + uj∂jui) = −∂ip + Fi + ∂j τij , (2)

where Fi denotes the components of any applied volume force
and

τij = ρν

[
∂iuj + ∂jui − 2

d
∂kukδij

]
+ ξ∂kukδij (3)

expresses the components of the viscous stress tensor for a
d-dimensional system. Here ν and ξ are, respectively, the
kinematic shear viscosity and the bulk (or volume) viscosity of
the fluid, and δij is the Kronecker delta. The kinematic shear
viscosity ν would typically depend on the variable composition
of the fluid mixture. Finally, an equation of state is required
to describe the relation between the concentration and mass
density and the pressure, i.e., p(ρ,ϕ).

For our isothermal system, the evolution of the concen-
tration distribution through the fluid, due to diffusion and
advection, is described by the equation [26]

ρ(∂tϕ + ui∂iϕ) = ∂i(D0ρ∂iϕ), (4)

where D0 is the diffusion coefficient of the fluid mixture and
we have disregarded any possible pressure gradient inside the
divergence as negligibly small. At low Mach numbers, defined
by |u|/c � 1, where c is the speed of sound, compressional
changes in the density may be neglected and the combined
fluids are required to satisfy the incompressible Navier-Stokes
equations

∂iui = 0, (5)

ρ(∂tui + uj∂jui) = −∂ip + Fi + ρν∂j ∂jui, (6)

and the advection-diffusion equation

∂tϕ + ui∂iϕ = ∂i(D0∂iϕ). (7)

III. MODEL DESCRIPTION

We consider two viscous fluids, blue and red, that possess
an interfacial tension where they come into contact. Instead
of being completely immiscible, the fluids are allowed to
partially mix until they reach an equilibrium state where the
concentration of blue fluid is α1 in the mainly blue phase and
α2 in the mainly red phase. To reach this equilibrium state, the
two fluids diffuse into each other with diffusivities DB and DR,
where DB is the diffusivity of blue particles in the mainly red
phase and DR is the diffusivity of red particles in the mainly
blue phase.

Here a lattice Boltzmann method is developed that incor-
porates these features into the flow modeling. To do this, we
divide the algorithm into two parts. One part describes the
advection-diffusion process away from the interface between
the two phases and one part describes the behavior within
a finite interface region and incorporates a phase-separation
process and an interfacial tension. The algorithm involves
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the distribution function of the combined fluids fα(x,t) and
the distribution function for the blue fluid gα(x,t), at lattice
positions x and time t , where the index α denotes the various
directions in which the neighboring lattice sites are located.

Let us first focus on the total distribution fα(x,t). Introduc-
ing a lattice constant 
x and a time discretization 
t , this
function evolves according to the lattice Boltzmann equation
(LBE)

fα(x + cα
t,t + 
t) = fα(x,t) + �ν
α(x,t) + 
f F

α (x,t), (8)

where 
f F
α (x,t) is the volume force term and �ν

α(x,t) is the
collision operator. We use here the Bhatnagar-Gross-Krook
(BGK) collision operator

�ν
α(x,t) = λν

[
fα(x,t) − f eq

α (ρ,u)
]
, (9)

where −
t/λν is the relaxation time and f
eq
α is the equilibrium

distribution. By choosing an equilibrium distribution of the
form

f eq
α (ρ,u) = wαρ

(
1 + cαiui

c2
S

+ Qαijuiuj

2c4
S

)
, (10)

where wα are the lattice weights in the various directions
and cS is a constant related to the lattice structure, the
correct hydrodynamical equations may be recovered in the
long-wavelength limit. Here

Qαij = cαicαj − c2
Sδij , (11)

cαi are the vector components of the discrete set of constant
velocity vectors cα , in the various lattice directions, and ui are
the vector components of the fluid velocity u(x,t). The force
term in Eq. (8) is given as [27]


f F
α = wα

(
1 + λν

2

)[
cαi − ui

c2
S

+ cαjuj

c4
S

cαi

]
Fi
t, (12)

where Fi are the components of the applied volume force.
Guo et al. showed that this form of the force term ensures the
recovery of the correct hydrodynamical equations.

The total mass density of the fluid is given as

ρ(x,t) =
∑

α

fα(x,t), (13)

while the total mass flux of the fluid mixture is here defined as

ρ(x,t)ui(x,t) =
∑

α

fα(x,t)cαi + 1

2
Fi
t. (14)

By relating the kinematic viscosity to the relaxation parameter
λ by

ν = −c2
S

(
1

2
+ 1

λν

)

t (15)

and the pressure to the mass density through an equation of
state

p = c2
Sρ, (16)

the flow equations (1) and (2) are recovered in the long-
wavelength limit. The details of this derivation are given in
Appendixes A and B.

If the pure red and blue fluids have kinematic viscosities
given as νR and νB, respectively, the partial mixing being

allowed for, results in the fluid having an effective viscosity
νeff at each lattice point that is different from these pure
values. In our model, this is allowed for by letting the
relaxation parameter λν take on different values for different
concentration ϕ = ρB/ρ of blue fluid, through the use of
an effective viscosity model. For the numerical modeling
presented in this paper, we choose the so-called ideal viscosity
model [28,29], first proposed by Arrhenius, where

−c2
S

(
1

2
+ 1

λν

)

t = νeff = ν

ϕ

Bν
(1−ϕ)
R . (17)

Other models for νeff could of course be adopted.
In the low-Mach-number regime considered here, systems

where buoyancy effects are present under the influence of
gravity may in this model be simulated by introducing a
volume force of the form ρg(ϕ)gi , where ρg(ϕ) is a given
analytical function of the concentration and gi are the vector
components of the gravitational acceleration. This is a valid
approximation as long as the concentration dependence is
negligible in the inertial acceleration of the fluid, i.e., when
|dui/dt |/gi � 1.

In our lattice Boltzmann (LB) model, the interaction
between the two fluids is described by the evolution of the
distribution function gα(x,t) of the blue fluid. This distribution
function is related to the blue mass density as

ρB(x,t) =
∑

α

gα(x,t). (18)

As described in the introduction of this section, our algorithm
is divided into two parts: one part for the behavior within a
finite interface region (region II), where a phase segregation
and an interfacial tension are incorporated, and one part for
the advection-diffusion process in the bulk regions (region I),
away from the fluid-fluid interface. The technical definition of
the two regions will be given shortly in Sec. III A. In both our
regions, the given description of the evolution of the total fluid
distribution fα(x,t) is valid. Only the applied forcing terms
will differ in the two regions. The evolution of the blue fluid
distribution gα(x,t) is, however, distinctive for each separate
region.

