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Combined deterministic-stochastic framework for modeling the agglomeration of colloidal particles
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We present a multiscale model, based on molecular dynamics (MD) and kinetic Monte Carlo (kMC), to study
the aggregation driven growth of colloidal particles. Coarse-grained molecular dynamics (CGMD) simulations
are employed to detect key agglomeration events and calculate the corresponding rate constants. The kMC
simulations employ these rate constants in a stochastic framework to track the growth of the agglomerates over
longer time scales and length scales. One of the hallmarks of the model is a unique methodology to detect and
characterize agglomeration events. The model accounts for individual cluster-scale effects such as change in size
due to aggregation as well as local molecular-scale effects such as changes in the number of neighbors of each
molecule in a colloidal cluster. Such definition of agglomeration events allows us to grow the cluster to sizes that
are inaccessible to molecular simulations as well as track the shape of the growing cluster. A well-studied system,
comprising fullerenes in NaCl electrolyte solution, was simulated to validate the model. Under the simulated
conditions, the agglomeration process evolves from a diffusion limited cluster aggregation (DLCA) regime to
percolating cluster in transition and finally to a gelation regime. Overall the data from the multiscale numerical
model shows good agreement with existing theory of colloidal particle growth. Although in the present study
we validated our model by specifically simulating fullerene agglomeration in electrolyte solution, the model is
versatile and can be applied to a wide range of colloidal systems.
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I. INTRODUCTION

The dispersion and aggregation of colloidal particles such as
gold, silver, iron, polystyrene, silica, and fullerene have sub-
stantial impacts on biological systems, engineering devices,
and on the environment [1–16]. For instance, the preparation
and delivery of drugs, solution-based fabrication of electronic
devices, and purification of water through precipitation of
colloidal impurities are greatly influenced by the stability
and growth of colloidal particles in solutions. More specific
examples of the applications of colloidal aggregation include
the solution crystallization of pharmaceutical drugs and fabri-
cation of thin film flexible electronic devices using solvent-
based techniques [1–6,14–16]. The processing conditions
for solvent-based fabrication, such as the choice of solvent
medium and the concentration of colloidal particles, influence
the growth mechanism of the particles and therefore their size
distribution. In several of the above mentioned applications,
controlled growth of the particles is necessary in order to
attain optimum morphological structure of the aggregates.
Hence, significant research efforts have been directed towards
understanding agglomeration mechanisms in order to control
the size and shape of resulting aggregates [1,2,17–25].

Both experimental and numerical techniques have been
widely used to study the mechanisms of agglomeration
of colloidal particles. These studies are in consensus that
the interaction energy between colloidal particles plays an
important role [22–31]. Typically, the relative magnitude of
attractive van der Waals (VDW) and repulsive Coulombic
forces between colloidal particles governs the agglomeration
behavior of the particles [32,33]. Agglomeration occurs when
the activation energy Eb, due to the long-range Coulombic
repulsive interaction between approaching particles, can be
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overcome. The likelihood that two particles will agglomerate
and stick to each other is proportional to e−(Eb/kBT ), where kB is
Boltzmann’s constant and T is the temperature of the system.
If the long-range Coulombic repulsions are fully screened,
Eb � kBT , thus eliminating the energy barrier. Under such
conditions, the short-range VDW attractions are dominant and
lead to agglomeration. Due to the absence of the energy barrier,
the agglomeration of the particles is completely governed by
their diffusion resulting in a sticking probability of unity [32].
Such an agglomeration process is said to be diffusion limited
cluster aggregation (DLCA), where particles diffuse randomly
and stick together when they are in proximity and agglomerate
spontaneously [17,18,20,21,34,35]. However, partial screen-
ing of electrostatic repulsion could lead to Eb � kBT . Due
to the presence of an energy barrier, the sticking probability
of particles becomes less than unity [17,32]. Under such
conditions, the agglomeration process, which is slower than
DLCA, is referred to as reaction limited cluster aggregation
(RLCA) [19,23,36,37]. Usually DLCA and RLCA processes
are irreversible due to the presence of an attractive well [17,35].
However, relatively weak attractive forces and sufficiently high
temperature increases the probability of the particles to escape
from the attractive well and break up. Aggregation, under such
conditions, is reversible and the particles restructure within the
clusters or even dissociate from each other [17,30,38,39].

Both DLCA and RLCA mechanisms have been studied
extensively for dilute systems, where the average distance
between the clusters is greater than their size. However,
nondilute conditions lead to increased connectivity of clusters
that eventually form networks. In particular, the aggregation
results in very compact gel-like structures [40–44] if the
initial volume fraction of the colloidal particles is greater than
∼0.05 [41,45]. Several studies have classified an intermediate
process, referred to as percolation, during the formation
of gels from solution. [40,46,47] The size and shape of
agglomerates of colloidal particles resulting from the above
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mentioned aggregation processes (DLCA, RLCA, percolation,
and gelation) are well described by developing Monte Carlo
based models of the corresponding processes, i.e., DLCA
[17,18,20,21,34], RLCA [19,35,36], percolation [40,48,49],
and gelation [46,50,51].

Due to their wide scale applications, the aggregation
mechanism and size and shape of certain colloidal par-
ticles, such as gold, silver and silica, have been widely
investigated using experiments and the above mentioned
models [17,22–24,26–28,52]. In recent times, the aggregation
behavior of fullerenes and its derivatives in solvents has
generated significant scientific interests in myriad biological
and environmental applications as well as in flexible electronic
devices [1,2,10,11,53]. Specifically, solution-based processing
to produce thin nanocomposite films of fullerene derivatives
and conductive polymers is regarded as a cost-effective
approach for manufacturing flexible electronic devices. For
instance, organic photovoltaics (OPVs) employ photoactive
layers comprising fullerene derivatives and polymers that are
processed from a solution. The morphology of the solution-
processed photoactive layers in OPVs is greatly influenced by
the nature of agglomeration of fullerene derivatives in solvents
[54–58]. On the other hand, the agglomeration mechanism
of fullerene particles also determines the level of possible
toxicological effects caused by unintended discharge of the
particles in aquatic environments [1,3,10,11]. The aggregation
of fullerenes and their derivatives therefore presents an
interesting scientific problem in the realm of colloidal systems,
with several important applications, and was therefore chosen
as a model system in the present study.

