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Lattice mechanics of origami tessellations
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Origami-based design holds promise for developing materials whose mechanical properties are tuned by crease
patterns introduced to thin sheets. Although there have been heuristic developments in constructing patterns with
desirable qualities, the bridge between origami and physics has yet to be fully developed. To truly consider
origami structures as a class of materials, methods akin to solid mechanics need to be developed to understand
their long-wavelength behavior. We introduce here a lattice theory for examining the mechanics of origami
tessellations in terms of the topology of their crease pattern and the relationship between the folds at each vertex.
This formulation provides a general method for associating mechanical properties with periodic folded structures
and allows for a concrete connection between more conventional materials and the mechanical metamaterials
constructed using origami-based design.
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I. INTRODUCTION

While for hundreds of years origami has existed as an
artistic endeavor, recent decades have seen the application of
folding thin materials to the fields of architecture, engineering,
and material science [1–7]. Controlled actuation of thin mate-
rials via patterned folds has led to a variety of self-assembly
strategies in polymer gels [8] and shape-memory materials [4],
as well elastocapillary self-assembly [9], leading to the design
of a new category of shape-transformable materials inspired
by origami design. The origami repertoire itself, buoyed by ad-
vances in the mathematics of folding and the burgeoning field
of computational geometry [10], is no longer limited to designs
of animals and children’s toys that dominate the art in popular
consciousness, but now includes tessellations, corrugations,
and other nonrepresentational structures whose mechanical
properties are of interest from a scientific perspective. These
properties originate from the confluence of geometry and
mechanical constraints that are an intrinsic part of origami and
ultimately allow for the construction of mechanical metamate-
rials using origami-based design [1–4,6,11–13]. In this paper
we formulate a general theory for periodic lattices of folds in
thin materials and combine the language of traditional lattice
solid mechanics with the geometric theory underlying origami.

A distinct characteristic of all thin materials is that geo-
metric constraints dominate the mechanical response of the
structure. Because of this strong coupling between shape and
mechanics, it is far more likely for a thin sheet to deform by
bending without stretching. Strategically weakening a material
with a crease or fold, and thus lowering the energetic cost of
stretching, allows complex deformations and reordering of
the material for negligible elastic energy cost. This vanishing
energy cost, especially combined with increased control over
microscopic and nanoscopic material systems, indicates great
promise for structures whose characteristics depend primarily
on geometry, rather than material composition.

By patterning creases, hinges, or folds into an otherwise
flat sheet (be it composed of paper, metal, or polymer gel), the
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bulk material is imbued with an effective mechanical response.
In contrast to conventional composites engineering, wherein
methods generally rely on designing response based on the
interaction between the constituent parts that compose the
material, origami-based design injects novelty at the atomic
level; even single vertices of origami behave as engineering
mechanisms [14], providing novel functionality such as com-
plicated bistability [15–17] and auxetic behavior [6,11–13].
This generic property inspires the identification of origami
tessellations with mechanical metamaterials or a composite
whose effective properties arise from the structure of the unit
cell. Although originally introduced to guide electromagnetic
waves [18], rationally designed mechanical metamaterials
have since been developed that control wave propagation
in acoustic media [19,20], thin elastic sheets, and curved
shells [21–24] and harness elastic instabilities to generate
auxetic behavior [25–29].

Traditional metamaterials invoke the theory of linear
response in wave systems, but currently there is no general
theory for predicting the properties of origami-inspired designs
on the basis of symmetry and structure. In the following we
propose a general framework for analyzing the kinematics and
mechanics of an origami tessellation as a crystalline material.
By treating a periodic crease pattern, we naturally connect the
geometric mathematics of origami to the more conventional
analysis of elasticity in solid state lattice structures. In Sec. II
we outline the general formalism required to find the kinematic
solutions for a single origami vertex. In Sec. III we discuss the
general formulation for a periodic lattice, including both the
kinematics of deformation modes and energetics for a periodic
crease pattern. In Sec. IV we examine the well-known case
study of the Miura-ori pattern. Our analysis here recovers
known aspects of the Miura-ori pattern and identifies key
features that have not been quantitatively discussed previously.