A. Region definitions

In our region II algorithm, a step that promotes phase
separation needs to be included. This step, which gives
the blue fluid distribution gα(x + cα
t,t + 
t), is in direct
contradiction to the diffusive process taking place in region
I. To avoid having conflicting algorithm steps applied to a
single lattice site, we define our two regions, I and II, to
be complementary sets of lattice sites. Region II, where a
so-called recoloration scheme and the interfacial force are to
be applied, is the transition zone between the two fluid phases.
Remember that our algorithm aims to describe a system where
the phases are allowed to diffuse through the interface between
them and partially mix until they reach a concentration
threshold. Thus, if we assume that the concentration at the
boundary points immediately adjacent to the transition region
are maintained at the solubility limits, the first condition for
a lattice site to be in this transition zone is that the blue fluid
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FIG. 1. Schematic representation of how the separate algorithm
regions are defined. The figure shows the concentration profile of a
circular blue bubble surrounded by red fluid.

concentration ϕ lies in the range

α2 � ϕ � α1, (19)

with α2 being the equilibrium solubility of blue in mainly red
fluid and 1 − α1 being the equilibrium solubility of red in
mainly blue fluid. Both α1 and α2 are input parameters in our
algorithm.

To avoid having region II grow as adjacent lattice points
in region I reach the desired fluid concentration due to the
advective-diffusive mixing occurring there, it is necessary to
have a second condition that also must be met for lattice points
to be in region II. In order to introduce this condition we first
need to define a local color difference

c̃(x,t) = ρB(x,t) − ρR(x,t)

ρ(x,t)
= 2ϕ(x,t) − 1, (20)

where ϕ(x,t) = ρB(x,t)/ρ(x,t) is the concentration of blue
fluid at node x. This is subsequently used to define a color
gradient

n(x,t) = 1

c2
S
t

∑
α

wαc̃(x + cα
t,t)cα. (21)

A Taylor expansion of c̃(x + cα
t,t) is what allows n to
be identified as the color gradient ∇c̃. We know that the
absolute value of this color gradient has its peak in the middle
of the interfacial zone between the two fluids and that it
decreases rapidly away from it. We also know that, during
the advective-diffusive process, it can also be nonzero, but
small, away from the interfacial zone. We use this to construct
the second condition that must be met in region II, namely, the
absolute value of the color gradient

|n| > n̄, (22)

where n̄ is a small but finite threshold value. It could be
chosen as n̄ = ε[c̃]/�, with � being an estimate of the interface
width, [c̃] = 2(α1 − α2) being the total jump in the color
difference across an interface, and ε being a small number
such as 10−2. Introducing such a threshold leads to a very
small deviation between the intended saturation levels, given
by α1 and α2, and the obtained equilibrium concentrations.
The value used for n̄ in our simulations results in a deviation
amounting to less than 0.001% of the intended solubility
levels.

Region I, where the diffusive scheme is used, is then simply
the complementary set of lattice sites to that of region II.
Figure 1 shows a schematic representation of where the two
separate algorithm regions apply in a system composed of a
circular blue fluid bubble surrounded by red fluid. Now, having

properly defined the separate regions, let us again direct our
focus towards the evolution steps of gα(x,t) in the two regions.

B. Region I

In region I, our model aims to have the two fluids experience
an advective-diffusive mixing. Similarly to the total fluid
distribution fα , the blue distribution gα follows an LBE

gα(x + cα
t,t + 
t) = gα(x,t) + �D
α (x,t) + 
gF

α (x,t).

(23)

Here

�D
α = λD

[
gα(x,t) − geq

α (ρB,u)
]
, (24)

where λD is related to the diffusivity of the blue fluid by

D0 = −c2
S

(
1

2
+ 1

λD

)

t (25)

and


gF
α (x,t) = wα

(
1 + λD

2

)
1

c2
S

cαiFiϕ
t. (26)

In the force term 
gF
α (x,t), we have introduced the concen-

tration ϕ = ρB/ρ of the blue fluid component. In Appendix C
we show that this form of the force term ensures recovery of
the desired form of the advection-diffusion equation without
any unwanted terms in the continuum limit. The equilibrium
distribution for the blue fluid is given as

geq
α (ρB,u) = wαρB

(
1 + cαiui

c2
S

+ Qαijuiuj

2c4
S

)
, (27)

where Qαij is given by Eq. (11). This leads to the blue fluid
density obeying the advection-diffusion equation (4) in the
long-wavelength limit without having any unwanted terms.
We should point out that this is achieved by, in addition to
introducing the forcing term, relating the distribution function
gα in a nonstandard way to the mass density ρB, rather than
directly to the concentration ϕ (see Appendix C).

An argument similar to what holds for the viscosities also
holds for how the diffusivity of blue particles changes with
concentration. In the low-Mach-number limit being treated,
where the total density is effectively constant from a diffusion
perspective (the density variations responsible for pressure
variations come in at the first order of the Mach number and
may thus be ignored in the advection-diffusion equation), the
mutual diffusivity of red particles through blue is the same as
blue through red at any given point in the system. An effective
diffusivity model for D0 equivalent to the Arrhenius model
of viscosity could be proposed. However, if modeling the
diffusive mixing of supercritical CO2 and water, the solubilities
would be set to roughly α2 = 0.05 and 1 − α1 = 0.02. This
means that there is very little dependence of the diffusivity on
the concentration on either side of the interface. In any such
case involving low solubilities, it is appropriate to define a
constant diffusivity of DR for how red particles diffuse in the
blue fluid at infinite dilution and DB for how blue diffuses in
red at infinite dilution. The diffusion relaxation parameter λD
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is then selected using

−c2
S

(
1

2
+ 1

λD

)

t =

{
DB if ϕ < 1

2 (α1 + α2)

DR if ϕ > 1
2 (α1 + α2),

(28)

where (α1 + α2)/2 defines the midpoint of the interfacial
region. Another effective diffusivity model might be more ap-
propriate if the solubilities α2 and 1 − α1 are larger. Note here
that the evolution of the blue fluid distribution gα couples to the
combined fluid distribution fα through the velocity field u(x,t)
and, in a secondary way, through the effective viscosity model.

C. Region II

In region II, our model needs to incorporate phase separa-
tion, as well as an interfacial tension, between the two fluids.
This entails the use of an algorithm for immiscible fluids.
When applying such an algorithm it is important to have an
immiscible model where spurious interface currents [30,31]
are kept small so as to reduce subsequent errors in the
advection of the soluble fluid close to the fluid-fluid interface.
Accordingly, we have used a model similar to those presented
by Wu et al. [32] and Walsh and Saar [19]. These models use
the gradient-based recoloration scheme originally proposed
by D’Ortona et al. [23] and later slightly changed by Latva-
Kokko and Rothman [24]. They also use a continuum volume
force proposed by Brackbill et al. [25] for the modeling
of an interfacial tension. To allow for dissolution across
the interface, we modify the recoloration step proposed by
Latva-Kokko and Rothman [24].