Several studies have described agglomeration mechanism
of fullerene particles in aquatic media relevant to environments
and biological systems [1–3,11]. These studies have shown
that the presence of salts promotes the agglomeration of
fullerene and have predicted critical concentrations of the
salts, at which a slow RLCA regime turns into a DLCA
regime. However, the effect of concentration of fullerene
on the critical salt concentrations and on the agglomeration
process in aqueous media is still not understood well. Based
on previous studies of fullerenes in organic solvents, where
salts are typically not introduced, it is evident that increase
in fullerene concentration enhances the aggregation rate of
fullerenes [55,59–62]. Occasionally the aggregation happens
so fast that the residence time of distinct fullerene particles is
in the order of nanoseconds (ns). It is extremely difficult to
capture such fast dynamics with experiments. The stochastic
agglomeration models mentioned above cannot accurately
predict the aggregation behavior of fullerene particles in a
medium, since these models do not consider all relevant
short range VDW and long-range Coulombic interactions
among particles and the medium. Moreover, these stochastic
agglomeration models are unable to track the evolution of the
particles with respect to physical time.

On the other hand, molecular dynamics (MD), a determin-
istic technique, accounts for the intermolecular interactions
and can be useful in studying the kinetics of fullerene
agglomeration [63]. In OPV applications, MD has been
widely used to study the morphology of solution-processed
photoactive layers comprising fullerene derivatives, such as
[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) [61,62

64–67]. The objective of these studies was to determine
the effect of processing conditions on the shape and size
distribution of aggregates of fullerene derivatives and the
resulting morphology of the photoactive layers. However, it
is necessary to analyze large aggregates of the particles to
predict the morphology of the photoactive layers at length
scales relevant to OPVs. Obtaining large particle agglomerate
structures of size in the order of 100 nm, the thickness of
the photoactive layer, is not feasible using MD simulations.
Hence, a reasonably comprehensive multiscale model needs to
be developed and employed to investigate particle aggregation
at large length scales, while accounting for long and short range
atomistic interactions. The inherent limitations of previously
reported experimental and numerical modeling based studies
underscore the necessity of a comprehensive model, which can
predict the size and shapes of the agglomerates at large length
and time scales and determine the underlying mechanism for
particle growth at various conditions.

In the current study we aim to combine MD, which can
account for intermolecular interactions, with a stochastic
technique, kinetic Monte Carlo (kMC), which can access the
dynamics of particle agglomeration at large length and time
scales. We demonstrate that the multiscale model can predict
and characterize the evolution of size and shape of fullerene
agglomerates from nano- to near micrometer length scales. The
model can further provide a detailed description of the growth
process at various conditions, such as the medium containing
the fullerene particles and initial concentration of fullerene and
salt or other chemical species present in the medium. In Sec. II
we extensively describe the simulated systems, techniques,
and assumptions we considered in developing the multiscale
model. The results, obtained from the model, are validated with
the currently available experimental and numerical studies
and discussed in detail in Sec. III. It should be noted that
fullerene has been chosen as a model system for the study.
The model is, however, not limited to describing only fullerene
agglomeration and can be used for a range of systems where
agglomeration of small molecules is of importance.

II. METHODOLOGY

A. Theory: Kinetic Monte Carlo

In order to characterize the structure of fullerene agglom-
erates that range in size from 1 to 100 nm and understand
the underlying growth mechanism in electrolyte solutions, we
developed a new model that employs the kMC method. Particle
growth in colloidal systems usually consists of a sequence
of discrete transformations from one agglomerate size and
shape to another, characteristic of a simple Markovian walk
[68], where the evolution of the agglomerate state with time is
governed by a master equation:

∂PA(t)

∂t
= −

∑
B

WA→B PA(t) +
∑
B

WB→APB(t), (1)

where A and B are successive states of the system, PA(t)
is the probability that the system is in state A at time t ,
and WA→B is the probability per unit time that the system
will undergo a transition from state A to state B [69–72].
WA→B is also called transition rate constant kA−B . The typical
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number of states in models for cluster formation is so huge that
an analytical solution of the corresponding high-dimensional
master equation is not feasible. In contrast, a kMC algorithm
helps to achieve a numerical solution to this master equation by
generating an ensemble of trajectories, where each trajectory
propagates the system correctly from state to state in the
sense that the average over the entire ensemble of trajectories
yields probability density functions PA(t) for all states A that
fulfill the master equation [69–71]. The probability distribution
function for the time of transition from state A to state B

follows an exponential distribution:

PA→B(�t) = ktotal e −ktotal �t , (2)

where ktotal = ∑E
j=1 (kA−B)j is the sum of the E possible

transition rate constants. The probability of transition from
state A to state B is proportional to its rate constant. Therefore,
the executed process e (transition from A → B) satisfies the
following condition:

e−1∑
j=1

(kA−B)j < u1ktotal �
e∑

j=1

(kA−B)j , (3)

where u1 ∈ (0, 1] is a uniform random number. For each
transition event, a waiting time (�t) is sampled using the
following exponential distribution:

�t = − log u2

ktotal
, (4)

where u2 ∈ (0, 1] is a uniform random number.
Defining the events associated with individual agglomer-

ation steps and finding the rate constants kA−B of the events
are necessary to develop a model that utilizes kMC technique
to simulate fullerene agglomeration. The rate constants can
be obtained from experiments, transition state theory, MD
simulations, or other schemes [53,69,73–79]. In this work,
kA−B of all elementary processes related to the growth of
fullerenes were calculated from coarse-grained molecular
dynamics (CGMD) simulations of fullerene nanoparticles in
electrolyte solutions. CGMD is a well-established method,
which reduces the number of interacting sites in molecules to
some beads instead of all the atoms, while maintaining the
accuracy in the dynamics and structural properties desired
from a simulation. Performing CGMD simulations in the
current study allowed us to run simulations of larger domains,
which significantly increased the number of events sampled
for transitions from one cluster size and shape to another. The
details of the computational models used for implementing
CGMD and kMC are provided below.

B. Coarse-grained molecular dynamics simulations

In order to calculate rate constants of events related to
the growth of fullerenes, we simulated systems comprising
fullerenes in a monovalent (NaCl) electrolyte solution. We
employed the Martini force field parameters for fullerenes,
water, and NaCl [80–82]. Our simulated systems comprised
of 1296 fullerene molecules, where each fullerene consisted of
16 beads (4:1 mapping), in 170 856 solvent beads, where each
bead represents 4 water molecules. The corresponding mass
fraction of fullerenes in the simulated systems was 7%. Na+

FIG. 1. The initial distribution of fullerene clusters modeled in
CGMD simulations is shown. Here P represents the percentage of
clusters of different sizes, defined by the number of fullerenes in a
cluster.

and Cl− ions were added to the solution and the numbers were
varied from 162 to 5184 to simulate electrolyte concentrations
from 0.01 to 0.4 M. In the Martini force field, each bead of Na
and Cl represents single Na+ and Cl− ions. We simulated
three distinct systems, comprised of fullerenes, water, and
0.01, 0.1, and 0.4 M concentrations of electrolytes using
CGMD.