II. SINGLE ORIGAMI VERTEX

Many of the design strategies for self-folding materials
involves a single fold, an array of nonintersecting folds, or
an array of folds that intersect only at the boundary of the
material [9,30–33]. From a formal standpoint, we define a
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FIG. 1. (Color online) (a) Graph for a single vertex. This degree-6 vertex has its graph determined by the six sector angles αi . Each crease
has a dihedral angle fi associated with it. In the flat case every fi = π or, equivalently, every fold angle is identically zero, since the fold angle
is defined as the supplement of the dihedral angle. (b) By assigning fold angles to each crease, a three-dimensional embedding of the vertex (i.e.,
the folded form of the origami) is fully determined. Every face must rotate rigidly about the defined creases and the sector angles must remain
constant. There is a limited set of fold angles that will solve these conditions. (c) Schematic projection of the curve of intersection between
the unit sphere and the folded form origami. For an N -degree vertex this projection generates a spherical N -gon. To proceed, the N -gon is
divided into N − 2 spherical triangles and the interior angles (i.e., the fi) follow as a result of applying the rules of spherical trigonometry. All
three-dimensional origami structures are visualized using Tessellatica, a freely available online package for Mathematica [34].

fold as a straight line demarcating the boundary between two
flat sheets of unbendable, unstretchable material. These sheets,
in isolation, are allowed to rotate around the fold so that the
structure behaves mechanically like a simple hinge. If the fold
is produced by plastically deforming a piece of material, rather
than functioning as a hinge the fold has a preferred angle and
is more precisely called a crease. Herein we shall use the terms
interchangeably, since the kinematic motions of a fold and the
energetics involved for a crease can be described separately. An
important, and arguably defining, characteristic of an origami
structure is that it requires that more than one fold meet at
a vertex. While each fold individually allows for unrestricted
rigid body rotation of a sheet, geometrical constraints arise
when several folds coincide at a vertex. These constraints are
what provide origami structures with their mechanical novelty
and ultimately are why deployable structures and mechanical
metamaterials display exotic and tunable properties.

A vertex of degree N is defined as a point where N

straight creases meet. Figure 1(a) shows the crease pattern for
a schematic six-degree vertex, with sectors defined by planar
angles αi . The three-dimensional folded form of this vertex is
found by supplying fold angles to each of the creases, subject to
the constraints mentioned previously [35,36]. This procedure
is an exercise in spherical trigonometry.

One way to visualize the constraints is to surround each
vertex with a sphere and consider the intersection between it
and the surface [Fig. 1(b)]. In this construction, the side lengths
of the spherical polygon are the angles between adjacent folds,
which must remain fixed, and the dihedral fold angles are the
internal angles of the polygon on the sphere. Since an N -sided
polygon has N − 3 continuous degrees of freedom, each vertex
does as well. These N − 3 degrees of freedom can be thought
of, for example, as the angles between a fixed fold and the
remaining nonadjacent folds.

Starting with a general vertex containing dihedral angles
fi , we use spherical trigonometry to calculate these angles in
terms of the N − 3 degrees of freedom. To calculate f1 we

partition the angle into sectors by subdividing the spherical
N -gon into N − 2 triangles [Fig. 1(c)]. We label the angles
that lead from f1 to fi as �i , where �1 = α1 and �N−1 = αN are
sector angles. All the angles αi are spherical polygon edges and
since origami structures allow only isometric deformations,
these angles are constant. The �i are the angles subtended
by drawing a geodesic on the encapsulating sphere from f1

to fi+1; expressions for relating the �i to the fold angles fi

are found by using the spherical law of cosines around the
vertex [35]:

f1 =
N−2∑
i=1

cos−1

[
cos αi+1 − cos �i+1 cos �i

sin �i+1 sin �i

]
, (1)

f2 = cos−1

[
cos �2 − cos α1 cos α2

sin α1 sin α2

]
, (2)

fN = cos−1

[
cos �N−2 − cos αN−1 cos αN

sin αN−1 sin αN

]
, (3)

fi = cos−1

[
cos �i−2 − cos αi−1 cos �i−1

sin �i−1 sin αi−1

]

+ cos−1

[
cos �i − cos αi cos �i−1

sin �i−1 sin αi

]
. (4)

These expressions are essentially all that is required to deter-
mine the folding of a single vertex, although the associated
solutions are generically multivalued. These results imply that
there are multiple branches of configuration space for any
given spherical polygon.