The interfacial tension is implemented as a volume
force [25]

FIT(x,t) = σκ(x,t)
n

[c̃]
, (29)

where n = ∇c̃ is given by Eq. (21), σ is the interfacial tension,
and [c̃] is the overall jump in the color c̃ across the interfacial
region. The interface curvature κ is given as

κ = −∇ ·
(

n
|n|

)
(30)

= − 1

|n|
(

∇ · n − n
|n| · ∇|n|

)
. (31)

Though Eqs. (30) and (31) are analytically identical, Brackbill
et al. [25] showed that a finite-difference approximation to
Eq. (30) has the interface curvature peaking near the edges of
the interfacial region, while a finite-difference approximation
to Eq. (31) produces a κ that is maximum nearer the
center the interfacial region, where also the color gradient
is maximum. In our model, we numerically determine the
curvature using Eq. (31), since this leads to better results in
practice. Advantages with this volume force implementation
of surface tension include having reduced interfacial spurious
currents, having a continuous pressure change across the
fluid-fluid interface [32], and having the interfacial tension
be given directly as an input parameter. We note in passing
that if n · FIT/|n| is integrated across the transition layer, the
result is the pressure change across the interface also known
as the capillary pressure.

The evolution of the blue distribution function is here given
as

gα(x + cα
t,t + 
t) = ϕfα(x,t) + ϕ
t

2c2
S

wαcαjFj

+βhϕρwα

cαini

|cα||n| , (32)

where β is a unitless parameter that sets the interface width [24]
and ni are the vector components of the color gradient n.
Typically, β � 1 to avoid the occurrence of negative particle
distributions. We have here also introduced a unitless window
function hϕ that is zero at the boundary between regions I and
II and that peaks in the middle of region II with a value of 1/4.
It is defined

hϕ = (α1 − ϕ)(ϕ − α2)

(α1 − α2)2
, (33)

which is non-negative throughout region II where
α2 < ϕ < α1. This modification to recoloration results in a
blue concentration equal to α1 on one side of the transition
zone and α2 on the other. In the recoloration scheme of Latva-
Kokko and Rothman [24] hϕ = ϕ(1 − ϕ), which corresponds
to perfect immiscibility in our scheme with α1 = 1 and α2 = 0.

By itself, the first term on the right-hand side of Eq. (32) re-
sults in the blue concentration obeying the standard advection-
diffusion equation with a diffusivity of c2

S
t/2. The third term
in Eq. (32) is responsible for keeping red and blue separated
across the interface zone by creating an effective antidiffusion.
The second term is included to avoid an undesirable force
dependence arising in the continuum limit of this model.
The details of the continuum dynamics obtained in the long-
wavelength limit using this algorithm are given in Appendix D.
In Appendix E we have used the results found for this
continuum limit of region II to give an analytical estimate
for the width of the fluid-fluid interface zone.

Through normal diffusion being opposed by antidiffusion,
the above algorithm achieves phase separation in a way analo-
gous to that of the Cahn-Hilliard approach [10,11]. However,
because we use the window function of Eq. (33) to gradually
turn off the antidiffusion at the limits of the finite-width
transition layer, we do not need to incorporate a Laplacian
of the color field into the effective chemical potential as is
required to obtain stable results in the Cahn-Hilliard approach.

The goal for the modeling of blue concentration in
region II is that blue particles can advance from high to
low concentrations while maintaining the color separation
once equilibrium is attained. Throughout this process,
surface tension needs to be allowed to develop with interface
curvature. The above model, with the competing diffusive
and antidiffusive fluxes and the volumetric interfacial force,
accomplishes all of these requirements.

IV. NUMERICAL SIMULATIONS

We now implement the above scheme numerically using a
D2Q9 lattice. Lattice velocities and the corresponding lattice
weights are presented in Table I. In this model c2

S = 1/3.
In a first example, an interface moves due to diffusion alone

(no flow). An analytical solution is available in this case to
compare to the numerical results. In a second example, a
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TABLE I. Lattice weights and velocities for the D2Q9 lattice.

Lattice direction cα(
x/
t) wα

α = 0 (0,0) 4/9
α = 1, . . . ,4 (±1,0),(0,±1) 1/9
α = 5, . . . ,8 (±1,±1),(∓1,±1) 1/36

bubble of one fluid is allowed to dissolve into the other, up
to the solubility limit. In the final examples, we consider how
flow and diffusion compete in controlling the concentrations
in front of an interface moving due to flow.

In the simulations, we have set the initial particle mass
density ρ, lattice constant 
x, and time step 
t equal to unity.
For simplicity, the kinematic viscosity of both fluids are set
to ν = 0.1 in all our simulations. In addition, we have set the
color gradient threshold n̄ = 2 × 10−3.

A. One-dimensional diffusion problem with
a freely moving interface

A feature of the LB model developed in this paper is that
it allows one phase to diffuse into the other, which results in
a movement of the interface position even in the absence of
flow. There are few exact analytical results that involve a freely
moving interface, because specifying boundary conditions on
an interface, whose position must also be determined as part of
the problem, makes the problem nonlinear. Fortunately, a sim-
ple one-dimensional case does have exact analytical solutions.

Consider an infinite plane interface between the red and blue
fluids with a normal in the x direction. Initially, at t = 0, the
interface separating pure blue (x > 0) from pure red (x < 0) is
at x = 0. Blue is then allowed to diffuse into red (while red is
not allowed to enter blue), which causes the interface position
x = s(t) to advance in the +x direction starting from its initial
position of s(0) = 0. The plane x = 0 is maintained as pure
red for all time. We need to determine how the concentration
ϕ(x,t) of blue in red is evolving in the binary-fluid region
0 < x < s(t) and determine s(t).