Experimental studies have shown that the fullerene ag-
glomeration mechanism changes from slow RLCA to fast
DLCA with increase of NaCl salt concentrations [1,2]. For
a dilute system with fullerene mass fraction of 0.001%, the
critical salt concentration at which the transition occurs, was
measured as ∼0.1 M. To compare the effect of electrolyte
concentration on fullerene agglomeration at high fullerene
concentrations with that observed for dilute solutions (i.e., low
fullerene concentrations) in the experimental studies, a range
of concentration of electrolytes were simulated. However, in
CGMD simulations, it is not feasible to directly follow the
experimentally observed distributions of fullerene clusters,
where the average hydrodynamic radius of fullerene particles
is large (∼75 nm). Therefore, we simulated systems with an
initial distribution of fullerene clusters, which qualitatively
mimics that in the experimental studies, albeit at a reduced
length scale as shown in Fig. 1. The initial configuration
comprised 216 fullerene clusters of varying sizes that were
distributed randomly in the simulated systems. The average
cluster size corresponds to six fullerenes.

The cutoff distance for nonbonded interactions for the
CGMD simulations was 1.5 nm. In order to be consistent
with the studies related to the CGMD model of fullerenes
in water [81], a shift function was applied for electrostatic
interaction from 0 nm and for Lennard-Jones (LJ) interactions
from 0.9 nm. We performed an equilibration run (300 ps)
until the total energy of each system reached a minimal value
followed by a NVT production run for at least 50 ns. We used
a stochastic velocity rescaling thermostat [83], with relaxation
time 1 ps, to maintain constant temperature of 310 K. The
equations of motion were integrated with a time step of 0.02
ps as chosen in the studies pertinent to CGMD simulations of
fullerenes in water [81]. The particle mesh Ewald (PME) [84]
method was used to account for the long-range electrostatic
interactions. All CGMD simulations were performed with the
GROMACS software package (v4.6.1) [85].

The formation of fullerene agglomerates is a dynamic
process, where sizes and shapes of clusters and the number
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FIG. 2. Time evolution of the average fullerene cluster size,
during CGMD simulation, is shown for a representative system with
0.1 M electrolyte concentration.

of neighbors of fullerenes in clusters change with time.
Such change in cluster size causes the initial distribution
of fullerene clusters to shift towards right with time when
the agglomeration occurs irreversibly [2]. Figure 2 shows
the evolution of the average size of fullerene clusters in the
simulated system with 0.1 M salt concentration, chosen as a
representative system. Although marginal dissociation occurs
during the growth of fullerene agglomerates, it is evident from
the figure that the association of fullerene clusters is the domi-
nant process compared to dissociation. Moreover, the binding
energy between fullerenes in water is ∼15 kJ/mol > kBT

[81]. Hence, it is unlikely for fullerene particles to dissociate
after they aggregate. Therefore, we assumed irreversible
aggregation of fullerene particles in our model, as done by
numerous other studies [17,18,21,23,24,35]. We considered
the initial 30 ns of production run of CGMD simulations
to detect events. Since kMC is an event based method,
it is important to obtain as many events as possible with
corresponding rate constants to obtain statistically meaningful
outcomes. Therefore, we made sure that during the sampled
simulation time, we were able to capture sufficient number
of events related to agglomeration of fullerene particles to
calculate corresponding rate constants. Since the time interval
between two consecutive frames in CGMD simulations was
0.02 ps, 30 ns production run generated 1.5 million frames,
comprising the coordinates of the fullerene coarse-grained
beads that were used for calculating rate constants of the
events.

C. Defining events in CGMD simulations

The size of the fullerene particles, as well as the number
of neighbors of individual fullerenes in the particles, changes
due to agglomeration and can be assumed to be indicators of
specific events. Therefore, we describe agglomeration events
based on changes in the size of fullerene clusters and the
number of neighbors of each fullerene in a cluster, which
specifies the local environment of a given fullerene. In order to
detect these events related to the agglomeration of fullerenes
and calculate their rates, we developed an in-house code in
C++. Our in-house code compared number of neighbors of
individual fullerenes and the size of the cluster that contains it,
between two consecutive frames. Specifically, the following
steps were undertaken to determine events and corresponding
rate constants.

(1) Each fullerene at every simulation time frame was
mapped to the size of the cluster that contains it. Any mismatch
of the cluster size between consecutive frames indicates that
the fullerene cluster goes through an event. An event comprises
growth of the cluster via collision and agglomeration with
another cluster. In contrast, no change in the cluster size
indicates either: (a) no fullerene agglomeration occurred;
or (b) agglomeration and dissociation of identical number
of fullerenes occurred simultaneously. Since the duration
between consecutive simulation frames that were sampled was
sufficiently small, we assumed that occurrence of concurrent
agglomeration and dissociation in a cluster is not feasible.

(2) If any change in the size of a fullerene cluster was
detected in step 1, we compared the number of neighbors of
individual fullerenes in that cluster. Fullerenes were consid-
ered neighbors when their centers of mass (COM) distance
was within 1.15 nm in the cluster. For any change in neighbors
of the fullerenes, we checked whether the fullerenes and their
new neighbors were part of a same cluster in the previous
frame. If the fullerenes and the neighbors belonged to a
same cluster in the consecutive frames, it indicates that a
rearrangement of fullerene molecules occurred in the cluster.
Such a rearrangement of molecules in a cluster was not
considered as an event in our model. On the other hand, we
conclude that an event occurred when the new neighbors of
the fullerenes were found to be part of a different cluster in the
previous frame. For convenience, we refer to such a fullerene
as “seed fullerene” and such a neighbor as “added fullerene.”
We denote the number of neighbors of the fullerene before the
agglomeration as ni . The number of neighbors of the fullerene
that is added to the seed fullerene is designated as nj and
the size of the cluster that contains the added fullerene is
designated as S.

Vectors comprising the three parameters (ni , nj , S) were
used to define unique events in our model, where a seed
cluster changed its state from A to B by agglomerating with
an added cluster of size S. Here ni was calculated based on
the seed cluster and both nj and S were calculated based
on the added cluster. It should be noted that two separate
events can be defined when any agglomeration event takes
place, based on which of the two clusters is defined as the
seed cluster. To illustrate this point, Fig. 3 presents schematics
showing examples of events in the model. In the example, a
cluster comprising three fullerenes, where each fullerene has
two neighbors, and another cluster comprising two fullerenes,
where each fullerene has one neighbor, agglomerate to form
a cluster of size 5. According to our definition of events,
two events occur from such a collision, where in event 1:
ni = 2, nj = 1, S = 2 (top panel in Fig. 3), and in event 2:
ni = 1, nj = 2, S = 3 (bottom panel in Fig. 3). That means
event 1 occurs when the cluster comprising three fullerenes is
considered as the seed cluster, while event 2 occurs when the
seed cluster comprises two fullerenes.