To specify the internal state of each vertex we define an
N − 3 component vector s. Given the internal state of a vertex,
all N of the dihedral fold angles are determined, which we
collect in the vector f(s). In practice, computations are vastly
simplified by choosing the appropriate degrees of freedom;
for example, for a degree-6 vertex of the type displayed in
Fig. 1, we choose s = {�3,f2,f6} and the fold vector is given
by f = {f1,f2,f3,f4,f5,f6}.
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III. GENERAL LATTICE THEORY

To determine the mechanical properties of an origami
tessellation we begin by examining how many vertices are
connected together in a crease pattern. When constructing a
real piece of origami, artists and designers specify “mountain”
and “valley” creases in the pattern to encode instructions for
how the structure will fold. In our formulation we will treat the
crease pattern as a simple connected graph, where each unique
crease is an edge that connects two vertices to one another.

A. Kinematically allowed deformations

In addition to the origami constraints discussed above for
a single vertex, joining multiple vertices together generates
further constraints on the folds. Consider a crease pattern that
consists of P vertices. Each vertex vp, with p ∈ {1, . . . ,P },
has Np folds, collected in the vector fp = (f p

1 f
p

2 · · · f p

Np
)T . If

we collect all the folds into the vector F , given by

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f 1
1

f 1
2
...

f 1
N1

f 2
1
...

f 2
N2

...
f P

1
...

f P
NP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

then we have the following constraint equation for the folds:

DF = 0, (6)

where D is a sparse rectangular matrix that enforces the
condition that if two vertices vq,vp are adjacent and two
folds Fi ,Fj connect vq,vp, then Fi = Fj (see Fig. 2 for
an example). This constraint enforces the connectivity of the
graph, since each unique crease clearly must have a compatible
fold angle associated with the vertices that connect it. Each
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f1
2

f1
3

f1
4

f2
4

f2
3

f2
2

f2
1

f1
1

f1
2

f1
3

f1
4 f2

4

f2
3

f2
2

f2
1
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FIG. 2. (Color online) (a) Two degree-4 vertices with labeled
folds. (b) Graph for the crease pattern consisting of these two vertices
contains a single crease that is shared by both vertices. In this case the
constraint equation DF = 0 simply becomes the scalar relationship
f 1

1 = f 2
3 .

row of D corresponds to a fold connecting a pair of vertices
in the origami tessellation while each column corresponds
to a component of F . Analysis of this construction is the
essence of origami mechanics and lies at the heart of the
difficulty in determining general properties of tessellations and
corrugations. Finding the null vectors of D amounts to finding
all of the possible solutions for the fold angles and thus all of
the kinematically allowed motions of the rigid origami. While
computational methods have been developed for simulating
the kinematics of origami and linkage structures [2,6,11,12],
there has been no general analytical study that seeks to identify
mechanical properties based solely on the crease pattern.

The functions F (s) are, in general, nonlinear. To proceed
analytically, we expand s about a state s0 that solves the
constraint equations. That is, if F (s0) = F0 then DF0 ≡ 0.
A trivial choice for s0 has every entry identically equal to
π , indicating that the piece of origami is unfolded. The more
common, and more interesting, scenario involves a folded state
where the values of the internal vector s0 are known. Assuming
that such a state exists, we write s = s0 + δs, with δs a small
perturbation, and then have

DJδs ≡ Rδs = 0, (7)

where the Jacobian of the fold angles for each vertex J ≡
∂F/∂s|s0 is a block diagonal matrix defining the small
deviations from the ground state s0 and R is a rigidity matrix
that informs on the infinitesimal isometric deformations of
the origami structure [37,38]. This formulation is convenient
since it separates the effects of the crease pattern topology
(contained entirely in D) from the constrained motion of a
single vertex (contained entirely in J). We can thus solve for
each of these matrices individually.

