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Matrix determinants play an important role in data analysis, in particular when Gaussian processes are
involved. Due to currently exploding data volumes, linear operations—matrices—acting on the data are often not
accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the
transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate
a matrix’s diagonal or trace, based solely on such computationally affordable matrix-vector multiplications,
are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We
introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a
reformulation of the log-determinant by an integral representation and the transformation of the involved terms
into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian
inference, in particular evidence calculations, model comparison, and posterior determination.
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I. MOTIVATION

Current and future physical observations generate huge
data streams to be analyzed. Particle physics, biophysics,
astronomy, and cosmology are representatives of current
scientific fields of interest that are undergoing a revolution
driven by increasing data volume. Typical large data sets
in cosmology are, for instance, observations of the cosmic
microwave background [1,2] as well as of the large-scale
structure [3–5] as they are often wide- or all-sky observations
carried out by telescopes with remarkable resolution. In
order to extract information about the universe or physics
in general, Bayesian inference methods becomes more and
more frequently used as their large computational demands
become more feasible thanks to technology developments.
The signal of interest to be extracted from data could be
almost everything, ranging from just a single parameter (e.g.,
the level of local non-Gaussianity of the cosmic microwave
background [6,7]) to a full four-dimensional reconstruction
of the structure growth in the universe [8,9]. Such ambitious
Bayesian analyses often invoke linear transformations of the
data or of estimated signal vectors.

The size of the involved data and signal spaces often
bans the explicit representation of matrices acting on these
spaces by their individual matrix elements. A prominent
example appearing in many analyses is, for instance, the
covariance matrix of a multivariate Gaussian distribution
of a vector valued quantity, which describes the two-point
correlation structure of the said quantity. Due to their large
dimensions such matrices are often only representable by
a computer routine, which implements the application of
the matrix to a vector without storing or even calculating
the individual matrix elements. Such routines often invoke
fast Fourier transformations and other efficient operations,
which in combination render nonsparse matrices into easily
computable basis systems. We refer to such a matrix as an
implicit matrix. For instance, calculating the model evidence
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often requires calculating determinants of such matrices.
This work provides an efficient way to numerically calculate
determinants given only by an implicit matrix representation.

The remainder of this work is organized as follows: In
Sec. II we introduce the formalism of the stochastic estimation
of an implicit matrix and present two numerical examples.
Section III provides a perspective of possible applications in
science. Results are summarized in Sec. IV.

II. PROBING THE LOG-DETERMINANT OF
AN IMPLICIT MATRIX

A. Formalism

Let A = (aij ) ∈ Cn×n be an implicitly defined, complex-
valued, square matrix of order n. Implicitly means that the
particular entries of the matrix are not accessible, for instance,
if dealing with large data sets, where an explicit storage of
A might exceed the memory of the computer. However, the
action of the matrix as a linear operator is assumed to be known
and given by a computer routine implementing the mapping
x �→ Ax.

Motivated by applications in science and statistics (Secs. I
and III), in particular by signal reconstruction techniques and
model comparison in astronomy and cosmology, where the
determinant of a covariance matrix is required (Sec. III),
we constrain the variety of different types of matrices by
requesting that the matrix A of interest is either weak diagonal
dominant or Hermitian positive definite. The term weak
diagonal dominant is defined by

|aii | �
∑
i �=j

|aij | ∀i, (1)

while Hermitian positive definite means

A† = A and x†Ax > 0 ∀x ∈ Cn\{0} (2)

with † denoting the adjoint.
The diagonal and the trace of an implicit matrix can be

obtained by exploiting common probing routines [10–13]. A
stochastic estimate of the diagonal of the linear operator A is
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given by

diag(A) = 〈ξ � Aξ 〉{ξ} ≈ 1

M

M∑
i=1

ξi � Aξi, (3)

where � denotes a componentwise product, M = |{ξ}| the
sample size, and 〈·〉{ξ} the arithmetic mean over ξ with
M → ∞. The probing vectors ξ ∈ Cn are random variables,
whose components x(x ′) fulfill the condition 〈ξxξx ′ 〉{ξ} = δxx ′ .
Analogously to the diagonal of an operator its trace can be
probed by, e.g.,

tr(A) = 〈ξ †Aξ 〉{ξ}. (4)