The concentration ϕ(x,t) in this case satisfies the diffusion
equation ∂ϕ/∂t = D0∂

2ϕ/∂x2 and is subject to the two
boundary conditions ϕ(x = s(t),t) = α2 and ϕ(x = 0,t) = 0.
The condition that allows the unknown interface position s(t)
to be determined is that the diffusive flux of blue particles out
of the interface jx = −ρ−D0∂ϕ/∂x|x=s(t) is balanced by the
interface movement ρB+ds(t)/dt . Here the interface is taken
as a step with ρ− the total mass density on the s− side of
the interface and ρB+ the blue mass density on the s+ side
of the interface. In this zero-Mach-number problem, density
is constant, so ρ− = ρB+ = ρ and ρB− = α2ρ. The interface
movement equation is then

ds

dt
= D0

∂ϕ

∂x

∣∣∣∣
x=s(t)

(34)

and is subject to the initial condition that s(0) = 0.
The above is known as a Stefan problem [33] and has a

general solution ϕ(x,t) = A + B erf(x/
√

4D0t), where A and
B are constants and erfu = (2/

√
π )

∫ u

0 e−w2
dw is the error

function. Clearly, A = 0 from ϕ(x = 0,t) = 0. In addition,
to satisfy the boundary condition on x = s(t) we must have
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FIG. 2. Interface position s, where ϕ = α2 = 0.02, as a function
of time t . The position and time are measured, respectively, in terms
of the lattice constant 
x and the time discretization 
t . Open
symbols show the numerical results, while black lines represent the
analytical solutions. We have used linear interpolation to estimate
subgrid positions of the interface.

both s(t) = ζ
√

4D0t , where ζ is an unknown constant, and
B = α2/erfζ . The constant ζ is determined from the interface
movement of Eq. (34),

ds

dt
= 2ζD0√

4D0t
= α2

2D0√
4πD0t

exp(−ζ 2)

erfζ
. (35)

Altogether, we have the exact solutions

ϕ(x,t) = α2
erf

(
x/

√
4D0t

)
erfζ

and s(t) = ζ
√

4D0t, (36)

where ζ is the positive root of

α2√
π

exp(−ζ 2)

ζ erfζ
− 1 = 0. (37)

Due to the monotonic nature of Eq. (37), there is a single posi-
tive root that can be determined using any preferred numerical
root finder; we find that ζ = 0.0997, having chosen α2 = 0.02.

For the lattice Boltzmann modeling of the above, the
system is initialized with ρ(x,0) = 1.0, u(x,0) = 0, and
ρB(x,0) = ρ(x,0). In addition, we have the boundary condi-
tions ρB(0,t) = 0 and ρB(Lx,t) = ρ(Lx,0), where Lx = 100
is the system length [the interface position lies within
0 < s(t) < Lx]. We have included a periodic y direction,
which makes the simulations one dimensional in nature. We
have set the interfacial tension to be σ = 10−4 in lattice
units, but since the interface will remain flat throughout
the simulations this does not have any influence on the results.
We have used β = 1 in the recoloration step of Eq. (32) to
ensure a thin interface region. In the initial stages of the sim-
ulations, the equilibration of the emergent interface between
the two fluid phases will result in some deviations from the
position predicted from the analytical results. This is a transient
effect that is not part of the diffusive process being treated. To
minimize this initial deviation we choose in this comparison
a conservative solubility of α2 = 0.02. In the simulations
we identify the position x = s(t) of the interface as being
where ϕ = α2. Figure 2 shows this position as a function of
time for three different diffusivities. We see that there are some
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FIG. 3. Concentration profiles for D0 = 0.1 and α2 = 0.02 as a
function of position. Open circles represent the numerical results.
Solid black lines show the analytical solution. Vertical dashed lines
indicate, from the left, the position of the fluid interface at times
t = [57.0 × 103,226 × 103,505 × 103,900 × 103], respectively. The
horizontal dashed line marks the saturation concentration α2.

deviations in the positions initially but that the agreement is
generally good. In Fig. 3, the concentration profiles to the left
of the moving interface at four different times are displayed.
The profiles retrieved from the simulations are observed to be
close to those given by the analytical solution.

B. Bubble evaporation

To demonstrate how our algorithm equilibrates at the
desired solubility levels in a closed system, we consider
an evaporating bubble located in the center of a circularly
confined system. The diameter of this system is in the
simulations set to 100 lattice units. Initially, the bubble consists
of pure blue fluid (ϕ = 1.0) and the surrounding phase is
pure red fluid (ϕ = 0). The bubble will evaporate until the
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FIG. 4. Concentration profiles of a blue fluid bubble at different
times during evaporation. The concentrations ϕ are given as
functions of position measured in terms of the lattice constant

x. In this simulation the solubility levels are given by α1 = 0.95
and α2 = 0.02. The bubble radius was here initiated to be r0 = 20
lattice units. The concentration profiles are plotted at time steps
t ′ = t−t0 = [0.0,1.0 × 103,1.0 × 104,5.0 × 104,1.0 × 105,5.0 × 105],
where t0 = 104 was the initiation time for the evaporation process.
To better see the behavior of the diffusion process taking place, two
separate regions of the concentration profiles have been cut out and
magnified. The initial and final concentration profiles are shown in
solid lines.
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FIG. 5. Concentration profiles of an evaporating blue fluid bubble
at different times as functions of position. Here α1 = 0.8, α2 = 0.2,
and the initial bubble radius r0 = 25 lattice units. The concentration
profiles are plotted for the same time steps as in Fig. 4. The initial
and final concentration profiles are as in Fig. 4 represented by solid
lines.

concentration levels in the two phases equal the solubility
levels given by α1 and α2. In the simulations, the interface
is initially allowed to equilibrate for a time t0 before the
evaporation process is started.

Figures 4 and 5 show the concentration profiles for two
evaporation processes where the solubility levels differ con-
siderably. For the sake of comparison, both simulations use the
diffusivities DB = 0.01 and DR = 0.0025 and the interfacial
tension is set to σ = 10−4 (all in lattice units). Figure 4
shows a dissolution process where the solubility levels are set
to α1 = 0.95 and α2 = 0.02. This system exhibits solubility
levels similar to those of pure water (blue) in a cell of pure
supercritical CO2 (red) at a temperature of 313 K and a pressure
of 7 MPa. Figures 5 and 6 present a system with considerably
larger solubility levels. Here α1 = 0.8 and α2 = 0.2. Because
of these large solubility levels, a radical decrease in the bubble
radius is observed. From Fig. 6 we see that the pressure
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FIG. 6. Pressure profiles of an evaporating bubble as functions of
position. This figure shows the same system as Fig. 5 and the profiles
plotted are at the same time steps as in Figs. 4 and 5. The pressure
difference 
p is the difference between the measured pressure at
position x and the pressure measured at a point outside the bubble,
far away from the interface region between the two phases. The
pressure is given in lattice units.
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increases as expected as the bubble radius decreases during
evaporation. With these large solubility levels, the transition
from diffusion inside region II to outside region I can be abrupt,
leading to noisy results, if the transition width is too small.
To smooth out the transition, we used a value of β = 0.5 to
produce the results presented in Figs. 5 and 6, as opposed to
β = 0.8 in Fig. 4.

C. Péclet-number-dependent invasion processes

The main motivation for developing this algorithm was to
gain the ability to simulate partial dissolution of fluids during
transport in porous media. We will here look at some examples
of such processes.