To find D, we first exploit the periodicity of the lattice to
decompose the vector F and matrix D in a Fourier basis such
that F = ∑

n,m eiq·xFq + c.c. Here q is a two-dimensional
wave vector and x = na1 + ma2 is the two-dimensional
position vector of the fundamental unit cell on the crease
pattern lattice, where (n,m) indexes this position in terms of
the lattice vectors a1,2. Since F ≈ Jδs and J is independent
of the lattice position, we also have δs = ∑

n,m eiq·xδsq + c.c.,
where Fq = Jδsq . In this representation the constraints given
in Eq. (6) are

D(q)Fq = D(q)Jδsq = 0. (8)

Now, instead of a matrix operation over all the vertices,
the size of D(q) is vastly simplified. For a pattern with p

distinct vertices per unit cell, each of degree Np, D(q) is a∑p

i=1 (Ni/2) × ∑p

i=1 Ni matrix. In Fourier space, D(q) is the
complex-valued constraint matrix for the graph of the unit
cell vertices and folds. Specifically, each fold of the unit cell
is represented by a row in D(q) having only two nonzero
entries. Those entries all have the form ±eiq·a1 , ± eiq·a2 ,±1,
depending on whether the fold connects to an adjacent unit
cell along a1,2 or is internal to the unit cell.

The formulation in terms of the matrix R(q) is completely
general for any origami tessellation. The rectangular matrix
D(q) carries all of the topological information regarding the
fold network, while the Jacobian J carries the information
about the type of vertex that has been specified; J will be
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block diagonal with one block for each vertex of a unit cell,
but does not depend on q for a regular tessellation.

B. Origami energetics

While the R matrix determines the kinematically isometric
deformation to leading order, these constraints are generally
not the end of the story for real materials. Creases in folded
paper, thermoresponsive gels with programmed folding angles,
and elastocapillary hinges all balance energetic considerations
with geometric constraints. In many cases these creases and
hinges act as torsional springs, while the bending of faces have
additional elastic energy content [7,39,40].

The energy associated with the entire structure may be
written, to quadratic order in the dihedral vectors, as

E = 1
2 (F − F0)TA(F − F0), (9)

where A is a general stiffness matrix and F0 is a reference
fold angle. For linear response this is the most generic form
for the energy. In the simplest of cases A is constant over the
lattice and diagonal with respect to F ; this models each crease
as a torsional spring with uniform spring constant [7,13,40]. A
small amplitude response is found by examining the origami
structure near the ground state, that is, when F = F0. When
the energy is expanded about the ground state E0 we find

E = E0 + 1
2δsT JTAJδs, (10)

or in the Fourier decomposition

E = LW

2

∑
q

δs†qMδsq, (11)

where L is the length of the tessellation in the a1 direction,
W is the width in the a2 direction, and M = JTAJ is a
matrix operator that is independent of wave number. Since the
null space of R(q) will determine the modes of deformation,
the solution to this problem lies in finding the kinematically
allowed deformations and then any energetic description will
simply involve a change of basis to a system of deformations
that diagonalize the operator M.

IV. MIURA-ORI

As an example of this formulation, we consider inhomoge-
neous deformations of a particular origami metamaterial, the
Miura-ori. First introduced as a framework for a deployable
surface, the design appears often in nature, from plant
leaves [41] to animal viscera [42]. Additionally, theoretical
calculations and experiments have suggested the Miura-ori as
a canonical, origami-based, auxetic metamaterial [6,7,11–13].
Its ubiquity may be related to its simplicity: The Miura-ori is
determined from a single crease angle α and the mountain and
valley assignments of the pattern shown in Fig. 3. Conventional
origami mathematics considers that each Miura-ori vertex
is degree 4 and thus there is only one degree of freedom.
However, casual experimentation with a real Miura-ori quickly
demonstrates that it has far more than one degree of freedom,
indicating an array of soft modes enabled by the bending of
the individual faces. This breakdown of the assumptions of
mathematical origami is well known and there are many crease
patterns that are mathematically impossible to fold that can in

θ+θ−

φ+

φ−

β+

β−

θ+θ−

φ+

φ−

β+

β−

(b)(a)

α

FIG. 3. (Color online) (a) While the crease pattern of a Miura-ori
generally introduces only four folds per vertex, the bending of faces
acts to allow two extra folds per vertex, so the crease pattern we
consider is a triangulated lattice. At each vertex the dihedral angles
contained in f are determined by specifying the state vector s and
satisfying the geometric constraints. (b) Single-vertex origami with
enclosing sphere to visualize the constraints between f and s.

fact be done with little effort [43]. To incorporate these extra
degrees of freedom into Miura-ori, we assume that there are
two extra folds per vertex to account for face bending. While in
the extreme case of the creases being perfectly rigid these extra
folds would actually take the form of stretching ridges [44],
many real applications involve fabrication processes that will
allow the face to be well approximated as perfect bending.
Each unit cell in the tessellation has four six-valent vertices
(Fig. 3) so there are 12 degrees of freedom per unit cell. In this
example the fold vector for the ith vertex is given by fi =
(θ i

+,φi
+,βi

+,θ i
−,βi

−,φi
−)T and the vector F = (f1 f2 f3 f4)T .