Recently, there have been investigations to improve these
straightforward probing methods by exploiting Bayesian infer-
ence [10]. This has been achieved by reformulating the process
of stochastic probing of an operator’s diagonal (trace) as a
signal inference problem. As a result, it requires fewer probes
than the purely stochastic methods and thus can decrease the
computational costs. With the phrase operator probing, be it
trace or diagonal probing, we subsequently refer to the entirety
of probing methods in general.

The linear operator A can be split into a diagonal matrix
D ∈ Cn×n and a matrix N ∈ Cn×n, which contains the off-
diagonal part of A, i.e.,

A = D + N. (5)

We are now interested in the value of its determinant or
of its log-determinant, � ≡ ln[det(A)]. In case A is mainly
dominated by its diagonal (i.e., ND−1  1 spectrally), a
Taylor expansion of the log-determinant might be a reasonable
approximation,

� = ln[det(D + N )]

= ln[det(D)] + tr[ND−1] + O(tr[(ND−1)2]), (6)

which is sometimes feasible dealing with implicit operators,
e.g., see Refs. [7,14] for recent applications in cosmic
microwave background physics. This approximation, however,
breaks down when the relation ND−1  1 (spectrally) is
violated. In order to circumvent this problem we introduce
the quantity

�(t) ≡ ln[det(D + tN )] (7)

with the pseudotime parameter t ∈ [0,1]. For a sufficiently
small t the approximation of Eq. (6) becomes valid. This
property can be used together with a few mathematical
manipulations (for details see Appendix A) to obtain the
formula

� =
∫ 1

0
dt tr[N (D + tN )−1] + �(0)

=
∫ 1

0
dt〈ξ †N (D + tN )−1ξ 〉{ξ} + �(0) (8)

that represents a stochastic estimate of the log-determinant of
A using operator probing. In particular, the following steps are
required to evaluate Eq. (8):

(1) Diagonal (operator-) probing to split A into

A = diag(A)︸ ︷︷ ︸
≡D

+A − diag(A)︸ ︷︷ ︸
≡N

,

(2) an approach to invert D + tN in Eq. (8), e.g., the
conjugate gradient method [15],

(3) trace (operator-) probing to evaluate the integrand, and
(4) a numerical integration method, e.g., applying Simp-

son’s rule.
It might immediately strike the eye of the reader that one

recaptures the simple first-order Taylor-expanded version of
the log-determinant, Eq. (6), when dropping the pseudotime
dependency of the integrand in Eq. (8) by requesting t = 0.
This means that in case of dealing with diagonal dominant
operators the value of the correct log-determinant might be
received by a coarse numerical integration since the integrand
close to t = 0 already yields the main correction, which might
decrease the computational costs, see Sec. II B.

Equation (8) further represents the main result of this paper
and can be regarded as a special case of calculating partition
functions (see Sec. III and Refs. [16,17]). Although the first
line of it, the integral representation of the log-determinant,
was also, independently of our work, found by mathematicians
10 years ago [18], it is (to our knowledge) not known in the
community of physics or signal inference. The connection
to stochastic estimators, however, is a novel way to evaluate
the log-determinant of implicitly defined matrices that enables
previously impossible calculations, see Sec. III.

B. Numerical example

We address here a simple and also exactly solvable
numerical example referring to (Bayesian) signal inference
problems or, in general, statistical problems in physics (see
Secs. III A and III B), where the log-determinant of a covari-
ance matrix A is of interest. If we assume statistical isotropy
and homogeneity of a physical field, its covariance matrix can
be parametrized by a so-called power spectrum. This is often
a reasonable assumption,1 e.g., in astronomy and physical
cosmology, when applying the cosmological principle. In
this case, the covariance matrix becomes diagonal in Fourier
space,