We start off with studying dissolution of a single meniscus
advancing due to flow in a straight channel, before presenting
a similar process occurring in a two-dimensional porous
medium with a number of menisci present. Let us define our
coordinate system so that the x axis is parallel to the flow
direction, while the y axis is in the perpendicular direction.
In the y direction, the system is confined by solid walls.
These are simulated by using a simple bounceback rule that
replaces the regular interaction equations at the wall sites [13].
The wetting property of the walls is modeled by modify-
ing the color gradient n at sites next to wall sites [34].
Here the neighboring color difference c̃(x + cα
t,t) at wall
sites is given by c̃wall = − cos θw, where θw is the static contact
angle. If θw = 0, the invading fluid is perfectly nonwetting. If
θw = 180, the invading fluid perfectly wets the solid surface.
However, if the fluid diffusing into the other phase is not
perfectly nonwetting, care must be taken. Beyond a certain
value for the wetting angle, the equilibrium concentration
of the diffusing phase next to a wall site can attain values
between α1 and α2. This means that sites next to a wall can
have an absolute value of the color gradient |n| > n̄ in a region
away from the intended interface region. This has the effect of
distorting the spatial shape of region II and subsequently giving
unphysical behavior in regions close to wall sites. By treating
sites next to wall sites separately from the other fluid sites and
introducing a modified concentration criterion for those sites,
preliminary results show that this distortion of region II can
be eliminated. In this paper we will not explore this behavior
and will simply limit our examples to a perfectly nonwetting
diffusing fluid phase.

Injection of an invading fluid into a system, initially filled
with a defending fluid, is modeled by letting the system
boundaries perpendicular to the flow be periodic to the total
fluid distribution fi , but with the additional requirement that
all incoming populations on the injection side are blue while
all incoming populations at the opposite boundary are red. At
the recoloration boundaries, the local color gradient is set to
zero to avoid any phase separation and surface tension effects.

The injection of fluid is driven at a constant rate. This
invasion rate is maintained by a uniform volume force Fx(t)
acting in the x direction [35]. Using a global flux-controlling
volume force rather than applying a constant flux boundary
condition minimizes the effects of the inherent compressibility
in our LB algorithm. The volume force Fx(t) varies in time as

∂Fx(t)

∂t
= KP [J0 − Jx(t)] − KD

∂Jx(t)

∂t
. (38)

0.0 0.01 0.02 0.03 0.04 ≥0.05ϕ

FIG. 7. (Color online) Snapshot of an invading fluid being in-
jected from the left side of a straight channel, while it partially
dissolves in a defending fluid. The figure shows the invading fluid
concentration at t = 7.5 × 104 with Pe = 3 × 10−1 and Ca = 10−2

(Jx = 10−4, σ = 10−3, and D0 = 10−2). The color scale (grayscale)
is a linear scale showing the invading fluid concentration ϕ. The thin
white line represents the interface between the two fluids.

Here J0 is the desired mass flux density in the x direction and
Jx(t) is the mean mass flux density measured in the system at
time t . The positive tuning parameters KP and KD determine
the response of the body force. In the simulation, these are
set to Kp = 1.0 and KD = 0.4. In the simulations we set the
interface thickness parameter to β = 1.0, the solubility levels
to α1 = 1.0 and α2 = 0.05, and the contact angle to θw = 0.

The behavior for this type of system is controlled by the
values of the two key dimensionless numbers: the Péclet
number Pe and the capillary number Ca. The capillary number
may be defined as the ratio of viscous shear stress to capillary
pressure and is given by

Ca = Jxν

σ
, (39)

where Jx is the mass flux density (Jx/ρ is the average fluid
velocity). The Péclet number is the ratio of flow speed to
diffusion speed and is given by

Pe = Jxl

ρD0
, (40)

where l is the characteristic length over which diffusion occurs,
which we take to be the channel width in the set of channel flow
simulations and the average pore throat width in the porous
medium simulations.

We next turn to dissolution across a single meniscus
advancing due to flow in a straight channel with a length
Lx = 120 and a height Ly = 30 measured in lattice units. In
Figs. 7–9, the flow begins at t = 0 with the fluid interface at
position x = 20. When Pe < 1, the diffusion advances more
rapidly than the meniscus and the concentration in front of
the meniscus will behave as shown in Fig. 7. When Pe > 1,
the diffusion front remains closer to the meniscus as in Fig. 8.

FIG. 8. (Color online) Snapshot of the invading fluid concentra-
tion ϕ at t = 1.5 × 105 with Pe = 3 and Ca = 10−2 (Jx = 10−4,
σ = 10−3, and D0 = 10−3). See Fig. 7 for further description.
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FIG. 9. (Color online) Snapshot of the invading fluid concentra-
tion ϕ at t = 3.0 × 104 with Pe = 30 and Ca = 10−1 (Jx = 10−3,
σ = 10−3, and D0 = 10−3). The capillary number was increased by
increasing the rate of injection. See Fig. 7 for further description.

In both of these examples, the capillary number Ca is small
enough that capillary forces maintain the shape of the meniscus
even as it moves down the channel at the rate of injection.
The Péclet number Pe was changed here by changing the
diffusivity. Finally, in Fig. 9, Ca is increased by increasing
the injection rate with the result that the shape of the meniscus
is now altered by viscous shearing. The viscous shear forces
are able during the invasion to distort the form of the meniscus
from its equilibrium shape, causing it to continuously stretch
in the flow direction. The greater flow velocity down the
center of the channel also results in the enhanced advection
of concentration observed. A finger of advected concentration
advancement begins to develop in the center of the channel
due to the enhanced fluid velocity there. All of this is as
qualitatively expected.

Finally, we perform invasion simulations for a two-
dimensional inert porous medium. Here the medium is made
up of approximately 30 × 15 randomly distributed circular
disks (see Fig. 10) on a lattice of 400 × 200 grid points. The
invading fluid is injected into the porous medium initially filled
with a defending fluid. While being injected, the invading
fluid is allowed to mix with the defending fluid up to a
solubility limit of α2 = 0.05. The wetting properties of the
porous medium are again modeled by the bounceback rule
described earlier with a contact angle of θw = 0. We perform
two simulations with a fixed injection rate and interface
tension, maintaining the same capillary number Ca = 10−2

for both simulations. The only difference between the two are
the diffusivity of the invading phase in the defending one.
Figure 10 shows a comparison of the initial invasion process
in the two simulations. The left column of the figure shows
the time evolution of a process where Pe = 7 × 10−1, while
in the right column the Pe = 7 × 10−2. The most obvious
difference between the two simulations is the width of the
diffusion front. Since the solubility limit α2 of the invading
phase in the defending one is relatively low, there are limited
changes in the invasion structure due to the differences in
diffusivity. However, it is possible to see signs of the higher
rate of dissolution, as is expected, in the invasion structure of
the process having a lower Péclet number. This is easiest to
see when comparing the two bottom panels of Fig. 10. Since
the invading fluid is being injected into the porous material
at the same constant rate in the two simulations, there should
at a given time be the same amount of invading fluid in both
systems so long as no injected fluid has reached the outlet.
Due to the higher dissolution rate in the process depicted in
the right column in Fig. 10, the average position of the invasion

front at a given time is observed to lag slightly behind that of
the process shown in the left column.