There are three degrees of freedom per vertex that define the
internal state s, which we parametrize using three angles: ε,
the angle between folds labeled θ± in Fig. 3, and the angles
φ± representing the bending of the faces. Using the geometric
relationships between the angles [35], we find the general
nonlinear relationship for a single vertex and then expand about
the ground state s0 = {ε + δε,π + δφ+,π + δφ−} to find the
matrix J; here ε ∈ [π − 2α,π + 2α]. This expansion naturally
follows from assuming that the faces are nearly flat and that the
Miura-ori has been folded into the standard configuration. The
Jacobian J = diag(J0 −J0 J0 −J0) is a 24 × 12 diagonal
block matrix formed from four identical blocks

J0 =

⎛
⎜⎜⎜⎜⎜⎝

A C C

0 1 0
B C 0

−A 0 0
B 0 C

0 0 1

⎞
⎟⎟⎟⎟⎟⎠, (12)

where

A = cos α csc(ε/2)/
√

sin2(ε/2) − cos2 α, (13)

B = sin(ε/2)/
√

sin2(ε/2) − cos2 α, (14)

C = csc(α/2)/2. (15)
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FIG. 4. (Color online) (a) Miura-ori, without the assignment of mountain and valley folds, has a simple directed graph structure with a
unit cell composed of four vertices. By tessellating these four vertices, the entire pattern emerges. Note that the tessellation is rectangular,
with lattice vectors a1 = ax̂ and a2 = bŷ. (b) Each vertex has six folds, labeled in the fashion shown here. (c) In Fourier space, translations
associated with connecting these folds together throughout the tessellation merely amounts to a phase factor associated with the appropriate
wave number and lattice vector. Shown on the left is translating in the x direction. The middle shows translating in the y direction. The right
shows that connecting the extra folds involves a diagonal translation across the unit cell. Note that the five internal folds have a phase factor
identically equal to one.

To calculate the constraint matrix, we note that there are 12
unique folds per unit cell, so D(q) is a 12 × 24 rectangular
matrix. It has a row for each bond in Fig. 4 with two
nonzero columns indicating which folds of each vertex

are interconnected. For internal folds the constraint matrix has
a value of ±1, while folds that leave the unit cell have a phase
factor associated with it. For convenience of computation we
have symmetrized these phase factors, and the full matrix is
given by

DT (q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0
0 eiqy/2 0 0 0 0 0 0 0 0 0 0
0 0 eiqy/2 0 0 0 0 0 0 0 0 0
0 0 0 −e−iqx/2 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 eiqx/2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 eiqx/2+iqy/2 0 0 0 0 0
0 0 0 0 0 0 0 eiqy/2 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 eiq/2 0 0
0 0 0 0 0 0 0 0 0 0 −e−iq/2 0
0 0 0 0 0 0 −e−iqx/2−iqy/2 0 0 0 0 0
0 0 −e−iqy/2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −e−iqx/2 0 0
0 0 0 0 0 0 0 0 0 0 0 −1
0 −e−iqy/2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −e−iqy/2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 eiqx/2 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

013205-5



EVANS, SILVERBERG, AND SANTANGELO PHYSICAL REVIEW E 92, 013205 (2015)

A. Bulk deformation

The combination D(q)J is square such that Eq. (7) has a
nontrivial solution whenever det[D(q)J] = 0. We nondimen-
sionalize the wave number by the physical lengths of the lattice
vectors such that qxa → qx and qyb → qy and the resulting
dispersion relation is

cos2 α

sin4(ε0/2)
sin2(qx/2) + sin2(qy/2) = 0. (17)

The only real solution to this equation is q = 0, indicating
that an infinite origami tessellation does not admit spatially
inhomogeneous solutions; only uniform deformations are
allowed. The null space of R is three dimensional here,
corresponding to three uniform deformation modes of the
Miura-ori. These zero modes are given by the vectors �i :