Akk′ = ckδkk′, (9)

with respective Fourier modes k,k′ and power spectrum ck . It is
straightforward to show that the position space representation
of Akk′ , given by Axx ′ = F†

xkAkk′Fk′x ′ with Fourier transfor-
mation F , is nondiagonal if and only if ck �= const ∀k. In
order to apply the stochastic estimator of the log-determinant
we use two special forms of the power spectrum, given by

ck = 1

(1 + k)α
(10)

with α set to 2 or 4. A value of α = 2 describes a mostly diag-
onal dominant matrix, whereas α = 4 exhibits a significant

1Referring to Bayesian evidence calculations such a matrix might
be the prior or posterior covariance, see Sec. III for details.
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FIG. 1. Illustration of the matrices A2 (top) and A4 (bottom) in
position space with linear color bars.

nondiagonal structure in position space. To be precise,
in the following we use a regular, two-dimensional, real-
valued grid (over T 2) of n = 20 × 20 pixels to represent
our position space, resulting in a matrix A consisting of
n × n = 1.6 × 105 real numbers. See Fig. 1 for an illustration
thereof.

For both matrices, which we refer to as A2 and A4,
we apply Eq. (8) given an explicit and implicit numerical
implementation. For the explicit variant there also exist

well-understood, precise numerical methods2 to calculate the
determinant. Therefore, the numerical results of such a method
can be regarded as our gold standard and hence serve as a
reference for the probing results. Henceforth we will refer
to it using the subscript “correct.” Both variants, the explicit
and implicit implementation, are realized using the tools of
NIFTY [20].

After the separation of A2 and A4 into diagonal and
off-diagonal parts by applying diagonal probing, we calculate
the integrands of Eq. (8) for the m-part-discretized interval of
t ∈ [0,1] by using the conjugate gradient method as well as
trace probing and perform the numerical integration afterwards
by using Simpson’s rule. The operator probing as well as
the conjugate gradient method have also been realized using
NIFTY. Furthermore, we introduce the quantities

�(x) ≡
∫ x

0
dt tr[N (D + tN )−1] + �(0), x ∈ [0,1] (11)

to study the convergence to the final value and �(m) to inves-
tigate the dependency on the discretization of the integration
interval, see Figs. 2, 3, and 4.

We used a rather low sample size of M = 8 for trace probing
[see Eqs. (4) and (3)] to demonstrate the applicability of the
method to large data sets. The discretization of the pseudotime
interval into m parts was chosen to be m = 103 for A4 and
only m = 10 for A2, see in particular Fig. 4, which illustrates
the dependence of the probing result on m.

C. Discussion

The exact numerical values of the determinant calculation
using explicit and implicit representations of A4 and A2 can be
found in Table I. The results of the probing method (implicit)
compared to the correct and the explicit method, where Eq. (8)
can be evaluated without using a conjugate gradient or probing
techniques, are accurate for both matrices. It is remarkable
that despite using a relatively small sample size of M = 8
for the trace probing the absolute errors remain relatively
small. The reason for this is that the pseudotime integration
over all probed integrands averages the probing error. This is
of particular importance when applying the log-determinant
probing to large data sets, where a large sampling size should
be avoided to save computational time. These errors can be
decreased further, of course, by an increase of the sampling
size and a refinement of the numerical integration.

The results of the trace (integrand) probing and the
determinant’s convergence behavior as well as their respective
errors with respect to the explicit representation can be found
in Figs. 2 and 3. Note that the scaling of the ordinate is
logarithmic. For both matrices, but especially for A4, the
largest contribution to the integral of Eq. (8) comes from
late t values. Therefore, if dealing with big data sets, one
could divide the integration interval not into m equal parts
but by starting with a rather coarse discretization for small t

values and subsequently refining it for larger values, e.g., by
substituting dt by d ln(t ′) and thereby saving computational

2See, for instance, the method described at [19], which is based on
LU factorization.
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FIG. 2. The integrand of Eq. (8) (lower panel) and �(x) (upper
panel) for explicit and implicit representations of A4.

costs. This, however, might depend on the particular shape of
the matrix and has to be studied case by case.