D. Calculation of rate constants of events from CGMD
simulations

Following the procedure mentioned above, all possible
clustering events that occur in the CGMD simulations were
captured. The transition rate constant kA−B for any event was
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FIG. 3. The definition of events is illustrated pictorially using
consecutive CGMD frames, with occurrence of an intermediate
clustering event. Two examples of such events are shown in the top
and bottom panels. Each circle represents a fullerene and the number
inside the circle designates the number of neighbors of the fullerene.
For convenience, each cluster is marked with dotted lines.

calculated using the following equation:

kA−B =
∑m=TI

m=1 (eA−B)m

�tMD TI
{∑(f −1)

p=1 (ni )p
(f −1)

} . (5)

Here eA−B is the number of occurrences of event A to
B in 30 ns, �tMD is the time step (0.02 ps) for integration
in the CGMD simulations, and f is the total number of
frames (1.5 million) considered to calculate rate constants
of the events. TI is the total number of intervals considered,
which can be related to the number of frames as TI = (f − 1).
Piana et al. [73,74] used a very similar approach to calculate
rate constants of events relevant to urea crystal growth. A
table of the observed events defined above was created with
corresponding rate constants kA−B obtained by analyzing
the CGMD trajectory. These rate constants were used for
performing kMC simulations described below in detail.

E. Kinetic Monte Carlo simulations

As discussed earlier, a kMC trajectory consists of a
sequence of discrete changes from one cluster size and shape
to another. A random selection of what size and shape is next
visited and the advancement of time after the occurrence of the
corresponding change follow the probabilities prescribed by
the master equation, Eq. (1), and Eqs. (2)–(4). The probability
of transition from one state to another depends on the rate
constants kA−B obtained from Eq. (5). We used a standard

kMC approach to grow fullerene agglomerates using the rate
constants obtained from the CGMD simulations.

According to our kMC model, a seed cluster undergoes
changes in size and shape due to various agglomeration
events. kMC is a stochastic process and each run provides
distinct output. Therefore, sampling sufficiently large number
of trajectories provides more accurate results. In an effort to
obtain statistically reliable data, we performed at least 35 kMC
runs for each system. Each kMC run consisted of 3000 steps,
resulting in large fullerene clusters (size ∼30 000) and was
sufficient to predict the growth mechanisms of the clusters in
the simulated systems. In an effort to generate a meaningful
initial seed cluster and pick clusters that need to be added
to the seed cluster during kMC simulations, we recorded
the configurations of all possible cluster sizes and shapes
generated in the 30 ns run of the CGMD simulations and
created a database of such clusters. We selected one of these
clusters randomly as the initial seed cluster for each kMC run.
Figure 4 shows the procedure that we followed to perform
each kMC step. The diagram shows that we identified an event
to occur at each kMC step following step 2 to step 6. After
identifying the event, it was carried out at step 7. The time
was updated at step 8 after the event occurred. Finally, we
returned to step 2 to perform the next kMC step. We followed
the following procedure at step 7 to carry out the event:

(a) First we obtained nie, nje, and Se for corresponding Re

from the event table.
(b) Then we searched for the fullerenes in the seed

cluster that have nie neighbors. If multiple fullerenes had nie

neighbors, we chose one of them randomly and called it “seed
fullerene.”

(c) From the database of clusters we randomly selected a
cluster of size Se. The selected cluster was considered as the
“added cluster” for the agglomeration.

(d) We searched for the fullerene, which had nje neighbors,
in the cluster chosen in (c). Again, if there was more than one
fullerene, which had nje neighbors, we selected one randomly
and called it “added fullerene.”

(e) We placed the added cluster, chosen in (c), at a random
position adjacent to the seed fullerene, chosen in (b), where
the seed fullerene became the neighbor of the added fullerene,
chosen in (d).

(f) Placing the added cluster randomly near the seed cluster
might result in overlaps of fullerene molecules of the added
cluster with that of the seed cluster. Since such overlaps are
not physically realistic, we performed energy minimization
on the final configuration of the cluster to remove overlaps.
We used the steepest descent energy minimization module
of Gromacs version 4.6.1 for this purpose. The procedures
for removing overlaps performing energy minimization is
discussed elsewhere [86–88].

For the sake of illustration of the kMC model, an example
is shown in Fig. 5. In the example we have a seed cluster
of size 4 from the cluster database. Following steps 2 to
7 in the above mentioned algorithm (Fig. 4) results in an
event where nie = 3, nje = 1, and Se = 2. Figure 5 shows
that there are two fullerenes in the seed cluster that have
nie = 3. One of them (seed fullerene) is selected randomly and
a cluster size of two (since Se = 2) from the database are placed
around the seed fullerene where the added fullerene has one
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FIG. 4. (Color online) The procedure that was followed to perform each kMC step is shown. The arrows indicate the flow of the procedure.

neighbor (since nje = 1) before the agglomeration. We make
sure that after the agglomeration the seed fullerene and the
added fullerene are neighbors. In the event that the fullerenes
in the added cluster overlap with the fullerenes in the seed
cluster, energy minimization is performed to remove overlap.
This new configuration, after the agglomeration, becomes
the initial configuration for the next kMC step. Identical
procedure is followed in the next kMC step to generate another
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FIG. 5. (Color online) Formation of clusters of fullerenes utiliz-
ing the kMC model is shown as an example. Each circle represents a
fullerene and the number inside the circle represents the number of
neighbors of each fullerene in a cluster. For convenience, each cluster
is marked with a dotted line. In this example, after the first kMC step,
the cluster size increases from 4 to 6. The cluster growth continues
until the simulation is stopped. The filled green circle (to the left of the
overlapped fullerene) represents seed fullerene, while the filled blue
circle (below the overlapped fullerene) represents added fullerene.

new configuration. The cluster growth continues until the
simulation is stopped after 3000 kMC steps.

As a simpler approach, we could have defined agglomer-
ation events solely based on change in number of fullerenes
in a cluster. However, such definition would not be able to
select the specific fullerene site (according to our model, it is
seed fullerene) in the seed cluster that collides and binds with
the other fullerene site (according to our model, it is added
fullerene) in the added cluster during the aggregation event.
Losing this critical information would make the site of the
aggregation reaction nonspecific. This would lead to arbitrary
configurations of the subsequent aggregate thus making it
impossible to track the shapes of aggregates. Additionally
any definition of aggregation event based solely on size of
participating cluster would limit the size of the cluster grown
using kMC to the maximum cluster size observed in CGMD
simulations. In contrast, the definition of clustering events that
we employ in our model allows us to grow the fullerene cluster
to sizes that are inaccessible to molecular simulations as well as
track the shape of the growing cluster, thus making it versatile
and applicable to a range of colloidal systems.