�I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
0
0
1
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �II =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−1
1
0

−1
1
0

−1
1
0

−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �III =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2C
A

1
1
0
1
1

−2C
A

1
1
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

These infinitesimal deformations of the unit cell correspond
to a uniform contraction, a twisting mode, and a saddlelike
deformation, respectively (see Fig. 5). To describe the kine-
matics of deformation, all we require are the null vectors of
the constraint equations, but for examining energy associated
with the creases we need to calculate the eigenvalues of
the matrix M = JT AJ. In general, it is not unreasonable
to assume that a creased and folded Miura-ori will have a
crease stiffness k that is approximately equal for all patterned

I

II

III

λ

Γ

I

II

III

(b)(a)

0.01 0.1 1 10 100
0.001

0.01

0.1

1

10

100

1000

FIG. 5. (Color online) Shapes and energy eigenvalues for the
three uniform modes for ε = π/2 and α = π/3. (a) The three uniform
null vectors correspond to a uniform mode (I), a twisting mode (II),
and a saddle mode (III). These are identical to the modes determined
numerically in previous studies [6,12]. (b) Eigenvalues associated
with each of the three bulk modes as a function of face stiffness �.
Note that over a wide range the softest mode is the twisting mode
(II), since it involves purely face bending.

creases, but the energy scale for bending of the faces will
depend on the material properties of the structure [7]. The
energy for bending can be treated as an effective torsional
spring constant kb and thus the energy can be written in terms
of the ratio kb/k ≡ �. Nondimensionalizing the energy by
kLxLy , we find the energy eigenvalues λ in terms of the
null vectors. Decomposing the internal variable deformation
δs = ∑

i aiψi , where ψi = �i/|�i | is the normalized null
vector with i ∈ {I,II,III}, we write Eq. (11) as

E = LxLy

2
aT Ma, (19)

a =
⎛
⎝ aI

aII

aIII

⎞
⎠, (20)

M =

⎛
⎜⎝

ψT
I MψI ψT

I MψII ψT
I MψIII

ψT
II MψI ψT

II MψII ψT
II MψIII

ψT
IIIMψI ψT

IIIMψII ψT
IIIMψIII

⎞
⎟⎠. (21)

Each matrix element of M represents overlaps between the
null vectors ψi and the energy matrix M; only in exceptional
circumstances will M be diagonal in the null basis. In general
it is given by

M =

⎛
⎜⎜⎜⎝

2(A2 + B2) 0
√

2(A−B)BC√
C2+A2

0 C2 + � 0√
2(A−B)BC√

C2+A2 0 �A2+(3A2−2BA+2B2)C2

A2+C2

⎞
⎟⎟⎟⎠.

(22)

An example for when M is diagonal is given by α = π/3,ε =
π/2 (see Fig. 5), for which M becomes

M =
⎛
⎝8 0 0

0 1 + � 0
0 0 2

3 (3 + �)

⎞
⎠. (23)

Note that for this particular combination of parameters the
uniform expansion mode has a flat stiffness over all ranges of
� since there is no face bending for this deformation. In the
regime where face bending is relatively inexpensive (� � 1),
the out-of-plane deformation modes are correspondingly softer
than the uniform deformation. These results are in agreement
with previous numerical research done on the structural
mechanics of Miura-ori [6,11,12]. Should other values of (α,ε)
be chosen, the energy matrix is not necessarily diagonal and
thus eigensolutions mix the null vectors.