The dependency of the numerical value of the determinant
of A4 on the discretization (in m equal parts) of the integration
interval can be found in Fig. 4 and shows that even a small
value of m adds significant corrections to the result. The
result for m ∝ O(10) is, for instance, better than just using
the determinant of the diagonal, �(0). This might be used
in practice to investigate cheaply whether the nondiagonal
structure of a matrix influences the determinant significantly.

A huge advantage of the probing method discussed here is
the possibility to parallelize the numerical calculation almost
completely. To be precise, the diagonal probing beforehand,

FIG. 3. The integrand of Eq. (8) (lower panel) and �(x) (upper
panel) for explicit and implicit representations of A2 with only m =
10 steps in pseudotime.

the pseudotime integral, as well as every single trace probing
can be parallelized fully. The only operation that cannot be
parallelized is the conjugate gradient method as it is a potential
minimizer, using at least the previous step to calculate the next
one.

The determination of a suitable choice of the involved
parameters m and M as well as the precision parameters
for the used conjugate gradient approach and numerical
integration method depend highly on the matrix to be studied.
The computational costs and precision of the introduced
determinant calculation thus depend on the combination of
the chosen methods for diagonal and trace probing, numerical
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FIG. 4. Dependency of the determinant’s result on the discretiza-
tion of the integration interval into m parts, using A4.

integration, the method to numerically invert the matrix
D + tN , and the matrix A itself. Since it is therefore not
possible to make general statements we consciously avoid here
such a discussion of computational costs and precision with
respect to m and M . A more pragmatic way to estimate these
parameters would be to downscale the problem of interest until
the matrix of interest fits into the memory of the computer and
to subsequently perform mock tests to obtain a suitable choice
for the parameters discussed above. Afterwards these values
can be extrapolated to the size of the real problem.

III. APPLICATIONS IN SCIENCE

Within this section we present a selection of possible
applications in science. Although there are a vast number
of research fields and topics which might benefit from the
stochastic estimation of a log-determinant we focus henceforth
on a selection of usages in Bayesian signal inference, in
particular in physics and only present simple examples. Exact,
more complicated examples can be found in the cited works
within this section.

TABLE I. Results of the numerical determinant calculations with
and without probing. The absolute errors of the probing method
are defined by ε1 = |�explicit(1) − �implicit(1)| and ε2 = |�correct −
�implicit(1)|. Differences between ε1 and ε2 arise from the discretized,
numerical integration.

A2 A4

�(0) − 1308.05 − 1771.57
�correct − 1566.99 − 3107.28
�explicit(1) − 1566.81 − 3107.29
�implicit(1) − 1565.33 − 3108.41
m 10 1000
M 8 8
ε1 1.48 1.12
ε2 1.66 1.13

A. Evidence calculations and model selection

The Bayesian evidence P(d) is a measure for the quality of
the model and hence for all assumed model parameters for the
data d [21]. To keep it short and simple we assume a model
that describes a linear measurement of a Gaussian signal s

with additive, signal-independent, Gaussian noise n, i.e.,

d = Rs + n, (12)

where R represents a linear operator. A Gaussian distribution
of a variable x is defined by

P(x) = G(x,X) ≡ 1√|2πX| exp

{
− 1

2
x†X−1x

}
(13)

with related covariance matrix X and mean

〈x〉P(x) ≡
∫

DxxP(x). (14)

∫
D[·] denotes a phase space integral and | · | the determinant.

Under these circumstances the evidence can be calculated as

P(d) =
∫

Ds

∫
DnP(d,s,n)

=
∫

Ds

∫
Dnδ(d − Rs − n)P(n|s)P(s)

=
√

|2πCs|d |
|2πCs ||2πCn| exp

{
− 1

2

(
d†C−1

n d − j †Cs|dj
)}

,

(15)

with

j = R†C−1
n d, C−1

s|d = R†C−1
n R + C−1

s , (16)

and the signal and noise covariances Cs and Cn, respectively.
Therefore, to calculate the Bayesian model evidence, one
often3 has to calculate determinants of covariance matrices.
This might be done by probing [Eq. (8)] if dealing with
implicit matrices [last line of Eq. (15)] instead of performing
the multidimensional integral [second last line in Eq. (15)]
numerically. The latter has been done, for instance, in the field
of inflationary cosmology [22,23] by the method of nested
sampling [24,25].