V. CONCLUSION

A lattice Boltzmann method has been introduced that allows
for diffusive mixing between the two fluids during two-phase
flow. Numerical examples of bubble evaporation and how
concentration profiles in flowing fluids depend on Péclet
number and capillary number were presented. The algorithm
is directly applicable to problems such as how flowing bubbles
dissolve their contents into the surrounding fluid and how one
fluid invades another in porous media.

The essence of the algorithm is to define two regions in
the fluid system: (i) a finite-width interfacial region separating
the fluids in which both color separation and surface tension
are allowed for and (ii) all other regions in which the binary
fluids behave as being perfectly miscible with concentrations
governed by the advection-diffusion equation. The location of
the interfacial region is defined by giving the concentration
level of one of the fluids at the boundary as fixed inputs. These
concentration levels at the boundary between the two regions
define the equilibrium solubility level in each fluid. It was
not found necessary to perform special interpolation between
node points to define the precise position of the concentration
surfaces at the limits of the interfacial region. However, it was
observed that as the solubility levels increased to above around
10%, the transition of diffusion from the interfacial zone to the
miscible zone could be too abrupt if the transition zone was
too narrow. The result was anomalous (noisy) concentration
values near the edge of the interfacial region. This numerical
artifact was avoided by simply decreasing the parameter β in
the recoloration step, which has the effect of widening, and
therefore smoothing, the transition between the regions.

In the paper the algorithm was used to simulate a simple
analytically solvable problem, before applying it to situations
of bubble evaporation and situations of invasion processes
where dissolution occurs. Future research involving this
algorithm could be to allow for the surface tension and possibly
contact angle to change as the fluids diffusively equilibrate.
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APPENDIX A: CHAPMAN-ENSKOG EXPANSION OF THE
LATTICE BOLTZMANN EQUATION

Having an LBE

jα(x + cα 
t,t + 
t) − jα(x,t)

= λ[jα(x,t) − j eq
α (x,t)] + 
jF

α (x,t), (A1)
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0.0 0.01 0.02 0.03 0.04 0.05ϕ 0.0 0.01 0.02 0.03 0.04 0.05ϕ

FIG. 10. (Color online) For a capillary number Ca = 10−2, two invasion processes, where partial fluid dissolution occurs, are compared
at different times. In both processes, an invading fluid is, while being injected from the left side of a porous medium, dissolving into the
defending fluid. The porous structure is shown as white areas outlined in black. Each column shows one experiment where the images are
ordered, from the top, by increasing time. The two pictures in each row depict the same instants in time. The invasion structure, i.e., the pure
invading fluid, is presented in blue (dark gray), extending from the left side of the system. The invading fluid dissolved in the defending one is
represented by a linear color scale (grayscale) given below the last image in each column. The darkest shade represents 0.5 � ϕ � α2 = 0.05,
while the lightest shade represents ϕ = 0. The left column shows the structure evolution of an invasion process characterized by Pe = 7 × 10−1

(Jx = 10−3, ν = 10−1, σ = 10−2, and D0 = 10−2). In the right column, a similar process with Pe = 7 × 10−2 (Jx = 10−3, ν = 10−1, σ = 10−2,
and D0 = 10−1) is presented.
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where jα ∈ {fα,gα} and λ ∈ {λν,λD}, performing a Chapman-
Enskog expansion will retrieve the desired continuum dynam-
ics equations presented in Eqs. (1)–(4). This may be done by
introducing an expansion parameter ε such that

jα =
∞∑

n=0

εnj (n)
α , (A2)

∂t =
∞∑

n=1

εn∂tn and ∂i =
∞∑

n=1

εn∂in. (A3)

The parameter ε is often taken to be proportional to the
Knudsen number, which is here the ratio of the lattice spacing
to a characteristic macroscopic length scale.

The Taylor series

jα(x + cα
t,t + 
t) =
∞∑

m=0

(
t)m

m!
Dm

α jα(x,t) (A4)

gives, through second order in 
t , the following hierarchy of
LBEs at increasing orders of ε:

O(ε0) : j (0)
α = j eq

α , (A5)

O(ε1) : 
tDα1j
(0)
α = λj (1)

α + 
jF (1)
α , (A6)

O(ε2) : ∂t2j
(0)
α = λ


t
j (2)
α − Dα1

[(
1 + λ

2

)
j (1)
α

+1

2

jF (1)

α

]
, (A7)

where we have adopted a Chapman-Enskog multiscale expan-
sion where ∂t = ε∂t1 + ε2∂t2 + O(ε3) and ∂i = ε∂i1 + O(ε2).
In addition, we have used that 
jF

α = ε
jF (1)
α and defined

Dα =
∞∑

n=1

εnDαn ≡
∞∑

n=1

εn(∂tn + cαi∂in). (A8)

This derivative should not to be confused with the macroscopic
material derivative Dt ≡ (∂t + ui∂i). In the following we will
also need that∑

α

wα = 1, (A9)

∑
α

wαcαicαj = c2
Sδij , (A10)

∑
α

wαcαicαj cαkcαl = c4
S(δij δkl + δikδjl + δilδjk), (A11)

while similar sums over an odd number of the velocity vectors
ci are equal to zero. We will use these equations and properties
to derive the continuum dynamics equations in Appendixes B–
D.