B. Inhomogeneous deformation

For a finite tessellation, the deformation is fundamen-
tally different, since some folds reach the boundary and,
consequently, do not yield constraints. Since the tessellation
mechanics are determined by the allowable deformations,
which are determined by the constraint equations, the presence
of free boundaries allows much more flexibility and the
Miura-ori develops additional degrees of freedom. These
localized edge states are reminiscent of evanescent waves
in electromagnetism, boundary layers in elastic lattices [45],
and Rayleigh surface waves [46]. Letting qx ≡ q (where q is
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FIG. 6. (Color online) Experimental observations of deformation localization in an 8 × 8 Miura-ori tessellation. (a) An undeformed
Miura-ori shows a regular periodic pattern. Under (b) small deformations, (c) large deformations, and (d) in the presence of a pop-through
defect (PTD) [7], the lattice distorts to accommodate the induced strain. (e) Qualitatively, the amount of deformation localization can be easily
seen by a simple image subtraction between the deformed and undeformed state. (f) Measuring strain along the horizontal axis as a function of
unit cell position n relative to the location of the disturbance shows a rapid decay for all three scenarios (points). For small and large amplitudes,
the decays can be readily fit to an exponential function with decay length � [upper (red) and lower (black) lines], whereas for a PTD, the decay
length can be estimated to within 100%. Because the PTD induces an extensional distortion rather than a compression, the strain is oppositely
signed. The inset is a plot of the decay length against an approximate measure of the distortion wave vector q showing that the larger wave
vector decays much more rapidly than the shorter wave vectors. Within error bars, this measurement is consistent with an inverse relationship
between decay length and wave vector. The solid line is the theoretical prediction from Eq. (24) for ε = π/2 and α = π/3.

real), Eq. (17) yields qy = ±iκ(q), where deformations decay
away from the boundaries of constant y with a length scale
� ≡ 1/κ(q), with

�(q) = 1

2|sinh−1[cos α sin(q/2)/(sin2 ε/2)]| . (24)

This localization length is readily observed in deformation
experiments on Miura-ori sheets (see Fig. 6). Using laser-cut
sheets of paper, an 8 × 8 Miura-ori is constructed by folding
the whole sheet using a planar angle of α = π/3 into the
ground state given by ε = π/2 [Fig. 6(a)]. Inhomogeneous
deformations are created using both an external indenter to
apply a displacement [Figs. 6(b) and 6(c)] and by placing
reversible pop-through defects [Fig. 6(d)] [7]. The strain γn

at each unit cell n is measured such that γn = �wn/w̄, where
�ww is the change in width of the nth cell and w̄ is the average
width for an undisturbed cell. As shown in Fig. 6, the strain
decays exponentially away from the indenter with a decay
length that is consistent (within error) with our theoretical
predictions.

To examine these deformation modes more quantitatively,
we return to the dispersion relation given by Eq. (17). There are
two possible solutions to Eq. (17), corresponding to different
decay directions, and thus the null space of R corresponding
to each of these branches is two dimensional. We decompose

δs(x) into a sum of upward (in y) decaying and downward
decaying modes

δs = eiqx[(u1χ1e
−k(q)y + u2χ2e

−k(q)y)

+ (d1η1e
k(q)y + d2η2e

k(q)y)] + c.c. (25)

The vectors χ1,2 correspond to the upward decaying modes
and η1,2 the downward decaying modes. Note that, since the
values of the angles must be real, η1,2(q) = χ̄1,2(−q). In the
long-wavelength limit, i.e., q � 1, we have

χ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−CAq+CB(q−2i)
AB

0
2q

−CAq+CB(q+2i)
AB

0
0

CAq−CB(q−2i)
AB

0
0

CAq+CB(q+2i)
AB

0
2q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, χ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2C
A

0
0

− 2C
A

−2iq

0

− 2C
A

−2iq

0

− 2C
A

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)
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FIG. 7. (Color online) Eigenvalues and mode shapes as a function of wave number for a given �. (a) Shown on the left is the mode structure
for � = 0.1, 1, and 10, with ε = π/2 and α = π/3. At long wavelengths the saddle mode I is the stiffest for a wide range of q, since it involves
both bending of the faces and deformation of the angles away from the reference state. Shown on the right is the mode structure for � = 0.1, 1,
and 10, with ε = π/2 and α = 9π/20. The labeled modes are in ascending order from largest eigenvalue (mode I) to lowest eigenvalue (mode
IV). (b) Visualization of the basic modes for q = π/6.

The null space, and thus the number of elementary excitations,
for a finite-size Miura-ori is actually different than for the
limit q → 0. While this may seem counterintuitive, the nature
of the null vectors is inherently chiral, as indicated by the
decomposition into upward and downward decaying solutions.
At q = 0, the dimensionality of the null space is smaller
because there is no distinction between handedness for uniform
deformation.