We emphasize that the kMC model considered implicit
environment comprising electrolyte solutions, where fullerene
clusters aggregated. In each kMC run, we tracked the growth
of a seed cluster, which was surrounded by more than 150
million clusters obtained by analyzing the 1.5 million frames
from CGMD simulations. The size distribution of the pool of
fullerene clusters, used in kMC simulations for a representative
system with 0.1 M electrolyte, is shown in Fig. 6. The cluster
configurations that participate in an agglomeration event were
not taken off from the system after the event. Therefore, the
model system, in which the seed cluster grows, was assumed to
be a grand canonical ensemble, where there was an unlimited
supply of the fullerene clusters available to react with the seed
cluster in each kMC step.
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FIG. 6. Initial size distribution of clusters considered in kMC
simulations of 0.1 M electrolyte solution, used as a representative
system, is shown. Here P represents the relative occurrence of clusters
of specific sizes in the simulated system, expressed as a percentage
of the total number of clusters.

III. RESULTS AND DISCUSSION

Representative snapshots of a growing fullerene cluster in
0.1 M electrolyte solution, at distinct times during the kMC
simulations, are presented in Fig. 7. In this particular represen-
tation, the initial seed cluster comprising 16 fullerenes, shown
in Fig. 7(a), grows to a cluster of 181 fullerenes [Fig. 7(b)]
after 20 kMC steps. During this process, the largest particle
dimension increases from approximately 4 to 14.6 nm. After
60 kMC steps, the particle grows to a cluster of 710 fullerenes
as shown in Fig. 7(c), where the largest dimension of the
cluster is approximately 29 nm. The ensemble of fullerene
clusters grown under identical conditions, represented by
particles generated from multiple kMC runs after 3000 steps,
each comprised more than 30 000 fullerenes and the average
largest dimension was approximately 80 nm. In perspective,
this dimension is 115 times the diameter of a single fullerene
and inaccessible by the CGMD simulations alone simply con-
sidering the number of beads that would need to be simulated.
The example therefore demonstrates that the model is able to
grow fullerene clusters of significant size and could be possibly
extended to other nanoparticles grown in other solvents. The
objective of this particular study is to further demonstrate the
CGMD-kMC model can predict the size and shape distribution
of particles in solvents at time scales relevant to real-life
applications in solvent-based processing of nanoparticles.

In order to determine the rate of growth of fullerene clusters
as well as the clustering mechanism, we tracked the size and

shape of fullerene clusters as a function of time. The number
of fullerenes in a cluster is designated as the cluster size (N )
while the corresponding radius of gyration (Rg) is used as an
indicator of the shape of the cluster. The cluster size and radius
of gyration was determined at various salt concentrations to
study the effect of electrolytes. As a first step, we compared
the growth characteristics observed in CGMD and kMC
simulations to show that the effect of salt concentration on
the agglomeration of fullerene particles is qualitatively similar
in both deterministic and stochastic frames. Next, we obtained
a relationship between the cluster size and shape as a function
of residence time to characterize the colloidal aggregation
regime for the system. For the purpose of model validation,
we compared the shape and size distribution of fullerene
clusters predicted by our model with that reported by other
modeling-based as well as experimental studies on fullerenes.

We obtained the change in average cluster size of fullerene
with time from both CGMD and kMC simulations, shown
in Fig. 8. In Fig. 8(a) we see that the average cluster size
increases almost linearly with time in CGMD simulations. The
initially dispersed fullerene particles diffuse in the simulated
systems and stick to each other due to VDW attraction force.
As mentioned in Sec. II, the short-range attractive force
that causes the fullerenes to associate is very strong. Hence,
we see in Fig. 8(a) that association of fullerene clusters is
dominant compared to dissociation. Therefore, cluster size
(N ) increases with the advancement of time t . Figure 8(a) also
shows that average cluster size at any given time is lower
for systems with greater salt concentrations. For instance,
the average cluster size is approximately 25 at 30 ns with
0.01 M salt concentration, while it is approximately 22 and
18 at salt concentrations of 0.1 and 0.4 M, respectively.
This observation is not consistent with the previous studies
[1,2,11] on fullerene agglomeration in electrolyte solutions,
where the agglomeration rate increases with the increase of
salt concentration. In general, the purpose of using salts in
the solution is to reduce the electrostatic repulsion among
clusters and enhance the sticking probability of particles.
Hence, increasing salt concentration favors DLCA. However,
such effects occur when the solution is very dilute, with the
mass fraction of fullerene approximately at 0.001% [1,2,11].
In dilute solutions, the fullerene clusters are far apart and
electrostatic repulsions stabilize the dispersion of the clusters.
Hence, high salt concentration is required to screen the
electrostatic repulsion completely and increase the aggregation

FIG. 7. (Color online) Representative clusters from a kMC run are shown to illustrate the growth of fullerene clusters. The initial seed
cluster is shown in (a), where the cluster consists of 16 fullerenes. Using kMC simulation, the initial cluster was grown to a cluster consisting
of (b) 181 fullerenes and (c) 710 fullerenes.
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FIG. 8. (Color online) Average cluster size at various salt concentrations obtained from (a) CGMD and [(b) and (c)] kMC simulations are
shown. Average cluster size with progressing kMC steps is shown in (b), while that at different times is shown in (c).

of fullerene nanoparticles. In contrast, our simulated systems
comprised relatively high fullerene concentration, where the
mass fraction of fullerene was approximately 7%. Due to
such high fullerene concentration, VDW attractions among the
clusters dominated over electrostatic repulsions and decreased
the activation energy for the aggregation. Hence, the fullerene
particles diffused randomly and aggregated to form clusters at a
very low salt concentration (0.01 M). The high concentration of
fullerenes in the systems with 0.1 and 0.4 M salt concentrations
led to the formation of salt clusters that hindered the agglom-
eration of fullerene. Hence, increase of salt concentrations
decreased the agglomeration rate of fullerene in the CGMD
simulations.

It should be noted here that modeling systems with low
concentration of fullerenes is necessary to observe transition
from the RLCA to DLCA regime. However, the time required
to observe transition from slow aggregation process in the
RLCA regime to fast aggregation process in the DLCA
regime is significantly high. Thus modeling such systems
and finding rate constants of relevant events using CGMD is
challenging. In that perspective, our current model is limited
to systems with relatively fast aggregation kinetics, such as
those with high nanoparticle concentrations. However, our
model is effective in understanding sol-gel systems, where the
nanoparticle agglomerates are already in the DLCA regime
and agglomeration is faster compared to the RLCA regime.