This is especially of importance in the field of model
selection or comparison [21], where from an observation—
the data—one wants to infer which theory reproduces the
observation best. Switching from one model to another means,
for instance,4 to exchange R in Eq. (15), which directly affects
the determinant containing Cs|d . Thus, the calculation of the
determinant is mandatory here.

3By the word “often” we refer to cases, in which at least
one marginalization [see Eq. (17)] can be performed analytically
(approximated with high precision) to obtain a model-dependent
determinant.

4We focus here on R for simplicity only. One could also,
additionally, exchange the prior covariances Cn and Cs , the assumed
prior statistics, the parametrization of the data, and so on.
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B. Posterior distribution including marginalizations

In the field of signal inference one is typically interested in
reconstructing a set of i parameters pi with uncertainty from
some observation, the data d. This information is delivered
by the posterior, given by5 [26] P(pi |d) ∝ P(d|pi)P(pi).
Often, however, this inference problem is degenerate, caused
by a so-called nuisance parameter. For example, consider the
calibration of an instrument is of interest and not the signal.
In this case the signal s represents the nuisance parameter.
The common procedure to circumvent this problem is to
marginalize over these parameters,

P(pi |d) ∝
∫

Ds

∫
DnP(d,s,n|pi)P(pi). (17)

To continue with the simple example of Sec. III A we
assume again Gaussian distributions for s and n and a linear
measurement but with explicit dependency on pi , i.e., d =
(Rs)[pi] + n. If we further follow the example of calibration,
the parameter pi might be a calibration coefficient, thus
affecting only R. This yields (Rs)[pi] = R[pi]s and therefore

P(pi |d) ∝
{∫

DsG
(
d − R[pi]s,Cn

)
G(s,Cs)

}
P(pi). (18)

This integration can be performed analytically, producing
an in general non-Gaussian probability distribution with pi-
dependent normalization (and exponent) similar to Eq. (15),

P(pi |d) ∝
√∣∣2πCs|d [pi]

∣∣P(pi) exp
{

1
2j †[pi]Cs|d [pi]j [pi]

}
,

(19)

with Cs|d [pi] and j [pi] now containing R[pi] instead of R.
In case the covariance matrices or R[pi] are only given by
a computer routine (implicit representation of a matrix) one
could use Eq. (8) to probe the determinant.

A variety of scientific fields are affected by this problem.
For example, the extraction of the level of non-Gaussianity of
the cosmic microwave background [7,14] in cosmology, the
problem of self-calibration [27–29] in general, or lensing in
astronomy [30].

C. Realistic astronomical example

In order to study a more realistic example we consider
a measurement device with spatially constant but unknown
calibration amplitude, parametrized by 1 + γ ∈ R, scanning
a specific patch of the sky. The measured and assumed to
be Gaussian sky signal s is affected by the instrument via a
convolution C with a Gaussian kernel of standard deviation
σ = 0.05. Additionally, the observation might be disturbed
by fore- and backgrounds. For this reason we include an
observational mask Mo, which cuts out 20% of the sky. The
noise n is still assumed to be Gaussian and uncorrelated with
the signal. Hence, the measurement equation is given by

d = R[γ ]s + n = (1 + γ )MoCs + n. (20)

5Note that in this case the evidence is just a scalar which normalizes
the posterior, therefore we merely state proportionalities.

FIG. 5. Logarithmic posterior of the calibration amplitude pa-
rameter γ using implicit and explicit representations of the involved
operators, see Eq. (21) and Eq. (22) for details. The abbreviation �

denotes the logarithm of the term given by Eq. (22).