C. Miura-ori’s soft modes

The vectors χ1,2 govern the kinematic deformations of
Miura-ori, giving the possible solutions to the constraint
equations. For a tessellation with an associated torsional spring
energy at each crease, the energy density per mode may be
written in Fourier space as

E = LxLy

2
c†(q)H(q)c(q), (27)

where

c(q) =

⎛
⎜⎜⎜⎝

u1(q)

u2(q)

d1(q)

d2(q)

⎞
⎟⎟⎟⎠ (28)

and H is the 2 × 2 Hermitian block matrix

H =
(

H0 H1

H†
1 H†

0

)
. (29)

The two independent blocks of H are given by

H0 =
(

χ
†
1Mχ1 χ

†
1Mχ2

χ
†
2Mχ1 χ

†
2Mχ2

)
(30)

and

H1 =
(

χ
†
1Mη1 χ

†
1Mη2

χ
†
2Mη1 χ

†
2Mη2

)
. (31)

For finite wave number there are four modes of deformation.
Typical eigenvalues of H(q) are shown in Fig. 7. The largest
two eigenvalues are typically associated with changing ε,
since there is an energetic cost even for very small �. The
typically smallest two eigenvalues correspond to twisting
mode and a fourth mode that has no analog in the zero
wave number case. This mode has a qualitative shape that
is similar to the twisting mode and an energy that vanishes
as q → 0, much like an acoustic mode in a crystal. Previous
analyses of inhomogeneous deformations have not found this
mode, which we identify here as arising from the breaking
of continuous symmetry when a boundary is added to one
side of the tessellation. The acoustic mode corresponds to
an antisymmetric combination of upward and downward
decaying modes; consequently, as q becomes smaller, the
change in fold angles associated with the combination cancels
and only three modes appear at q = 0.

The modes that are softest depend not only on the
stiffness of face bending, but on the ground state defined
by ε0 (see Fig. 7). This stiffness dependence is in accord
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with the previously predicted anisotropic in-plane stiffness
response [6,13]. Additionally, since our analysis allows for
arbitrary size and wave number, we are able to capture the
response of the previously unidentified acoustic mode.

V. DISCUSSION

While there has been numerical analysis of tessellations
in the past, our theoretical formulation provides several
key insights into the design and understanding of origami
mechanics. We not only analytically calculated expressions
for first-order inhomogeneous deformations, but we found
an additional acoustic mode of deformation that has not
been identified using numerics. Moreover, we have found an
analytical expression for a decay length that arises in Miura-ori
and identified that these soft modes are edge states that cannot
occur in an infinite tessellation. Indeed, the appearance of
a single decay length and the ability to fully quantify the
deformation modes using a single wave number indicates that
the boundaries of Miura-ori fully define the deformation state.
We can directly conclude from this that, unlike normal solids,
the number of degrees of freedom scales with the perimeter of
a finite tessellation, rather than the area. This result suggests
that there are surface boundary states that can be used to
probe the full deformation of the material and hints at the
connection between our work and recent studies on topological
mechanics [38]. In fact, our mathematical formalism shares
many parallels with the topological mechanics of linkages
[47–49], as well as the more conventional literature concerning
topological insulators and semimetals [50–52]. It remains to
be seen exactly how the symmetry and topology of the crease
pattern affect the nature of chiral modes in origami, but there
is evidence to suggest that even slight modifications of the

crease pattern symmetry may lead to preferentially directed
chiral states.

A great deal of this analysis can be carried through to
other origami fold patterns. What is less clear, however, is
how the number of degrees of freedom, the null space of
R(q), changes for different fold patterns. At the outset it may
seem coincidental that the matrix R(q) is square. In fact, this
behavior is likely more generic. In particular, the Miura-ori,
with additional folds across the faces, is composed of triangular
subunits. In any triangulated origami fold pattern, vertices will
tend to have, on average, six folds. Hence, for V vertices (with
V very large), we have 3V unique folds and 3V degrees of
freedom per vertex. Consequently, R(q) will be a 3V × 3V

square matrix for sufficiently large V .
Finally, a great advantage to this approach is the ability

to separate the topological nature of the crease pattern from
the geometry of the vertex. The ability to isolate mechanical
deformations or elementary excitations in exotic materials is
of great interest in quantum condensed matter [38], amorphous
solids [53–55], and complex fluids [56]. Our theoretical
framework for origami tessellations bridges the gap between
the origami mechanics literature and a theory of origami
metamaterials by identifying the constraint-based nature of
the folding mechanisms and applying well-known methods of
analysis from solid state physics and lattice mechanics.
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