APPENDIX B: DERIVATION OF THE
NAVIER-STOKES EQUATIONS

The distribution function of the combined fluids fα obeys
in both region I and region II an LBE of the form presented
in Appendix A. If we now replace the generic distribution jα

with the one of the combined fluids, a direct sum of Eq. (A5)

over all lattice directions combined with Eq. (10) yields

∑
α

f (0)
α = ρ, (B1)

so ∑
α

f (n)
α = 0 for n � 1. (B2)

Similarly, a weighted sum of Eq. (A5) using cαi as weights
leads to ∑

α

f (0)
α cαi = ρui. (B3)

Combined with Fi = εFi1 and the definition
ρui = ∑

α fαcαi + 
tFi/2, this gives us that

∑
α

f (1)
α cαi = −
tFi1/2 (B4)

and ∑
f (n)

α cαi = 0 for n � 2. (B5)

We will further need the two additional results∑
α

f (0)
α cαicαj = c2

Sρδij + ρuiuj , (B6)

∑
α

f (0)
α cαicαj cαk = c2

Sρ(δijuk + δikuj + δjkui). (B7)

A direct sum of Eq. (A6) over all the lattice directions,
combined with Eq. (12), yields

∂t1ρ + ∂j1(ρuj ) = 0. (B8)

A weighted sum of Eq. (A6) using cαi as weight leads to

∂t1(ρui) + ∂j1
(
c2
Sρδij + ρuiuj

) = Fi1, (B9)

where we again have used Eq. (12). Identifying p = ρc2
S as

the pressure, which is consistent with cS being the speed of
sound, shows that the previous equation may be considered a
form of Euler’s equation where c2

Sρδij + ρuiuj is identified
as the component form of the inviscid momentum flux tensor
�

(0)
ij .
The direct sum of Eq. (A7) gives

∂t2ρ = 0, (B10)

while the weighted sum of Eq. (A7) using cαi as weight yields

∂t2(ρui) = −∂j1

∑
i

[(
1 + λν

2

)
f (1)

α + 1

2

f F (1)

α

]
cαicαj .

(B11)
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By using Eq. (A6) to express f (1)
α , combined with Eqs. (B6)

and (B7), this equation may be rewritten as

∂t2(ρui) = −∂j1

{(
1

λν

+ 1

2

)
c2
S
t

[
∂i1(ρuj ) + ∂j1(ρui)

+ ∂t1

(
ρuiuj

c2
S

)]
− 1

λν

∑
α


f F (1)
α cαicαj

}
.

(B12)

Employing again the expression for 
f F
α from Eq. (12),

combined with the continuity equation (B8) and Euler’s
equation (B9), we have that

∂t2(ρui) = ∂j1

{
ρν

[
∂i1uj + ∂j1ui + ∂k1(ρuiujuk)

ρc2
S

]}
,

(B13)

where we also have defined ν ≡ −(1/λν + 1/2)c2
S
t . If we

neglect the last unwanted O(u3) term we have obtained
exactly the expression we have been seeking. Observe that
the force term, 
f F

α introduced by Guo et al., results in
no unwanted body force terms in the continuum equations.
Bringing the above equations together through O(ε2), using
that ∂t = ε∂t1 + ε2∂t2 + O(ε3) and ∂i = ε∂i1 + O(ε2), gives

∂tρ + ∂i(ρui) = 0, (B14)

ρ
(
∂tui + uj∂jui

) = −∂ip + Fi

+ ∂j {ρν[∂iuj + ∂jui

+O(u3)]} + O(ε2), (B15)

which are the Navier-Stokes equations we wanted to retrieve.
On comparison to Eq. (2) combined with Eq. (3), we see that
in this LB model the bulk viscosity would, in a d-dimensional
system, be directly related to the shear viscosity as ξ = 2ρν/d .

APPENDIX C: DERIVATION OF THE
ADVECTION-DIFFUSION EQUATION

In region I, the zone away from the fluid-fluid interface,
the distribution function for one of the fluid components gα

(here denoted as the blue fluid component) obeys an LBE of
the form presented in Appendix A. If we replace the generic
jα with the distribution function gα , a direct sum of Eq. (A5)
over all lattice directions combined with Eq. (27) gives∑

α

g(0)
α = ρB (C1)

and therefore ∑
α

g(n)
α = 0 for n � 1. (C2)

Further, one also has∑
α

g(0)
α cαi = ρBui. (C3)

A direct sum of Eq. (A6) for gα over the lattice directions
α, combined with Eq. (26), yields

∂t1ρB + ∂j1(ρBuj ) = 0, (C4)

while a direct sum of Eq. (A7) for gα gives

∂t2ρB = −
∑

α

Dα1

[(
1

λD

+ 1

2

)(

tDα1g

(0)
α − 
gF (1)

α

)]

− 1

2

∑
α

Dα1
gF (1)
α . (C5)

Through inserting the expression for g(0)
α = g

eq
α from Eq. (27)

and using Eqs. (26), (C4), (B8), and (B9) and that ρB = ϕρ,
we obtain after some algebra

∂t2ρB = −∂i1

[(
1

λD

+ 1

2

)
c2
S
tρ∂i1ϕ

+
(

1

λD

+ 1

2

)
ϕ
tFi1 − 1

λD

∑
α


gF (1)
α cαi

]

= −∂i1

[(
1

λD

+ 1

2

)
c2
S
tρ∂i1ϕ

]
. (C6)

Bringing it together through O(ε2), using that
∂t = ε∂t1 + ε2∂t2 and ∂i = ε∂i1, gives

∂tρB + ∂i(ρBui) = ∂i(D0ρ∂iϕ), (C7)

where D0 is the diffusion coefficient of blue particles given by

D0 = −
(

1

λD

+ 1

2

)
c2
S
t. (C8)

By using the conservation of mass given by Eq. (B14) and
the definition ρB = ϕρ, some final rearrangement gives the
advection-diffusion equation in exactly the desired form

ρ(∂tϕ + ui∂iϕ) = ∂i(D0ρ∂iϕ). (C9)

This result through O(ε2) has no extra unwanted error terms
to this order.

APPENDIX D: CONTINUUM LIMIT OF THE PHASE
SEPARATION DYNAMICS AT THE FLUID-FLUID

INTERFACE (REGION II)

In the phase separation zone of region II we have, for the
blue fluid distribution, that

gα(x + cα
t,t + 
t) = ϕfα(x,t) + ϕ
t

2c2
S

wαcαjFj

+βhϕρwα

cαini

|cα||n| , (D1)

where ni are the vector components of the color gradient n.
Using the expansions of Eqs. (A2)–(A4), through second order
in 
t , the following hierarchy of equations at increasing orders
of ε emerge:

O(ε0) : g(0)
α = ϕf (0)

α + βhϕρwα

cαini

|cα||n| , (D2)

O(ε1) : g(1)
α + 
tDα1g

(0)
α = ϕf (1)

α + ϕ
t

2c2
S

wαcαjFj1, (D3)

O(ε2) : g(2)
α + 
t∂t2g

(0)
α = −
tDα1g

(1)
α

+1

2
(
t)2D2

α1g
(0)
α + ϕf (2)

α . (D4)
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In the following we will, in addition to Eqs. (A9) and (A10),
need that ∑

α

wα

cαicαj

|cα| = cSγ δij . (D5)

The equivalent sums over odd numbers of cα are zero (even
if normalized by |cα|). The parameter γ is particular to the
D2Q9 model and comes out as

γ =
√

3(4 + √
2)

18
= 0.520 982 9. (D6)

A direct sum of Eq. (D2) over all lattice directions,
combined with Eqs. (B1) and (B2), establishes that∑

α

g(0)
α = ϕρ (D7)

and ∑
α

g(n)
α = 0 for n � 1. (D8)

Weighted sums of Eq. (D2), using cαi and cαicαj as weights,
lead to ∑

α

g(0)
α cαi = ϕρui + βρcSγ hϕ

ni

|n| (D9)

and ∑
α

g(0)
α cαicαj = ϕρc2

Sδij + ϕρuiuj , (D10)

respectively. Higher-order moments will not be required to
obtain results through O(ε2).