While CGMD simulations modeled canonical ensembles
and are limited to a maximum ensemble-averaged cluster size
of ∼25, kMC simulations are able to access growth of fullerene
particles to much greater sizes in electrolyte solutions. We
determined the cluster size after each kMC step and calculated
the average cluster size at distinct steps obtained from 35
kMC runs for each system. The average cluster size increases

almost linearly with kMC steps, shown in Fig. 8(b). Since
the database of clusters that surround a growing cluster in
kMC is predetermined from the CGMD simulations and has
a specific size range, the rate of increase in the cluster size
with kMC steps, averaged over multiple runs, is constant. This
is particularly true if averaging is done over a significant
number of kMC runs. Although Fig. 8(b) shows that the
curves are perfectly linear, it should be noted that minor
fluctuation is noticed for small ranges in kMC steps. Further
details are shown in Fig. S1 in the Supplemental Material
[89]. Comparison between Figs. 8(a) and 8(b) clearly shows
that the kMC simulations are able to grow clusters that are
at least three orders of magnitude larger compared to those
seen in the CGMD simulations. The varied slopes seen in
Fig. 8(b) for distinct salt concentrations illustrate the decrease
of growth rate of fullerene clusters with the increase of salt
concentrations. Qualitatively, the effect of salt concentration
on the agglomeration behavior of fullerene is similar in kMC
and CGMD simulations. However, Figs. 8(a) and 8(b) present
cluster size as a function of physical time and kMC steps,
respectively. For better comparison, a plot of cluster size
obtained from kMC with advancement of physical time is
shown later in Fig. 8(c). We used well-established force fields
in CGMD simulations to observe agglomeration of fullerene.
The qualitative similar trends seen in the results from kMC
and CGMD provide us confidence on the accuracy of our
kMC model. Henceforth, we will discuss the results obtained
from kMC simulations, unless mentioned otherwise.

Figure 8(c) presents the growth of fullerene agglomerate
with time. Since kMC is a stochastic algorithm, the advance-
ment of time in each kMC step is random. As a result, the time
advancements at the end of all kMC runs were not identical.
However, all the runs advanced at least 11 ns after 3000
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FIG. 9. (Color online) The evolution of the average radius of gyration at various salt concentrations with (a) kMC steps and (b) simulation
time are shown.

kMC steps. Hence, the growth characteristics for different salt
concentrations were plotted in Fig. 8(c) till 11 ns. However, it
should be noted that the time advanced to approximately 18
ns after 3000 steps for the system with 0.4 M salt. Figure 8(c)
shows that initially, when the cluster sizes were relatively
small (comparable to that in CGMD simulations), the average
cluster size increases linearly with time. The rate of increase of
aggregate size dN

dt
at the initial stage is approximately 250/ns,

while it is approximately 4000/ns at the final stage of the
growth of clusters. It is evident that the number of interacting
sites increases in a cluster with an increase in its size. It should
also be noted that the aggregating cluster is surrounded by
numerous fullerene particles and the probability of clustering
of two particles is proportional to their number of available
interacting surface sites [90]. Hence, an increasingly large
number of interacting sites on the growing fullerene particle
increases the growth rate in a nonlinear manner as the cluster
size becomes significantly large. We will discuss the change
in growth rate of fullerene clusters with time in more detail
later. Figure 8(c) also shows that the fullerene agglomeration
rate decreases with increase in salt concentration, which is
consistent with the results presented in Fig. 8(a). We will later
show that the fullerene aggregation mechanism is independent
of salt concentrations for the simulated systems.

Although the time scale shown in the study is somewhat
limited, our model is not restricted to such small time scales.
For demonstration purposes, we simulated a system with
the slow aggregation kinetics comprising 3.5% fullerenes by
mass fraction and 2.0 M salt concentration. The growth of
the particles in this particular system is represented with red
circular markers in Fig. 8(c). The figure shows that the average
cluster size in the system is ∼25 000 at ∼38 ns. On the other
hand, it requires less than 12 ns to observe the same average
cluster size in the other systems. The rate of the events in
these simulated systems are relatively large (∼109/s), since
the fullerene concentration is high. It is noteworthy, however,
that our model can access agglomeration processes that are too
fast to be accessible to experimental studies.

To describe the shape of the growing cluster, we calculated
the radius of gyration of each cluster both as a function of
kMC steps and simulation time, shown in Figs. 9(a) and
9(b), respectively. The radius of gyration Rg of a fullerene
cluster of size N is calculated using the equation Rg(N ) =√

1
N

∑N
i=1 [(xi − xc.m.)2 + (yi − yc.m.)2 + (zi − zc.m.)2], where

i denotes distinct fullerenes, c.m. is the center of mass, and
x, y, and z refer to position coordinates. It is observed that
while N increases linearly with kMC steps, shown in Fig.
8(b), Rg follows the power function, presented in Fig. 9(a).
Mathematically, the phenomenon can be interpreted in the
light of well-established power law between cluster size N

and Rg . Figure 9(a) shows that the slopes of the curves
gradually decrease with the advancement of the kMC steps.
For instance, Rg increases from approximately 2 to 6 nm in
50 kMC steps, while it increases from 6 to 10 nm in 300 kMC
steps in the system with 0.1 M salt concentration indicating
that the slope of the curve decreases nearly by a factor of
5 in the later steps. The decrease in the slope is significant
as the kMC steps advance further. Similar phenomena are
observed for other salt concentrations as well. A log-log plot
(Fig. S2 in the Supplemental Material [89]) based on the data
presented in Fig. 9(a) is nonlinear and indicates the transition
of the dimensionality of the cluster with time. Based on the
gradual reduction of the slopes of the curves in Fig. 9(a), we
hypothesize that the shape of fullerene clusters is characterized
by low dimensionality (either 1D or 2D) initially but transitions
to higher dimensionality (3D) as the clusters grow with time.
The authenticity of this hypothesis is investigated later in the
light of the fractal dimension of the clusters. Figure 9(b) shows
a linear relationship between the radius of gyration of clusters
and simulation time at the initial stage. However, the curves
slightly diverge from linearity when the cluster size N becomes
significantly large and grows with time in a nonlinear manner
as discussed earlier in connection with Fig. 8(c). The effect
of salt concentration on the cluster size is remarkable, while
its effect on the cluster shape is not very clear. However,
one can crudely assume that the onset in the transition
in dimensionality of clusters is delayed with the increase
of salt concentration, since the agglomeration rate becomes
slower.

In order to evaluate the dimensionality of fullerene ag-
glomerates, we characterized the clusters by calculating their
fractal dimension, since the aggregation process results in the
formation of agglomerates with fractal shapes. The fractal
dimension Df can be obtained from the scaling relation
between particle number N in a fullerene agglomerate and
the radius of gyration Rg of that agglomerate N ∝ Rg

Df

[91]. We would like to emphasize that the fractal dimen-
sion of clusters is one of the most important quantities
in describing cluster aggregation regimes, such as DLCA,
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FIG. 10. (Color online) (a) Relationship between number of particles N in fullerene clusters and their radius of gyrations Rg during
aggregation of fullerenes in the simulated systems are shown. (b) A log-log plot obtained from the Rg vs N curve for the system comprising
0.1 M salt is presented. The gradual change of the aggregation regime is demonstrated with the aid of three distinct fitted slopes at three size
intervals.