To calibrate the measurement device the calibration posterior
P(γ |d) has to be determined. The resulting calibration mean
〈γ 〉P(γ |d) can be regarded as an external calibration if the
a priori knowledge on the signal is sufficiently strong.
Otherwise one could infer the signal and calibration amplitude
γ simultaneously from data using iterative approaches [28].
Using Eq. (19) as well as a flat prior on γ we obtain

lnP(γ |d) = − 1
2 ln

∣∣C−1
s|d [γ ]

∣∣ + 1
2j †[γ ]Cs|d [γ ]j [γ ] + const,

(21)

which exhibits in particular the γ -dependent determinant∣∣C−1
s|d [γ ]

∣∣ = ∣∣(1 + γ )C†M†
oC

−1
n MoC(1 + γ ) + C−1

s

∣∣. (22)

For the numerical evaluation of Eq. (21) we use the
settings of Sec. II B with Cs(k,k′) = (1 + k)−3δkk′ , a calibra-
tion amplitude parameter of γ = 2, and a noise covariance
of (Cn)x,x ′ = 10−1δxx ′ to generate a data realization. The
pseudotime interval has been discretized into 102 parts. The
numerically determined calibration posterior for a given data
realization can be found in Fig. 5, which demonstrates again
the efficiency of the stochastic method using only eight probes
for a single trace probing operation. The figure also illustrates
the impact of the determinant on the log-posterior, which
would not peak in the shown interval without it.

IV. SUMMARY

Motivated by the problem of finding a way to efficiently
determine the determinant of an implicitly defined matrix
or operator, we derived a formula, Eq. (8), representing a
stochastic estimate of its log-determinant. This has been
achieved by reformulating the log-determinant as an inte-
gral representation and transforming the involved terms into
stochastic expressions, which includes a numerical integration
and a trace probing. Numerical examples have shown that
the discretization of the integration interval may be very
coarse in case the probed operator is sufficiently diagonal.
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In case it exhibits a significant nondiagonal structure one has
to fine-grain the discretization of this interval. The number
of probes necessary for the trace probing, however, remains
very low in the studied examples. These facts combined with
the almost complete parallelizability of this approach might
keep the computational costs within reasonable limits in many
situations.

This method clearly has more general applications but
might in particular be useful for Bayesian signal inference
and model comparison when dealing with large data sets as
often given, for instance, in astronomy and cosmology. To be
precise, it might be beneficial in all fields where the numerical
calculation of a determinant of an operator is mandatory.
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APPENDIX: INTEGRAL REPRESENTATION OF THE
LOG-DETERMINANT OF A MATRIX

Here Eq. (8) is derived. Following Sec. II the log-
determinant � of an operator A can be parametrized by
� = ln[det(D + N )] with D being the diagonal and N the
off-diagonal part of A. Since � can be Taylor-expanded
for small N (spectrally compared to D) only, we employ
a method from the field of renormalization theory [29,32].
Accordingly, we introduce an expansion parameter δt  1 to
suppress the influence of N . In particular, we replace � by
ln[det(D + δtN)] for a moment. For sufficiently small values

of δt , in the following interpreted as tiny pseudotime steps,
we can approximate � by Eq. (6). Theoretically, a single
pseudotime step could be infinitesimal small, enabling the
formal definition of the derivative

d�(t)

dt
≡ lim

δt→0

ln[det(D + (t + δt)N )] − ln[det(D + tN )]

δt

= lim
δt→0

1

δt
ln [det(1 + δtN[D + tN ]−1)]

= lim
δt→0

1

δt
tr[ln(1 + δtN[D + tN ]−1)]

= tr[N [D + tN ]−1], (A1)

with the definition

�(t) ≡ ln[det(D + tN )]. (A2)

Integrating the pseudotime derivative of �(t) yields the
integral representation of the log-determinant,

� =
∫ 1

0
dt tr[N (D + tN )−1] + �(0). (A3)

This integral representation has also been found by Ref. [18],
where its validity has been proven for weak diagonal dominant
and Hermitian positive definite matrices. In particular one has
to ensure the existence of the inverse matrix of the integrand
of Eq. (A3).

Finally, we replace the trace by stochastic trace probing
and perform the pseudotime integral by an numeric integration
method. This yields

� =
∫ 1

0
dt〈ξ †N (D + tN )−1ξ 〉{ξ} + �(0). (A4)
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