With the above established, the hierarchy of equations can
be summed to produce the corresponding continuum laws. A
direct sum over all lattice directions of Eq. (D3) yields

∂t1(ϕρ) + ∂i1(ϕρui) = −∂i1

(
βcSγρhϕ

ni

|n|
)

. (D11)

Here βcSγρhϕni/|n| corresponds to the vector components
of an antidiffusive flux of blue particles from low blue
concentrations to high blue concentrations. The amplitude
of this antidiffusive flux is set by the control parameter β.
The window function hϕ maintains the limits of region II
at the set blue concentrations of α1 and α2. Its shape is
also key to producing the antidiffusion. Once the differential
operator of Eq. (D11) is distributed on the right-hand side,
a term −βcSγρ|∇ϕ|(∂hϕ/∂ϕ) acts to increase blue on the
high-blue-concentration side of region II and reduces blue
on the low-concentration side because ∂hϕ/∂ϕ is negative
on the high-blue-concentration side and positive on the low-
concentration side. We also obtain another term βcSγρhϕκ ,
where κ−1 is the radius of curvature given by Eq. (30). In cases
where the radius of curvature becomes infinite (a flat interfacial
region), this term is zero. For finite curvature, whether this term
is increasing or decreasing, blue concentration will depend on
the sign of the curvature (e.g., whether the blue fluid is wetting
or nonwetting.). In addition, a third term −βcSγ hϕ(ni/|n|)∂iρ

is obtained. This term is negative everywhere in region II.

A direct sum of Eq. (D4), using Eq. (D8), gives

∂t2(ϕρ) = −∂i1

∑
α

cαig
(1)
α

− 1

2

t

∑
α

(∂t1 + cαi∂i1)2g(0)
α (D12)

= 
t∂i1

(
ρc2

S

2
∂i1ϕ

)

−
t(∂i1ui − ∂t1 + ui∂i1)∂j1

(
βcSγ hϕρ

nj

|n|
)

.

(D13)

Going from Eq. (D12) to Eq. (D13) requires using nearly all
the above results as well as the continuity equation (B8) and
Euler’s equation (B9).

Bringing it all together with ∂t = ε∂t1 + ε2∂t2 and ∂i = ε∂i1

and using mass conservation ∂tρ + ∂i(ρui) = 0 gives

ρ(∂tϕ + ui∂iϕ) = 
tc2
S

2
∂i

(
ρ∂iϕ − 2βγρhϕni

cS
t |n|
)

−
t(∂iui − ∂t + ui∂i)∂j

(
βcSγ hϕρ

nj

|n|
)

.

(D14)

This is the final continuum statement, made without approx-
imation other than the O(ε3) truncation errors, for how blue
fluid particles are conserved in the LB model of region II. The
key physics is contained in the balance of the fluxes inside
the divergence of the first term on the right-hand side. The
spatial distribution of ϕ across region II adjusts itself so that
either blue is fluxing from high to low concentrations or the
diffusion and antidiffusion are in exact balance in a manner
that maintains the color separation across the transition zone.

APPENDIX E: WIDTH OF THE FLUID-FLUID
INTERFACE (REGION II)

We may, from an analytical argument, estimate the width
of region II in a stationary state where there is no net flux
from region II into region I. From Eq. (D14) we observe that
at the limits of region II where hϕ → 0, the antidiffusive flux
vanishes so that |∇ϕ| → 0, as the limits are approached. The
effect is that ϕ only asymptotically approaches the limit values
of α1 and α2 and, in this sense, the width of region II would
become infinite in the continuum limit if we had not introduced
the second thresholding condition |n| > n̂ in Eq. (22). Here n̄

is a small but finite number.
To obtain an analytical expression for the width of the

interface region, Eq. (D14) can be used in the stationary state
to estimate that, at the limits of region II, the function hϕ takes
the value

hϕ||n|=n̄ = cS
t

2βγ
n̄ (E1)

instead of the original hϕ = 0. Using the quadratic form of hϕ

given in Eq. (33) and solving Eq. (E1) for the values of ϕ at

013306-13



OLAV AURSJØ AND STEVEN R. PRIDE PHYSICAL REVIEW E 92, 013306 (2015)

the limits gives

ϕ1 = α1 − (α1 − α2)cS
t

2βγ
n̄, (E2)

ϕ2 = α2 + (α1 − α2)cS
t

2βγ
n̄ (E3)

to leading order in the small number n̄. The width W of the
region is obtained by integrating the stationary balance be-
tween the diffusive and antidiffusive fluxes given in Eq. (D14)
to obtain

∫ ϕ1

ϕ2

dϕ

hϕ

= 2βγ

cS
t

∫ W

0
dx. (E4)

Carrying out the integral and using Eqs. (E2) and (E3) gives

W = cS
t(α1 − α2)

βγ
ln

(
2βγ

cS
tn̄

)
(E5)

to leading order in n̄. Table II compares this analytical
estimate of the width of the interface to the width measured

TABLE II. Width of region II with ϕ1num and ϕ2num being the
numerical concentrations just within region I, Wana the analytical
width of Eq. (E5), and Wnum the numerically observed width.

n̄ β α1 α2 ϕ1num ϕ2num Wana Wnum

10−2 1.0 1.0 0.01 0.9991295 0.0101996 5.70 6
10−3 1.0 1.0 0.01 0.9999582 0.0100090 8.23 8
10−4 1.0 1.0 0.01 0.9999981 0.0100090 10.75 9

10−2 1.0 1.0 0.10 0.9996064 0.1000005 5.18 5
10−3 1.0 1.0 0.10 1.0000005 0.1000000 7.48 7
10−4 1.0 1.0 0.10 1.0000005 0.1000000 9.78 7

10−3 0.8 1.0 0.01 0.9997631 0.0100946 9.07 10
10−3 0.6 1.0 0.01 0.9989784 0.0105631 11.62 12
10−3 0.4 1.0 0.01 0.9986830 0.0109073 16.41 18

numerically using the two region II criteria given by Eqs. (19)
and (22). Numerically, the finite resolution of the system
causes the interface width to become less dependent on n̄

as the thresholding value decreases. In practice, to make the
interface wider, one must lower the value of β as shown in the
table.
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