RLCA, percolating cluster, and gelation. A majority of the
previous studies on colloidal particle aggregation predicted
fractal dimension of clusters to determine the shape of the
clusters and the corresponding aggregation regime. Figure
10(a) shows that the radius of gyration and size of fullerene
agglomerates follow the well-established power-law relation-
ship [17–19,21,23,24,34,40,46,52,92]. The exponent of Rg ,
obtained from a curve fit, provides an estimate of the fractal
dimension of the agglomerates. However, Fig. 10(a) and a
representative log-log plot of Rg vs N [Fig. 10(b)] for 0.1 M
salt concentration show a gradual change in slopes with an
increase in size of fullerene clusters. The observed gradual
change in the slopes from Fig. 10(b) suggests that a single
fractal dimension does not characterize the structure of clusters
formed and the aggregation regime during the growth. Hence,
based on existing data in the literature and observation of
cluster shapes from kMC runs, we have divided the plot
into three distinct regions with different fitted slopes. The
justification for the choice of three distinct regions is provided
in detail later. The fitted slopes shown in Fig. 10(b) indicate
the transitions of aggregation regimes and shapes during the
growth of fullerene clusters. The data points in the three regions
are plotted separately in Fig. S3 in the Supplemental Material
[89] to illustrate the transition in more details. Identical trends
are seen for other concentrations as well and are presented in
Fig. 11 later.

The first region of Fig. 10(b) represents the size and shape
of fullerene agglomerates at an initial stage. A linear fit with a
goodness of fit R2 = 0.92 indicates that the fractal dimension
of the aggregates at the initial stage is approximately 1.9
(inverse of the exponent of N in the fitted curve). The
obtained fractal dimension of the aggregates represents the
DLCA regime. In this regime, the repulsive interactions among
clusters are screened out and agglomeration of clusters occurs
as soon as they collide, which is dominated solely by the
diffusion of the clusters. The diffusion coefficient of fullerene
particles has an inverse relationship with their size [93]. The
initial distribution of the fullerene particles in kMC simulations
indicates that the sizes of the clusters are small. Hence, at the
beginning, the particles diffuse relatively fast, collide with
each other, and stick when they are in proximity. The shape of
clusters is ramified and hence the increase of Rg is relatively
fast in the DLCA regime. The calculated fractal dimension
of the clusters in this regime indicates that our statement
about 2D shapes of the clusters based on the growth rate
of Rg , shown in Fig. 9(a), is valid. Lin et al. [17] showed
that the fractal dimensions of gold, silica, and polystyrene
particles formed as a result of diffusion limited agglomeration
are 1.86, 1.85, and 1.86, respectively. On the other hand,
Liu et al. [53] demonstrated experimentally and numerically
that the fractal dimension of diffusion limited fullerene
agglomerates on a graphite substrate is ∼1.9. Meng et al. [2]

FIG. 11. (Color online) Normalizing N and Rg with the characteristic aggregation size Nc and radius of gyration Rc, determined for each
salt concentration, results in superimposition of the curves obtained from the data presented in Fig. 10(a). The normalized plots are shown for
(a) DLCA and percolating cluster aggregation regime and (b) percolating cluster and gelation regime.
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FIG. 12. (Color online) The relationship between N and t for (a) DLCA (Df ∼ 1.9), (b) percolating cluster (Df ∼ 2.5), and (c) gelation
regimes (Df ∼ 3.0) in 0.1 M electrolyte solution are shown. The fitted slopes in the plots demonstrate the relationship t ∼ N (Df −1)/Df .

experimentally investigated the effect of salt concentration on
the agglomeration behavior of fullerene particles in electrolyte
solutions. Their results demonstrated fullerene aggregation
through diffusion in a colloidal system with 0.001% fullerene
concentration and 0.5 M NaCl salt. Although they mentioned
that cluster shapes are open in nature at such conditions, the
calculated fractal dimension of the agglomerates was ∼2.05,
which suggests intermediate agglomeration between DLCA
and RLCA regimes. However, based on the existing studies
related to a colloidal DLCA process, it is evident that the
fractal dimension of colloidal aggregates in DLCA regime
is universal, which is 1.8 ± 0.1 [17,18,23,24,26], and our
calculated fractal dimension of fullerene particles falls in the
range.

Visualizing cluster shapes corresponding to sizes that span
immediately beyond the DLCA regime indicates transition of
shapes to less ramified structures within a narrow size range
followed by nonramified structures. This observation of a con-
tinuous transition in the shapes of the agglomerates has been
widely attributed to the phenomenon of continuous percolation
reported in the scientific literature. In colloidal systems, contin-
uous percolation is caused by increased connectivity between
neighboring clusters. To account for this phenomenon, we fit-
ted a straight line to the data corresponding to cluster sizes im-
mediately greater than that for DLCA. The fractal dimension
obtained from the data fit for this second region shown in Fig.
10(b) is determined to be approximately 2.5. This calculated
value for fractal dimension is in good agreement with various
studies, where irreversible DLCA aggregation of spheri-
cal colloidal particles was investigated [40,46,49–51,94].
The studies performed lattice and off-lattice Monte Carlo
simulations and obtained clusters within the percolating cluster
regime, where the fractal dimension of the particles is 2.5. As

mentioned before, the number of interacting sites increases
rapidly with growth of the particles, which further leads to
increase in aggregation rate that lead to nonlinear increase in
size with time. At this stage, the fullerene particles are three
dimensional and shapes of the particles are not ramified. Ac-
cording to the previous studies, such aggregates are called gels
[40,42,50]. The data fit with R2 = 0.99 in the third region of
Fig. 10(b) indicates that the fractal dimension is approximately
equal to 3.0. This indicates that the agglomerates in this regime
form gel. Combining the results presented in Figs. 8(c) and
10(b) leads to the conclusion that the growth rate of clusters
is 16 times faster in the gelation regime than in the DLCA
regime. It is worthwhile to note that the fast growth rate in the
gelation regime was observed in the above mentioned studies
as well [40,46,49–51]. Overall, under the simulated conditions,
the agglomeration process evolved from a DLCA regime to
percolating clusters in transition and finally to the gelation
regime. It should be noted that previous studies described the
effect of electrolyte concentration on transitioning fullerene
agglomeration from RLCA to DLCA regime at a certain
fullerene concentration. In contrast, our study analyzed the
evolution of cluster aggregation beyond DLCA regime and
captures the fast dynamics of cluster aggregation during gel
formation.

In order to establish the independence of salt concentrations
on the agglomeration characteristics of fullerene clusters,
as mentioned earlier, we normalized N and Rg , with a
characteristic cluster size Nc and radius of gyration Rc at
various salt concentrations. The values of Nc and Rc at various
salt concentrations were estimated by finding the intersections
of the slopes described in Fig. 10(b). We note that the technique
of finding characteristic cluster size and radius of gyration
was used in the studies pertinent to particle aggregation from
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FIG. 13. (Color online) Normalizing N and t with the characteristic aggregation size Nc and time tc, determined for each salt concentration,
results in superimposition of the curves presented in Fig. 8(c). The normalized plots are shown for (a) the DLCA and percolating cluster
aggregation regime and (b) percolating cluster and gelation regime.

DLCA regime to gelation regime mentioned earlier [40,46].
For convenience, we denote the intersection points of fitted
slopes observed in the DLCA and percolating cluster regime,
and in the percolating cluster and gelation regime, as 1 and
2, respectively. Hence, Nc1 and Rc1 are the characteristic
cluster size and radius of gyration for first two regimes, while
Nc2 and Rc2 represent the same for the latter two regimes.
Normalizing N and Rg in the DLCA and percolating cluster
regimes at various concentrations resulted in superimposition
of the curves, shown in Fig. 11(a). The results indicate that
on length scales less than Rc1, aggregates show a value of Df

corresponding to the DLCA process, while for length scales
greater than Rc1, the value of Df increases and correspond
to percolation [40,46]. Similar superimposition was observed
in percolating cluster and gelation regimes as well, shown in
Fig. 11(b). Such superimpositions demonstrate that, in general,
the transition of cluster aggregation regimes does not depend
on salt concentration considered in the study. The results
shown in Fig. 11(b) indicate that on length scales less than Rc2,
the value of Df indicates the presence of percolating clusters,
while for length scales greater than Rc2, the value of Df

correspond to gelation of fullerene clusters. Overall, the results
indicate that for Rg < Rc1, the shapes of the agglomerates are
ramified in nature as obtained in DLCA regime and for Rg >

Rc2 they are not ramified as obtained in the gelation regime.
In order to analyze the growth rate of fullerene clusters

in various aggregation regimes, we have divided the plot,
shown in Fig. 8(c), in three different regions based on the
slopes. According to the study of Witten and Sander [34], the
universal relationship between the growth rate of a cluster dN

dt

and its fractal dimension Df is given by dN
dt

∼ N1/Df . The
solution to this equation gives t ∼ N (Df −1)/Df . In order to fit
our simulation data to this universal form and determine Df ,
we varied the exponents of N as Df − 1

Df
in three distinct regions

and plotted N (Df −1)/Df against time t. As a representative case,
the system comprising 0.1 M salt was analyzed and results are
shown in Fig. 12. The values of R2 indicate good fit and
effectively validate the results obtained from our aggregation
model. While not shown here, we observed identical trends in
the other simulated systems.

In order to generate a universal relationship between N

and t , we normalized the cluster size and growth time with

Nc and tc. The value of tc was obtained from the intersection
of the fitted slopes for the data presented in Fig. 8(c). For
convenience we again denote the characteristic time for first
two regimes as tc1, while tc2 indicates the same for last
two regimes. The superimpositions shown in Figs. 13(a)
and 13(b) illustrate that the increase in N

Nc
is a universal

function of t
tc

and independent of salt concentration. Such
a universal relationship was observed in the studies relevant
to gel formation of spherical colloidal particles from the
diffusion limited clusters mentioned above [46]. The studies
showed that if the system starts from a DLCA regime and
forms gel, the relationship between N

Nc
and t

tc
is independent

of the initial particle concentration. The results demonstrate
that on time scales less than tc1, the aggregates corresponded
to the DLCA regime, while on time scales bigger than tc1,
the agglomerates referred to percolating clusters. Likewise,
on time scales greater than tc2, the aggregates indicated gel
formation of fullerene clusters.

IV. CONCLUDING REMARKS

We have developed a model that utilizes CGMD and
kMC to simulate the agglomeration of colloidal particles.
The model was employed to study the growth of fullerene
particles in electrolyte solution with varying salt concentration.
The agglomeration events were defined based on changes
in number of fullerenes in a cluster and local coordination
environment of each fullerene in the cluster during agglomer-
ation. The rate constants of a range of events were evaluated
from CGMD simulations. The evaluated rate constants were
employed in kMC simulations to grow fullerene agglomerates
that range approximately from 1 to 100 nm. For a system with
relatively high fullerene concentration (mass fraction ∼7%),
both CGMD and kMC simulations separately indicated that the
agglomeration rate of fullerene decreases with an increase of
salt concentration. The results obtained from kMC simulations
further indicate that the fullerene agglomeration mechanism
is independent of salt concentration for these systems. The
agglomeration process evolved from a DLCA regime to per-
colating clusters in transition and finally to a gelation regime.
The fractal dimensions of the agglomerates obtained in DLCA
(Df ∼ 1.9), percolating clusters (Df ∼ 2.5), and gelation
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(Df ∼ 3.0) regimes are in good agreement with that reported
by other modeling based as well as experimental studies of
colloidal systems. Master curves based on nondimensionalized
cluster sizes and radii of gyration were obtained to characterize
the transition of the agglomeration process. The characteristic
radii of gyration Rc1 and Rc2, and characteristic time tc1 and
tc2, were determined. The curves indicate that for Rg < Rc1 the
shapes of the agglomerates are ramified in nature as obtained
in a DLCA regime, while for Rg > Rc2 they are not ramified
as obtained in a gelation regime. The characteristic time tc1

and tc2 describes the time required to reach the regimes.
We should note that combination of MD and kMC has

been used in the past to analyze the growth of crystals in
solutions, where the crystals grow on a predefined surface
[73–75]. Due to the presence of the surface, the number of
degrees of freedom as well as the number of events related
to growth is relatively less. However, generic unrestricted
growth of colloidal particles in solvents involves extremely
complex dynamics and the number of clustering events is
significantly large. Additionally, it is challenging to define the
events in a manner that would enable modeling particle growth
at a large length scale. To address this issue, in our model
we tracked the change in local coordination environments
of the particles during their growth. We have also used

the technique of energy minimization to remove overlap of
the particles in kMC to obtain energetically meaningful inter-
mediate structures. Our model is therefore able to access the
growth of colloidal particles to much greater size in electrolyte
solutions, while accounting for the atomistic interaction among
particles. The model can also predict the agglomeration
mechanism of colloidal particles, which is extremely important
to control the shapes of clusters.

Overall, our model shows great promise and can be utilized
in myriad applications, where agglomeration of colloidal
particles is of interest. For instance, the agglomeration of
nanosized colloidal particles in the presence of solvent and
polymer can be characterized to predict the morphology of
resulting thin nanocomposite films which find applications
in the field of flexible electronics. The model can also
be employed for investigating sintering processes that are
increasingly being used in nanomanufacturing of components.
Additionally, the model can be employed to study sol-gel
processing of thin films for medical applications.
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